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POSITIVE DEFINITE FUNCTIONS AND RELATIVE PROPERTY (T)
FOR SUBGROUPS OF DISCRETE GROUPS

TERESA BATES AND GUYAN ROBERTSON

Relative Property (T) for a subgroup H of a group G and its connection with
positive definite functions are studied. A relation with the Haagerup approximation
property is established. We show that if H is a non-normal subgroup of a group G
which has Property (T) and G/H is amenable as a graph then H has finite index
inG.

INTRODUCTION

A locally compact group G with a countable base has Kazhdan's Property (T) if
every unitary representation of G which almost has invariant vectors actually has a
(non-zero) invariant vector. The following equivalent formulation [4, Chapitre 1] can
be used to make this definition more precise:

G is compactly generated and for any compact generating set K there exists e > 0,
such that if 7r : G —> U{'H) is a unitary representation of G on a Hilbert space Ti. and
t e H, \\i\\ = 1 satisfies

then 7T has a non-zero invariant vector.
Margulis has generalised this concept as follows:
Let H be a closed subgroup of G. The pair {G,H) has Relative Property (T) if

every unitary representation of G which almost has G-invariant vectors actually has a
non-zero JJ-invariant vector. When G — H this definition coincides with that of the
usual property (T). This seemingly technical condition on a group turns out to have
important applications in suprisingly diverse areas of mathematics [4, 8].

We begin this paper by outlining some equivalent definitions of relative property
(T) and discussing its behaviour under passage to closed subgroups of finite covolume.
The results obtained are directly analogous to those for the usual property (T) found
in [4].
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In the case of discrete groups we show how positive definite functions can be used
to give direct proofs of these, and other, results. In particular, we show that if a discrete
group G has the Haagerup approximation property then G has no infinite subgroup
H such that (G, H) has relative property (T).

Finally we show that if G is a discrete group with property (T) and H is a subgroup
of G such that the Schreier coset graph of G/H is amenable, then H has finite index
in G. This result is well known in the case where H is a normal subgroup.

1. RELATIVE PROPERTY (T)

We begin by stating some results on relative property (T) which are direct ana-
logues of existing results for property (T). Since the proofs are minor modifications of
those for property (T), we omit the details.

THEOREM 1 . 1 . Let G be a compactly generated locally compact group and let

H be a closed subgroup of G. The following are equivalent:

(a) The pair (G, H) has property (T).

(b) Every sequence (<£n)n>i of normalised positive definite functions on G

which converges to 1 uniformly on compact subsets of G converges to 1

uniformly on H.

(c) Every continuous negative definite function r}> on G is bounded on H.

PROOF: TO prove the equivalence of (a) and (b), imitate [4, Theoreme 5.11]. For
the proof of the equivalence of (b) and (c) see [1, Theorem 3]. D

PROPOSITION 1 . 2 . Let G be a locally compact group and let H be a closed

subgroup ofG. If{G,H) has relative property (T) then H is a subgroup of a compactly

generated subgroup Go of G.

PROOF: Compare [4, Theoreme 3.4]. D

REMARK. H need not itself be compactly generated. For example, take G — SL(3, Z).
G contains the free group on two generators F2 and F2 contains the free group on
infinitely many generators, H — Woo • Since G has property (T), (G, H) has relative
property (T), but H is not compactly generated.

PROPOSITION 1 . 3 . Let G be a locally compact group and H a normai sub-

group of G. If (G,H) has property (T) and G/H has (the usual) property (T) then

G has property (T).

PROOF: Although the statement is rather different, the proof uses the same method
as [4, Theoreme 1.9]. D

THEOREM 1 . 4 . Let G be a compactly generated locally compact group. Sup-
pose we have closed subgroups H < K < G, such that (G,H) has property (T) and
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K has Unite covolume in G. Then (K,H) has property (T).

PROOF: Compare [4, Theoreme 3.4]. D

As a special case, where K = H, we have:

COROLLARY. If(G,H) has property (T) and H has Unite covolume in G, then
H has (the usual) property (T).

THEOREM 1 .5 . Let G be a compactly generated locally compact group with
closed subgroups H < K < G. Suppose that H has finite covolume in K and that
(G, H) has property (T). Then [G, K) has property (T).

PROOF; Compare [8, Theorem III.2.12] or, in the case where H is co-compact in
G, [4, Theoreme 3.12]. D

As a special case, where K = G, we have:

COROLLARY. II H is a closed subgroup of finite covolume in G and (G,H) has
property (T), then G has (the usual) property (T).

2. POSITIVE DEFINITE FUNCTIONS AND SUBGROUPS OF DISCRETE GROUPS

From now on we shall consider only countable discrete groups, partly because of
the nature of our results and partly because the positive definite functions we shall
define would otherwise be discontinuous. The following result is used repeatedly.

PROPOSITION 2 . 1 . Let H be a subgroup of a group G. H (f>o is a positive

definite function on H, then the function <f> defined by

,, > I * o ( » ) g e H
H9)=\o 9eG-H

is positive definite on G.

