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ABSTRACT 

The authors of this paper have previously, in 1987, 
outlined the development of a set of constitutive equations 
representing the behaviour of avalanching snow, and the 
resulting equations for fully developed steady shear flow. 
The present paper considers the development of non-steady 
two-dimensional shear flow together with the use of a 
finite-difference programme to calculate snow-avalanche 
velocities and flow heights in the run-out zone. The 
numerical results thus obtained are compared with full-scale 
experimental data. These comparisons indicate that front 
velocity and run-out distance are simulated well by the 
model, and that the predicted snow deposits are fairly well 
in agreement with those actually observed. 

INTRODUCTION 

Since 1981, the Norwegian Geotechnical Institute (NGI) 
has carried out full-scale experiments in the Ryggfonn 
avalanche path in western Norway, recording avalanche 
velocities and impact pressures. The practical arrangements 
employed and the results obtained have been reported by 
Norem and others (1985, 1986, 1988a, b); evaluation of the 
results of these experiments has clearly indicated the need 
for a better physical understanding of avalanche flow, 
especially in the lower part of the avalanche path and in 
the run-out zone. 

A theoretical study of avalanche flow was started in 
1985, with the following aims: 

To give a physical description of the mechanics of the 
flow, and the retarding mechanism. 
To identify the physical parameters which are most 
important in defining avalanche flow. 
To predict the velocities, flow heights, and stresses in the 
lower part of an avalanche path, and also the run-out 
distance, with a reasonable degree of accuracy. 

The preliminary results of this project have already 
been given by the present authors (Norem and others, 1987) 
in a report which includes the development of a set of 
constitutive equations representing the behaviour of 
avalanching snow, and the resulting equations for fully 
developed steady shear flow. The present paper deals with 
the development of non-steady two-dimensional shear flow, 
and with the use of a finite-difference programme to 
calculate snow-avalanche velocities and flow heights in the 
run-out zone. The numerical results are compared with 
recorded data from the Ryggfonn project. 
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INTRODUCTION TO CONTINUUM MODEL 

Constitutive equations 
Norem and others (1987) proposed that, where 

viscoplastic behaviour is predominant, snow in avalanches 
should be modelled as a granular material. In a simple 
steady shear flow, the general constitutive equations yield 
the total st resses, T xY' yz, zx (Fig. I) 

Txy 

O"y 

o"x 

O"z 
where 

a is the cohesion 
parameter, Pe is the 
pore density (N/m2), 
shear viscosity (m2); 

a + bPe + pm12 

-(Pe + pu) pV 212 

-(Pe + pu ) + p(v 1 - V2)t
2 

-(Pe + pu ) Tyz = Tzx 

(I) 

(2) 

(3) 

0(4) 

(N/m2), b is the material friction 
effective pressure (N/ m2), Pu is the 
p is the density (kg/m3), m is the 

= shea r velocity (I/s), 
dy 

VI' V 2 = normal stress viscosities (m 2
) . 

The shear stress, Equation (I), is caused by a 
combination of cohesion, Coulomb friction, and viscosity. 

Fig. I. Definition of normal and shear stresses, and velocity 
distribution. 
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Fig. 2. Definition of steady-flow geometry. 

The normal stresses, ay, Equation (2), are divided into three 
separate parts: effectIve pressure, pore pressure, and a 
dispersive pressure. The viscous part of the shear stress and 
the dispersive pressure are assumed to be due to collisions 
of particles moving relative to each other. 

Steady shear flow 
In a fully developed steady shear flow with a velocity 

field given by Vx = vx(y) and Vy = Vz = 0 (Fig. 2), where 
p is assumed constant, the stresses at a height, y, are given 
by 

h 

sin IP fp gdY 

y 

h 

- PI - cos IP f pgdy 

Y 

pg(h - y)s in IP (5) 

- PI - pg(h - y)cos IP (6) 

where IP is the angle of inclination; g is the acceleration 
due to gravity. At the surface of a dense flow, y = h, the 
shear stress is zero, and the pressure is equal to the 
atmospheric pressure PI which is assumed to be equal to 
the pore pressure within the flowing snow. 

