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Abstract. The equivalent photon charge in a two-electron temperature Fermi
plasma is determined through the plasma physics method. The Fermi plasma has
distinct populations of hot and cold electrons that are described by a quantum
hydrodynamic model which accounts for the quantum statistical pressure of the
hot electrons and the quantum force acting on the two electron fluids. Relations for
the coupling between the electron plasma density fluctuations and the radiation
fields are derived, and the effective photon charge is then calculated.

It is well known that an equivalent electric charge can be defined for an intense
laser pulse propagating through a plasma [1, 2]. In the case of electromagnetic
radiation with a large spectral width, phase effects are negligible and the laser
can be described as a gas of photons. Therefore, the photons can be considered as
point-like particles, each moving with the group velocity of the laser and possessing
an effective mass. The photon equivalent charge is a nonlinear concept associated
with the ponderomotive force (radiation pressure) of the laser, which causes the
polarization of the medium. It can lead to the photon Landau damping of the
electron plasma waves [3]. The concepts of the effective mass and the equivalent
charge of a photon can be described in the context of the quantum theory of
radiation, and therefore are not just consequences of a classical description of the
radiation–plasma coupling [4].
The induced photon charge is responsible for the coupling between electromag-

netic waves and plasmas, which is important in space and astrophysical envir-
onments, as well as in solid-state physics. For instance, experiments making use
of X-rays are common in the dense matter community [5, 6], and allow accurate
measurements of the physical properties of dense matter including temperature,
density, and ionization state. Recently, Glenzer et al. [7] obtained the first collective
X-ray scattering measurements of plasmons in a warm dense plasma. In recent
years there has been an increasing interest in investigating collective interactions in
very dense Fermi plasmas, motivated by their applications in micro- and nano-scale
objects, as well as in ultrasmall semiconductor devices [8]. Collective interactions
in quantum plasmas can also be important in astrophysics [9]. In the interior of
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white dwarfs and in the crust of neutron stars the plasma is very dense and the
electrons are degenerate. The electron Fermi temperature TF is much higher than
the plasma temperature T , which implies that quantum-mechanical effects are
important [10, 11]. A quantum hydrodynamic (QHD) model has been developed
by Gardner and Ringhofer [12], which is able to describe a quantum electrostatic
plasma in the collisionless regime, where collective, mean-field effects dominate [13].
Here the quantum-mechanical effects are described by the Bohm potential, which
is related to the dispersion of the wave packet. For low-temperature Fermi plasmas,
the electron distribution function is close to the Fermi–Dirac equilibrium and the
Pauli blocking effect dramatically reduces the collision rates [10,11].
The existence of two distinct groups of electrons in laser-produced plasmas is

well documented [14]. It has been proposed that energetic electrons produced by
ultraintense lasers in plasmas could be used as an ignitor beam in a fast ignitor (FI)
approach [15]. Conclusive evidence that space plasmas can also contain hot and cold
electron components have been presented [16]. In two-electron plasmas, electron-
acoustic waves (EAWs) with wave frequencies larger than the ion plasma frequency
can be generated [17, 18]. These waves have phase velocities between the thermal
speeds of the hot and cold electron populations, which means that the restoring
force has its origin in the pressure of the hot electrons, while the inertia is provided
by the mass of the cold population (ions form only a neutralizing background) [18].
In the present paper we determine the equivalent electric charge of photons in

a super-dense two-electron temperature Fermi plasma. We derive the relations for
the electron number density fluctuations driven by the ponderomotive force of the
photons, and determine the induced photon charge. The above-mentioned relations
are obtained by using the QHD model for the electrons, which accounts for the
quantum statistical pressure law (hot electrons) and the quantum force associated
with the quantum Bohm potential. The quantum potential represents part of the
energy of the wave field and is related with quantum phenomena such as tunnelling
from a potential well [19].
The dynamics of the electrostatic oscillations driven by the ponderomotive force

of photons in a non-relativistic two-electron temperature Fermi plasma is governed
by the continuity and momentum equations. The equations for the cold electrons
are
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where φ is the electrostatic potential given by the Poisson equation