PROOF: See [5, 32.43]. •

REMARK. In particular, the characteristic function of a subgroup H, lfj, is a positive
definite function on G. This special case has a very simple proof based on the observa-
tion that \H is a matrix coefficient of the quasi-regular representation A// =
of G on the Hilbert space £2(G/H). In fact

and

IH(9) = {*H(9)6H I 6M).

These positive definite functions can be used to prove the following theorem.
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PROPOSITION 2 . 2 . If G has property (T) and n £ N then G has a finite
number of subgroups of index n.

PROOF: G is finitely generated [4, Theoreme 1.1] and so the result is a special case
of a result of M. Hall [7, Theorem 4.7]. However, we can give a new proof as follows,
using the fact that the space P(G) of normalised positive definite functions on G is a
compact metric space with the topology of pointwise convergence [1].

If there is an infinite sequence of distinct subgroups Hi of index n in C, then, by
compactness of P(G), the sequence 4>i = lHt has a convergent subsequence 4>ij whose
limit is necessarily the characteristic function of a subgroup H of index ^ n. Now H

has property (T) by [4, Proposition 3.15] and so convergence is uniform on H. This
implies that Hij = H for sufficiently large j , which is a contradiction. u

Proposition 2.1 can be combined with the convergence criterion of Theorem 1.1
to give a proof of Theorems 1.4 and 1.5 in the case of discrete groups. In this case a
subgroup of finite covolume is simply one of finite index. The proof of Theorem 1.5 is
then relatively straightforward, but Theorem 1.4 requires a new method of extending
positive definite functions that we now detail.

Let H be a subgroup of finite index n in G and let G/H = {g^H, giH, ... , gnB}

where gi ~ 1. Let <f> be a normalised positive definite function on H. We show how
to extend ^ to a normalised positive definite function <f> on G.

Firstly note that if x £ G then, for each j , xgj £ giH for exactly one i and so

(a) For each j , gi~^xgj £ H for exactly one i £ {1,2,. . . , n}
and, taking inverses,

(b) For each i, gi~xxgj £ H for exactly one j £ {1,2,. . . , n} .

Now extend <f> to be zero outside H. (The resulting function is positive definite

by Proposition 2.1.) Define 4> : G -> C by

(2.1)

We claim that

(1) ^ is positive definite and ^(1) = 1.

(2) For each x £ G the sum (2.1) contains exactly n nonzero terms.

REMARK. The definition of <j> is analogous to the definition of the induced character
in the case of finite groups. Unlike that case however, our <j> depends on the choice of
gj (2 ^ j ^ n) , since <j> is not, in general, a class function.

Claim (2) follows immediately from assertions (a) and (b).
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PROOF OF CLAIM (1): ^(1) = 1, since by (a) and (b),

t = l

To prove positive definiteness, let F be a finite subset of G and for each x € F let

OL-X G C. We need to show that

a.a,^-1?) ^ 0.
x,y€F

For all i,j £ { 1 , . . - , n } , g^1x~1ygj € 17 if and only if g^1x~1gk £ H and
gk~

1ygj G 27 for some (unique) fc. (Note that ^ i " 1 ^ " 1 ^* £ 27 for a unique k and then
— 1 / —1 —1 \~1 —1 —1 r- TJ ^1 \

<7L ygi ~~ \Q' x Qk) g~ x ygt t •" aiso . j
For the rest of the proof, recall that <j> = 0 outside 27. Now

1
n

n '—'
* = 1 x,

and, for each k,

since ^ is positive definite on H. U

We now use the above observations to prove Theorem 1.4 in the discrete case.

THEOREM 2 . 3 . Let G be a finitely generated discrete group vrith subgroups

H < K < G. Suppose that K is of finite index in G and that (G, H) has property

(T). Then (K, H) has property (T).

PROOF: Let (fa) be a sequence of positive definite functions on K such that
4>i —* 1 pointwise on K. Define <f>i as above. Then </>i is positive definite. Also, for
each x 6 G, <f>i{x) is by definition the average of n complex numbers in the unit disc,
each of which converges to 1. Therefore <f>i converges pointwise to 1 on G and, since
[G,H) has property (T), $i converges uniformly to 1 on H. It follows that each of the
non-zero terms converges uniformly to 1 on H, and hence (K, H) has property (T). u

This method can be used to prove a similar result for the class of groups having
the Haagerup approximation property.
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DEFINITION 2 . 1 . A discrete group G has the Haagerup approximation prop-
erty if Co{G) has an approximate unit consisting of positive definite functions.

Any amenable group has the Haagerup approximation property as does any finitely
generated free group [3].

PROPOSITION 2 . 4 . Let G be a discrete group and H a subgroup of finite
index n in G. Suppose that H has the Haagerup approximation property. Then so
does G.

PROOF: Let (<£,) be a sequence of positive definite functions in C0(H) such that
<j>i —> 1 pointwise on H. Define <j>i as above. Then <j>i is positive definite and vanishes
at oo. Also for each x £ G, 4>i{x) is by definition the average of n complex numbers in
the unit disc, each of which converges to 1. Therefore <j>i converges pointwise to 1. U

The interest of the Haagerup approximation property for relative property (T) is
provided by the following.