For most avalanches, some slip velocity at the bed 
surface is like ly to exist. Norem and others (1987) proposed 
the following slip condition 

(7) 

where Vo = slip velocity; s = a constant, whose value is 
dependent on the nature and roughness of the material of 
the so lid surface. From Equations (I), (2), (5), (6), and (7) 
we obtain expressions for the slip velocity, vo' the 
maximum velocity, vI' and the velocity distribution 

[pgh(Sin IP s - bcos IP) r (8) 

(9) 

where 

a 

pg(s in IP - bcos IP) 
thickness of plug flow. (11) 
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NON-STEADY FLOW IN RUN-OUT ZONE 

Introduction 
In the run-out zone of a snow avalanche, the linear 

fl ow velocity, vx ' the flow height , h, and the plug-flow 
thickness, hp, will be functions both of time and of 
pos ition along the avalanche path. The linear flow velocity 
will be represented by the maximum velocity, vI' together 
with the slip ve loc it y, vo' The solution of the flow problem 
consists of introducing four equations for the four 
functions, h, hp, Vj' and vo' of time and position along the 
avalanche path, and then solving these equations numerically. 
So far we ha ve not formulated a plug equation, and we 
th e refore leave out the plug-flow height , hp , and the 
cohesion parameter, a, in the following discussions. A more 
detailed expos it ion of the method of solution has already 
been presented by Irgens (1988). 

y 

~--------------------------------------·X 

Fig. 3. Geometry of avalanche path. Velocity profile. 

Geometry of avalanche path: velocity profile 
The avalanche is considered as a two-dimensional flow 

in a vertical plane, as shown in Figure 3, for which X and 
y are local Cartesian coordinates originating from any point 
(X,Y) a long its path. The unknown velocity distribution for 
the non-steady flow case is taken to be represented by the 
expression 

(12) 

where maximum velocity vI' slip velocity vo' and flow 
height h are functions of the horizontal coordinate, X, and 
of time, I, such that 

h h(X,I). (13) 

The ve locit y profile Equation (12) is identical in form with 
the steady-shear flow profile Equation (10) for non-cohesive 
materials. 

I n accordance with standard thin shear-layer 
assumptions, the velocity component in the y-direction can 
be neglected. Furthermore , it may be shown that in general 
constitutive equations only terms involving the gradient 
dvxdy need be considered. The Cauchy equation of motion 
in the .v-direction will then reduce to 

for 0 ~ y ~ h - hp 

forh-hp~ y~h. 

day 
- - pgcos ~ 
dy 

( 10 ) 

(14) 

in which the terms on the left-hand side represent a normal 
acceleration due to the curvature, K, of the avalanche path. 
Integration of Equation (14) yields 

ay = -PI - pg(h - y)cos ~ - pKhf(X,y,l) (15) 

and 
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The 
Equation 
equations 

Pe 

shear 
( 15) 

and normal stresses 
together with the 

are now 
following 

(16) 

given by 
constitutive 

9 pV 2 Y 
... ( 2 . ) h pg(h - y)cos'l' - -- v - vo) (I - - + pK 1 

4 h 2 1 h 

( 17) 

(18) 

(19) 

T yx = T zx = o. (20) 

Equation (1 7) for the effective pressure, Pe' is obtained by 
comparison of Equation (15) with the constitutive equation 
for a y" 

h h h 

Jv~ dy t'O. J2 ["J 2 ' v, dy+ Tt v, dy Jdx 

0 0 0 

h 9 (OStjl h h 
h J 0', dy + [aUx J 0' x dy ] dx J O'xdY 

0 

l 
dx 

Fig. 4. Differential control volume. 