∇2φ = 4πe(nc + nh − n0), (3)

nc(h) is the electron number density of the cold(hot) electron plasma and n0 = n0i
is the equilibrium ion number density (ions are at rest). In the equilibrium, the
quasi-neutrality condition n0c + n0h = n0i = n0 is established, and n0c(h) is the
equilibrium electron number density of the cold(hot) electrons. The second term in
the right-hand side of (2) is the quantum force associated with the Bohm potential,
where � is the Planck constant divided by 2π, me is the electron rest mass, and c is
the speed of light in vacuum. The last term in (2) is the ponderomotive force [20,21]
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due to the photon field, where E0 is the amplitude of the electric field associated
with the electromagnetic wave packet, and ω0 is the frequency of the photons. For
the hot electrons, we have

∂nh
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+ ∇ · (nhvh) = 0, (4)

and
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The second term in the right-hand side of (5) is the force due to the pressure of
a zero-temperature (T�TF) Fermi–Dirac plasma [11], where vF = (2kBTF/me)1/2

and TF = �
2(3π2n0h)2/3/2kBme are the Fermi speed and the Fermi temperature

of the hot electrons, respectively, and kB is the Boltzmann constant. The last two
terms in the right-hand side of (5) are the quantum force and the ponderomotive
force, respectively.
Since the EAWs have phase velocity smaller than the thermal speed of the hot

electrons, we can neglect the electron inertia in (5). Therefore, linearizing (1)–(5)
and combining the results, we have(
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where we have introduced the definitions ωpc = (4πe2n0c/me)1/2 (cold electron
plasma frequency), ωph = (4πe2n0h/me)1/2 (hot electron plasma frequency), Cs =
(6kBTF/5me)1/2 ≡

√
3/5vF (electron thermal speed), and δnc and δnh are the cold

electron and hot electron number density perturbations, respectively. Equations
(6) and (7) show the coupling between the photon field and the density fluctuations
in the two different electron components of the dense Fermi plasma.
In order to obtain the induced photon charge, we Fourier transform (6) and

(7) and use the definition of the number density of photons as np = |E0 |2/8π�ω0 .
Manipulating the resultant equations, we have
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=
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where ω2
pc = ω2

phδ, δ = n0c/n0h and CQ = �k/2me. Using (8) and the relation
−eδne = qpnp [1], where qp is the (spectral) equivalent photon charge, we derive
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Figure 1 shows the dispersion relations of a Fermi plasma with n0 = 1028 cm−3

and of a two-electron temperature Fermi plasma, i.e.

ω =
[
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s + k2C2
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, (10)
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Figure 1. Frequencies (in units of 1018 s−1 ) for (a) a Fermi plasma with n0 = 1028 cm−3 , and
for a two-electron Fermi plasma with n0 = 1028 cm−3 and (b) δ = 1 and (c) δ = 0.1 (k is in
units of 108 cm−1 ).

for two different values of δ, 1 and 0.1, and n0 = 1028 cm−3 . Here λDh = Cs/ωph
is the Debye radius of the hot electrons and λQh = CQ/ωph. From (10) we observe
how the presence of the two distinct groups of electrons modifies the frequencies of
the waves that can propagate in a dense Fermi plasma.
Defining ω2

p = ω2
pc + ω2

ph = ω2
ph(1 + δ) and considering the limit ω2�ω2

p + k2C2
s +

k2C2
Q, we find that

qp =
e�k2 [δ(λ2
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Qh]
meω0 [(λ2

Dh + λ2
Qh)(δ + k2λ2

Qh)]
, (11)

where we have also considered (k2λ2
Dh + k2λQh)�1.

To summarize, the equivalent photon charge in a two-electron temperature Fermi
plasma has been determined by using the plasma physics method. We describe the
electromagnetic wave packet propagating through the plasma as a gas of photons,
and the QHDmodel is used to describe the two-electron temperature Fermi plasma.
Here the quantum statistical pressure of the hot electron population and the
quantum force associated with the Bohm potential are included. The radiation
pressure of the photons causes the plasma polarization and the induced charge.
A relation for the total electron number density fluctuation driven by the pon-
deromotive force of the photons is derived, and considering the spectral fluctuation
in the total electron population we determine the equivalent photon charge in a
two-electron temperature Fermi plasma.We observe that the quantum termCQ can
be important, depending on the value of k. The plasma composition also influences
the dispersion relation of the waves in a dense Fermi plasma and, consequently,
the spectral photon charge. These results can be important for the photon–plasma
coupling in dense quantum plasmas, such as those in the interior of dense stars and
in laser–solid density plasma interaction experiments.
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