PROPOSITION 2 . 5 . Let G be a discrete group with the Haagerup approxima-
tion property and let H be a subgroup of G such that (G, H) has property (T). Then
H is finite.

PROOF: Since G has the Haagerup approximation property, it follows from con-
dition (3B) of [1] that there exists a negative definite function ij) on G such that
ip(g) —» oo as g —y oo. (That is, for each M ^ 0 there exists a finite subset F of G
such that ip(g) > M for all g 6 G - F.)

If H is an infinite subgroup of G then ip \H is unbounded and so by Theorem
l.l(c), (G,H) does not have property (T). D

REMARKS.

(1) In particular, G has no infinite subgroups H with the (usual) property
(T).

(2) We do not know whether the result of Proposition 2.5 characterises groups
G with the Haagerup approximation property.

3. AMENABLE QUOTIENTS

If a discrete group G has Kazhdan's property (T) and H is a normal subgroup of
G then G/H also has property (T) [4, Proposition 1.6]. It follows that if the group
G/H is amenable then it must be finite [4, Proposition 1.7 (i)].

We now extend this result to the case when the subgroup H is not normal. Our
result is folklore in the area. It is, for example, essentially stated on page 18 of [2], (We
are grateful to A. Valette for pointing out this reference.) However we believe that it is
worth giving a complete exposition.
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The first problem is to decide on what it means for G/H to be amenable, since it
is no longer a group.

Let G be a finitely generated group with finite symmetric generating set S. The
Schreier coaet graph (which we denote by G/H) has as its vertices elements of G/S.

The edges of the graph join gH to sgH whenever a £ S. See [7, page 163], but note
that we have used left cosets in our definition.

Now let X be any graph with vertex set X° and edge set X1. If F C X, the
boundary dF of F is the set of edges b G X1 having one end in F and the other end
in X — F. The isoperimetric number of the graph X is

i(X) = i n f ( ^ :FCX,F finite \.
I \F\ )

If X has bounded degree (as is the case for a Schreier coset graph) then we say
that X is amenable if i(X) = 0 [9, Section 5]. If X is the Cayley graph of a finitely
generated group G then this coincides with the usual definition of amenability for G.
In that case the condition i(G) — 0 is simply a restatement of the F0lner condition [10,
Chapter 4].

We require one more graph-theoretic concept. Choose an arbitrary orientation for
the graph X, so that each b £ X1 has initial vertex o(6) and final vertex e(b). The
simplicial coboundary operator d : £2(X°) —> £2(XJ) is defined by
df(b) = /(e(6)) - /(o(6)). The combinatorial Laplacian of the graph X is A = d*d. A
does not depend on the chosen orientation because of the formula

A/(z) =«(.)/(*)-£/(y)

where / G £2(X°), v(x) is the number of vertices y adjacent to x and the sum is over
all such y [4, page 98].

Now suppose X is the Schreier coset graph G/H. Then A = ]>3 (1 — A/f(s)),

where AH is the quasi-regular representation of G on £2(G/H).

THEOREM 3 . 1 . Suppose that G is a discrete group with property (T) and let
S be a Unite symmetric set of generators for G. Let H be a subgroup such that the
graph G/H is amenable. Then H has finite index in G.

PROOF: The basic idea is similar to the proof of [11, Theorem B]. Let e > 0 as in
the definition of property (T). (See the introduction.)

Since G/H is amenable, there exists a finite subset F of G/H such that
\dF\ / \F\ < e2/2 Let £ = 1F £ 12{G/H). Then

2
 = \dF\ e2

1*1 2 *
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Let r, = U\\~U. Then (Ar,\V) ={d*dr,\V) = K | | 2 / IKlf < e2/2. Equivalently,

£ (1 - AH(a)»/ | v) < e 2 / 2 . s o t h a t Re{v ~ >>H(S)T) | 77) < e2/2 for all a e 5 . That is

||i? - *H(S)V\\2 = 2Re{r, - A H («) I J | 77) < e2 for all a e 5 .

This shows that A# almost has invariant vectors and so, by property (T), \H has
a unit invariant vector 770 £ £2(G/H). Since G acts transitively on G/H, 770 must be
a constant function. Then 770 G 12{G/H) implies that \G/H\ < 00 as required. D

REMARK. Amenability for a Schreier coset graph G/H is independent of the finite
symmetric generating set 5 for G.

For if Si ,£2 are two such sets of generators, there exists a number N such that
every element of Si is the product of at most N elements of 52 and every element of
S2 is the product of at most N elements of Si. It follows that

•^di(x,y) < d2(x,y) < Ndi{x,y),

where d i , di are the distances between vertices of G/H relative to Si, S2 respectively.
The identity map is therefore a rough isometry, in the sense of [6], with respect to these
two distances. Now rough isometries preserve the strong isoperimetric inequality [6,
Proposition 2.1], so the condition i(G) = 0 is independent of the choice of generators.
We are grateful to M. Soardi for kindly showing us this fact.
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