Momentum and continuity equations 
The equation of motion in the direction of linear flow 

is replaced b y a one-dimensional momentum equation . This 
is obtained b y application of the von Karman integral 
method , the basic idea being to develop the momentum 
equation for a differential fixed control volume, hdx, as 
shown in Figure 4. The momentum theorem and the 
principle of conservation of mass, applied to the control 
volume , yie ld the following integral equations 
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h 

I 
ovx 
-dy+ 
01 

o 

g h s in cP + 

h 

5 IVXdY + dh o. 
ox dl 

o 

oh 
hF; 

o (21) 

(22) 

Differential equations 
The s hear stress at the bed surface, Y = 0, is assumed 

to satisf y the slip condition of Equation (7). Equating this 
express ion for the shear stress with that of the constitutive 
Equation (18), we get the following ratio between the 
maximum velocity, vI' and the slip velocity, vo: 

2h[ 2 ]t]-1 
+ "3 p(m - bv

2
) 

(23) 

The velocity profile Equation (I2), the normal stress 
Equation (J 9), and the shear stress Equation (7), or 
alternatively Equation (18) for the no-slip case, are 
substituted into the integral momentum and continuity 
Equatio ns (21) and (22). The final forms of the integrated 
equations are the following partial differential equations. 

+ gh(s in~ -bcos~ - Kbh rJ v2 + ~v V + -4
1 

v0
2

] + bo 1 10 1 0 

0[9 h
2 

9h + - -v (v - v )2 - - g cos cP - -v2 

ox 8h 1 1 0 2 20 1 

o (24) 

oh 0 [h ] - = - - -(3v + 2v ) . 
01 ox 5 1 0 

(25) 

The fl ow problem in the run-out zone is thus simplified to 
the solution of the three Equations (23), (24), and (25) for 
the unknown functions v1(X,t), vo(X,t), and h(X,t) . 

NUMERICAL SOLUTION 

Definition of the model avalanche-path profile 
The two-dimensional run-out zone of the avalanche 

path is presented in Figure 3. The Cartesian coordinates 
(X,Y) of 11 characteristic path points QI' ... , Qn are chosen 
to describe the main topography of the path. In order to 
obtain realis tic intial values for the velocity, the segment 
between the two first points, Q1 and Q2' is always taken to 
be straight. The slope of this segment and the slope at the 
end point, Qn' have to be specified as input data. Between 
any two neighbouring points, Q2' ... , QII' third-order 
parabolas are introduced; these parabolas satisfy continuity 
of slope and curvature at the Q points, and an actual 
avalanche path is thus replaced by a cubic spline. The 
segments between the Q points are further subdivided into 
an arbitrary number of sub-segments by the station points, 
PI' ... , P 111" A computer sub-routine evaluates the coordinates 
(Xi' Y i ), the slope, cPi' and the curvature, Ki' at each 
station , Pi. 

Computer program 
To start the computation, an "avalanche" is introduced 

covering a chosen number of sub-segments on the straight 
segment between Q1 and Q2. The flow height, h, has the 
same constant value on all sub-segments, and the avalanche 
is assumed to have obtained its terminal velocities, Vo and 
v!' computed from Equations (8) and (9) on entering the 
straight segment. Any other set of initial conditions, 
however, may also be introduced into the computer 
programme. 
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In order to simplify comparison with other avalanche 
simulations, four different sub-routines are written for the 
solution of the flow Equations (23), (24), and (25). These 
are 

S.I Slip: vo(X,t); v1(X,t); h(X,t). 
S.2 No-slip: Vo 0; v1(X,t); h(X,t). 
S.3 Uniform profile: Vo vo; v1(X,t); h(X,t). 
S.4 Constant height: Vo 0; V1(X,I); h = constant. 

The partial differential Equations (24) and (25) are solved 
by a finite-difference scheme, with central differences in 
the stream-wise direction, and by a fourth-order Runge
Kutta procedure with respect to time. The finite-difference 
scheme is Eulerian, requiring a special procedure to make 
the avalanche progress along the path, Figure 5 illustrates 
this procedure; the volume of snow passing through the 
front section at station PI fills the down-stream 
sub-segment and when the accumulated volume exceeds the 
value h f/:;x 1 + 1 it is assumed that the avalanche front has 
advanceo one sub-segment. A similar procedure is applied 
to the tail of the avalanche; when the accumulated volume 
of snow passing through the section at station Pt + 1 exceeds 
the volume of snow originally on the tail segment, it is 
assumed that the tail segment has emptied, and that the tail 
has therefore advanced one SUb-segment. 

Fig . 5. Flow through the elements. The indices, t and I, 
refer to tail and front of avalanche. 

DISCUSSION OF THE PHYSICAL PARAMETERS 

Viscosities and friction parameters 
The sub-routine programme for no-slip conditions is 

based on the selection of the three viscosities, m, v I' and 
v 2' and for the calculations we set values for m, m/ v2 , and 
V 1/V 2. The term v1/v 2 is assumed to be equal to 10, in 
accordance with experimental results for non-Newtonian 
fluids, although for our project the numerical results turn 
out to be insensitive to the selection of V1/V 2 values. 

The term m1/v 2 has been studied theoretically by 
Savage (1984), and experimentally by Savage and Sayed 
(1984), who found it to be dependent mainly on the 
coefficient of restitution. Norem and others (1987) have 
assumed the value of m/v2 for slow particles to lie in, or 
close to, the range 0.8-1.0, and also shown that for slope 
angles, 4>, where 4> = tan- 1m/v2, the expression for the 
terminal velocity for no-slip conditions, could be reduced 
to 

(26) 

and that this expression predicts for steep slopes that the 
effect of the frictional parameter, b, is reduced, and that of 
the material parameters only the shear viscosity, m, 
influences the terminal velocity, VI' This means that if the 
terminal velocity in the steep part of the path, and the 
flow height, are known, the value of m can be calculated. 
A probable range of values of m is 0.001-0.01 m2

. 

The only dynamic parameter used in the sub-routine 
programme for uniform profile is the dynamic friction 
parameter, s. To obtain terminal velocities of 30-70 ms-I, 
the value of s must lie in the range of 0.5-2.0 kg m-3 . The 
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friction parameter, b, has the same characteristics as the 
static internal-friction parameter of granular materials. 
According to Savage and Sayed (1984), the value of b is 
very close to the tangent of the internal friction angle and 
is dependent on the size, roughness, and moisture content of 
the particles. Lang and Dent (1983) found the value of b to 
be close to 0.42. The authors of this paper also refer to 
experiments by Inaho, who found values within the range 
of 0.40-0 .55 for b. 

Lied and Bakkeh0i (1980) have surveyed major 
avalanches in Norway and have found that the angle from 
the starting point to the run-out point is on average 33°, 
although values as low as 18

0 

and as high as 49 ° have 
been found . The limits for b may thus be between tan 18

0 

(= 0.32) and tan 49° (= 1.15). The numerical results cited 
show that, for avalanches having the same terminal velocity, 
the run-out distance will vary considerably with the values 
of b. Our calculations are based on b values of 0.3 and 0.4. 

Length and height of avalanche 
Data from the Ryggfonn experiments show that impact 

pressure rises very rapidly when a dense flow hits a solid 
structure, and that maximum pressure will be obtained 3-
10 s after the first impact. Pressure is then reduced 
gradually as the avalanche tail passes the structure. 

Radar experiments by Gubler (1987) indicate that the 
maximum velocities within an avalanche are found close to 
its front, and that the highest velocities are seldom found 
for a period of more than 10 s at anyone point. The 
findings of the radar experiments and the Ryggfonn data 
thus coincide. 

Front speeds of 30-60 m S-1 are typical for major 
avalanches, and lengths of 100-400 m seem to be reasonable 
estimates. An exact value for the flow height is difficult to 
determine, as the cross-section of an avalanche is usually of 
an irregular shape and there are no clear distinctions 
between the dense flow and the accompanying snow clouds. 
Impact-pressure recordings from Ryggfonn indicate a height 
of dense flow of between I and 3 m. The impact pressures 
on the upper load cells of the recorder also indicate that 
maximum flow heights are found only for a short time and 
are sited in the front of the avalanche. The assumption that 
an avalanche initially has a given length and constant height 
and velocity in each sub-segment are thus simplifications. 
Probably, a more accurate assumption would be that of a 
varying flow height distribution, with the maximum height 
fairly close to the front of the avalanche. The model allows 
such height distributions have been taken into account but, 
due to the limited number of measurements available, they 
have not been considered in this paper. 

NUMERICAL RESULTS 

Approaches to practical problems in snow-avalanche 
engineering 

In evaluating the safety and 
areas, and considering structures 
avalanche , one needs to know: 

protection in populated 
in the path of an 

The run-out distance for a particular avalanche path, as a 
function of a given size of avalanche. 
The effect of varying path profiles in the run-out zone, 
with a particular emphasis on the stopping effect of 
collecting dams. 
Avalanche velocity at any point in the run-out zone. 
Impact pressures on structures, and shear stresses at ground 
level. 

In order to evaluate the accuracy and usefulness of the 
proposed model, we have used it as the basis for 
comparison with some of the numerical calculations for the 
Ryggfonn avalanche profile, and also for several idealized 
avalanche profiles. 

Comparisons with Ryggfonn data 
The numerical results generated by the model are 

compared with data from three major dry-snow avalanches 
in the Ryggfonn area . The experimental arrangement in 
Ryggfonn consisted of a 25 m Y-tower, a concrete structure 
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Fig. 6. Time of impact and surveyed avalanche deposits 
compared with numerical results of simulated avalanches. 

with load cells, several geophones, and a 15 m high 
collecting dam with a mast on top of it. The profile of the 
lower section of the avalanche track, and the location of 
the arrangement described, are shown in Figure 6. The 
complete sets of recorded data from the three avalanche 
events have been presented in Norem and others (1986, 
1988a, b). Figure 6 shows the time of impact at the 
different experimental sites, and the surveyed avalanche 
deposits. It also shows the calculated flow of three simulated 
avalanches in the lower section of the track, and the 
calculated snow deposits on both sides of the dam. The 
height and length of the model avalanches were selected by 
use of the impact-pressure recordings, and the friction 
parameter, b, was set as b = 0.4 in every case. The shear 
viscosity, rn, was selected to obtain similar front velocities 
between the Y -mast and the load cells for both the 
simulated and the recorded avalanches. 

The numerical results for avalanche No. I show that 
the time calculated as being necessary for it to reach the 
top of the dam is slightly less than the actually observed 
time for the avalanche on 13 February 1985. The snow 
cloud of this avalanche had a front velocity of 15 m S- 1 

when passing the dam, but only a small amount of the 
dense flow did pass the dam . The calculations show that the 
model avalanche stops only 2.0 m below the top of the dam , 
which is in reasonable agreement with the experimental 
observations. However, the calculated snow deposits extended 
somewhat higher than the surveyed snow depths, and the 
tail of the avalanche was not included in the model at all. 

The avalanche of I1 April 1988 had a speed of 
43 m S- 1 in the area of the Y -mast. Only a small proportion 
of the dense flow material passed the dam, and this 
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material was finally deposited up to 55 m behind the dam . 
The numerical results for avalanche No. 2 agree very well 
with the observed results for the front velocity, the run-out 
distance, and the height of the deposits, except at the tail 
of the avalanche. 

The avalanche of 28 January 1987 was a major natural 
avalanche, having a run-out of between 100 and 150 m 
behind the top of the dam. Unfortunately, there had been 
another large avalanche on the previous day and the 
surveyed snow depths are therefore the sum for the two 
avalanches. The major part of the deposit, however, is 
considered to derive from the later avalanche, since the 
duration of impact of the preceding day's avalanche was 
only short. It is thought probable that the effective dam 
height was reduced when the avalanche occurred on 28 
January, because of previous avalanche deposits; however, 
since there is so little information about these snow depths, 
we have based our calculations on the original terrain 
profile. 

The calculations for simulation avalanche No . 3 have 
been made for an avalanche length 50% longer than the 
previous ones and for an initial velocity 3% higher than for 
avalanche simulation No. 2. The numerical results correspond 
well both with the recorded times of impacts and with the 
snow deposits in front of the dam. The main deviations are 
found on the lee side of the dam, where the calculated 
snow depths are between I and 2 m greater than predicted, 
and the run-out distances are from 20 to 60 m shorter. 

Effect of slope at end of the run-out woe 
The profiles of six idealized run-out zones are shown 

in Figure 7. The first section is the same for all profiles, 
consisting of a steeper and a more gentle part, the final 
sections of the run-out zones have slopes varying gradually 
from zero at the start to an end value of between 5.7

0 

and 
- 33.7 o. The numerical results show that the run-out 
distance falls off considerably when the end value of the 
slope varies from 5.7

0 
to - 5.7 0, and that for slopes steeper 

than - 16 ° the reduction in run-out distance is slight; in 
this case the run-up height is a more significant factor. 

Also presented in Figure 7 are the calculations made 
for the sub-routine programme, for constant height and 
with the same input data . The calculated run-out distances 
vary only slightly with the slope at the end of the run-out 
zone, because in this case the retardation is calculated by 
using the averaged slope angle over the whole section 
covered by avalanching snow. 

https://doi.org/10.3189/S026030550000793X Published online by Cambridge University Press

https://doi.org/10.3189/S026030550000793X


100 
80 CONCAVE PROFILE 

60 
40 

20 

0 
150 200 250 300 350 400 450 500 

100 
80 10-M WAVE PROFILE 

60 

40 

20 
0 
150 200 250 300 350 400 450 500 

100 

80 5 -M WAVE PROFILE 

60 

40 
20 

0 
150 200 250 300 350 

100 

80 STRAIGHT LINE PROFILE 
60 
40 
20 

0 
150 200 250 300 350 400 450 500 

100 
80 PARABOLIC PROFILE 

60 
40 

20 

0 
150 200 250 300 350 400 450 500 

100 
80 HOCKEY STICK PROFILE 

60 

40 

20 
0 
150 200 250 300 350 400 450 500 

777m Snow deposits) calculated for varying flow height program. 

9 End postions calculated for constant flow height program. 

Fig. 8. Calculated run-out distances for varying path 
profiles. 

Effect of different path profiles 
When evaluating the run-out distance of avalanches, it 

is necessary to take into account the effect of the shape of 
the avalanche profile in the run-out zone. For instance, 
Martinelli (1986) observed different run-out distances in 
what he called hockey-stick profiles compared with those 
having a more parabolic shape. 

The results presented in Figure 8 are based on 
simulations for six different idealized avalanche paths . The 
profiles are named straight line, parabolic, hockey-stick, 
concave, 5 m wave, and 10 m wave, respectively. The first 
and final sections are common to all profiles, while the 
shape differs for 200 ~ x ~ 450 m. The numerical results 
for the sub-routine programme with varying heights indicate 
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Fig. 9. Calcu lated run-up heights on collecting dams, as a 
function of velocity at front of dam. 

that the run-out distance va ries considerably with the shape 
of th e path profile . The longest run-outs, x = 478-484 m, 
are found for profiles that start to level off at x = 200 m. 
The shortest run-outs are found for the hockey-stick 
profile, for which x = 421 m, where the avalanche enters 
the stopping area with a considerable speed. It is interesting 
to note the differences in the calculated run-out distances 
and snow deposits for the 5 m wave and the 10 m wave 
profile. The heig ht differences in the 5 m profile have 
obvious ly not been significa nt in altering the flow, whilst 
the second peak in the 10 m profile has stopped most of 
the snow, with snow deposits up to 8.0 m deep. Only a 
minor part of the avalanche passed this peak, and it then 
stopped in the first gentle-slope section . 

Run-out distances have also been calculated with the 
sub-routine programme for constant height . The calculations 
show that this programme predicts almost the same run-out 
distances as are observed on gentle slopes, but is less 
sens iti ve to variatIOns in path profiles. The standard 
deviations for the calculated run-outs are 27.7 and 10.7 m 
for varying and constant height , respectively. 

Calculated run-up heights on collecting dams 
Collecting dams have for a long time been used to 

protect houses and roads against avalanches. An equation 
derived by Voellmy (1955) has been the basis for most 
practical calculations. When the effect of dynamic friction is 
omitted, and only the loss of potential energy and Coulomb 
friction are taken into account, the Voellmy equation yields 
the following formula for the run-up height 

t.H (27) 
2g(l + bcot 4l) 

although Hungr and McClung (1987) have presented a 
calculation for the run-up height that gives approximately 
twice the value for t:.H of that given by Equation (27). 

Figure 9 presents the numerical results of several 
calculations made by the present model. Most test runs have 
been made for the profile with a - 33.7

0 
slope at the path 

end, and these are presented in Figure 7, but some were 
also made for the Ryggfonn profile , and these are shown in 
Figure 6. The calculations are made for a constant flow 
height of 2.0 m and for varying avalanche lengths. The 
initial velocity is varied by selecting different shear 
viscosities. Calculations indicate that there are distinct 
differences in the run-up heights for avalanches having a 
short length (L < 100 m) compared with longer ones. For 
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instance, the calc ulated run-up heights for a shear viscos ity 
m = 0.006 m2 a nd L = 96, 144 , and 192 m, the respective 
run-up heights are 7.0 , 10.4, and 11.5 m. However, when 
the results are prese nted , as in Figure 9, with run-up 
height and front velocity at the front of the dam along the 
axes, the difference is not so di stinct. This is because the 
shorter avalanches have a lower front velocity when entering 
th e dam. The curve in Figure 9 is the best fit for the 
results for the avalanches with L = 144 m, and is in close 
agreement with Equation (27). 

The calculation made for the Ryggfonn profile shows 
higher val ues than those obtained for the profile shown in 
Figure 7. This is probably due to the presence of a steep 
slope just in front of the dam area for the Ryggfonn 
profile. The ve loc ity difference between the front and the 
rear wi ll, in this case, be higher than expected and that in 
turn will influence both the velocity and the run-up height 
of the front e le ment. Preliminary results of calculating the 
effect of collecting dams indicate that the necessary height 
of the dam is dependent not only on the Coulomb friction 
and the front ve loc ity, but also on the volume of the 
ava lanche and on the shape of the area in front of the 
dam. 

EVALUATION OF PRESENT SIMULATION MODEL 

The sub-rou tine prog ramme for constant flow height is 
the s implest of the four programmes developed. When 
se lec ting a very sho rt avalanche length , this programme 
relates to the Voellmy model (1955) or the Perla, Cheng, 
McClung (PCM) mode l (1980). On open slopes, the pro
gra mme for constant height may give the same run-out 
distance as the p rogramme for varying height , the latter 
programme bei ng less sensitive to the shape of the 
ava lanche path, a nd its results tending to give unrealistically 
high run-up heights on collecting dams. Thus we conclude 
that the imposition of constant height on the model gives 
rise to inaccura te data about avalanche flow . 

There are three sub -routine programmes for va rying 
flow height: one for a no-slip condition, one for a uniform 
velocity profile, and one which is a combination of these 
two. Test calculations have shown that when selecting 
sim ilar initial conditio ns, the three programmes give almost 
the same resu lts; the run-out distances are virtually 
identical, bu t the ava lanche deposi ts are so mewhat less for 
the uniform profile programme than those observed. Our 
knowledge of the avalanche-velocity distribution and of the 
magnitude of the slip velocity is very limited, and because 
of this we suggest that at the present time it is impossible 
to make a choice between these three alternatives. The 
model has the capacity for further refinements, especially of 
the boundary conditions at the bed. These refinements will 
need to take into account the effects of entrainment from a 
soft bed, and of the loss of mass if there is a no-slip 
condition at the bed. Other recognized weaknesses are the 
two-dimensional flow assumption, and the failure properly 
to simul ate the tail of the avalanche. However, for major 
avalanches with a co nsi derable width , the assumption of 
two-dimensional flow is probably less constricting than other 
simp li fica t ions made. The simulation of the tail can easily 
be included in the co mputer programme to improve the 
agreement between the shapes of simulated and observed 
snow deposits. These refinements of the model will increase 
computing time, and are assumed by us to be of only 
minor practical in terest. 

In recent years two interesting models for simulating 
rock slides have been presented by Trunk and others (1986) 
and by Hutter and Savage (in press). Both models are 
based on theories of general granular flow and offer an 
opportunity to take into account the effect of the volume 
of snow involved in an avalanche and the variation in flow 
height along the path profile. 

The model of Trunk and others (1986) needs two 
viscosity parameters for the material properties, and the 
flow is calculated in a grid system. Flow height and 
velocity are calculated as functions of both time and of 
dis tance along the path. It is not known whether the model 
has been adapted for snow avalanches. 

The model by Hutter and Savage (in press) also gives 
flow velocity and height as functions of time and distance. 
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The only material parameter in their model is a friction 
parameter, and the variation of flow height is controlled by 
passive and active earth pressures. It is our opinion that 
snow avalanches attain a terminal velocity, and that this 
terminal velocity can be regulated only by some kind of a 
kinetic friction parameter or by viscosity. The Hutter and 
Savage model is thus probably more generally applicable to 
major rock avalanches, that will not attain a terminal 
velocity, than to snow avalanches. It must at this point be 
admitted that their model probably has a more realistic 
physical simulation of the triggering and start of granular 
flows than is implied by our model, and it may therefore 
be appropriate to combine some elements of these two 
models in order to improve the calculations for the whole 
avalanche track . However, the programmes are not available 
to the authors, and it has thus not been possible for them 
to make a numerical comparison between the different 
models at the time of writing. 

CONCLUSIONS 

Based on published data for snow avalanches, practical 
experience gained by the NGI group, and data recorded 
from the Ryggfonn experiments, we assume the present 
model of snow-avalanche flow to have an accuracy 
sufficient for practical use. The velocities along the 
avalanche path, and also the run-out distances, seem to be 
especially well simulated, and the experimentally recorded 
snow deposits are fairly well estimated by the model. The 
model probably takes into account most of the parameters 
which are important in describing avalanche flow, since the 
parameters used all have a direct physical explanation and 
can be measured experimentally. It is thus our hope that 
the model can be adapted to apply to the granular flow of 
other materials, and to model experiments. The selection of 
parameter values is currently based on qualified guessing, 
although it is hoped that further research, both with 
full-scale and with model experiments, will increase our 
knowledge of granular flow . The research results will also 
be helpful in reaching an understanding of the importance 
of the presented parameters , and in selecting more reliable 
values for these parameters . The next step in the Ryggfonn 
project will be the analysis of the dynamic pressures 
recorded as being exerted on different constructions, and we 
have assumed that the model will be a useful practical tool 
in the evaluation of snow-avalanche impact pressures. 
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