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Abstract

Let p > 5 be a prime, and let O be the ring of integers of a finite extension K of Qp with uniformizer
π . Let ρn : GQ → GL2 (O/(π n)) have modular mod-π reduction ρ̄, be ordinary at p, and satisfy
some mild technical conditions. We show that ρn can be lifted to an O-valued characteristic-zero
geometric representation which arises from a newform. This is new in the case when K is a ramified
extension of Qp . We also show that a prescribed ramified complete discrete valuation ring O is the
weight-2 deformation ring for ρ̄ for a suitable choice of auxiliary level. This implies that the field
of Fourier coefficients of newforms of weight 2, square-free level, and trivial nebentype that give
rise to semistable ρ̄ of weight 2 can have arbitrarily large ramification index at p.

2010 Mathematics Subject Classification: 11F, 11R

1. Introduction

Let p > 5 be a prime, and let ρ̄ : GQ → GL2(Fp f ) be a continuous, odd,
irreducible representation of the absolute Galois group GQ of Q. We say that
such a representation is of S-type.

Let W (Fp f ) be the ring of Witt vectors of Fp f . A method due to the second
author [13] lifts representations ρn : GQ → GL2(W (Fp f )/(pn)), with reduction
ρ̄ of S-type, to geometric characteristic-zero representations if p > 5, provided
that ρn is balanced in a sense made precise below. For finite sets of places T
disjoint from S we have various deformation rings associated to ρ̄, for example
Rord,T-new, the universal ordinary ring associated to ρ̄ (no weight is fixed) whose
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universal deformation is ramified only at S ∪ T , minimal at v ∈ S and Steinberg
at v ∈ T . We denote its weight-2 quotient by Rord,T-new

2 . The technical conditions
of Theorem 1 (cf. Theorem 17 below) and Theorem 2 (cf. Theorem 25 below)
below will be explained in the body of the paper (for example, see Definition 4
for the definition of being full, and ordinary of weight 2, and see Definition 7 for
the definition of being balanced).

THEOREM 1. Let O be the ring of integers of a finite extension K of Qp with
uniformizer π . Suppose that ρn : GQ→ GL2(O/(π n)) is odd, ordinary, weight 2,
modular, has full image and determinant ε, and is balanced. Then there exists
a finite set of primes T ⊇ S such that the universal ordinary ‘new at T ’ ring
Rord,T-new

' W (Fp f )[[U ]], and there are surjections

Rord,T-new � Rord,T-new
2 � O/(π n)

from this ring to its weight-2 quotient and then to O/(π n) inducing ρn .

The innovation here compared to [13] is that K/Qp need not be unramified.
While Theorem 1 gives, via the smoothness of Rord,T-new, many O-valued

ordinary lifts of ρn , it leaves open the possibility that none of these are arithmetic.
To remedy this we also prove the following.

THEOREM 2. Let ρn be as in Theorem 1. There exists a finite set of primes T ⊇ S
such that

Rord,T-new
2 ' O � O/(π n)

inducing ρn .

By similar means, we next prove Theorem 3 (cf. Corollary 32), which may be
regarded to be in the direction of a converse to Wiles’ results that Hecke algebras
are usually finite flat complete intersections over Zp. Our theorem proves that a
monogenic finite flat complete intersection over Zp occurs as a Hecke algebra (or
equivalently deformation ring) for a given ρ̄.

THEOREM 3. Let ρ̄ : GQ→ GL2(Fp f ) be odd, full, ordinary, weight 2, and have
determinant ε. Let g(U ) ∈ W (Fp f )[U ] be a distinguished polynomial. Then there
exists a set T ⊃ S0 such that

W (Fp f )[[U ]] ' Rord,T-new � Rord,T-new
2 ' W (Fp f )[[U ]]/(g(U )).

We sketch the proofs. We first study the ordinary deformation rings Rord,T-new

and construct sets of primes T such that Rord,T-new has one-dimensional tangent
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space and thus is a quotient of W (Fp f )[[U ]]. We choose the primes of T carefully
so that ρn arises as a specialization of the universal representation associated
to Rord,T-new. As a certain dual Selmer group vanishes, we in fact deduce that
Rord,T-new

' W (Fp f )[[U ]]. This smoothness already ensures that ρn lifts to an
ordinary characteristic-zero representation which is ramified at finitely many
primes (cf. Theorem 1). We also deduce (see Corollary 35) that Rord,T-new is
isomorphic to the related Hida Hecke algebra Tord,T-new, as the latter is known to
be nonzero and flat over the Iwasawa algebraΛ = Zp[[X ]] by level-raising results
of [5] and Hida’s results on the structure of ordinary Hecke algebras, respectively.

To prove Theorem 2 (and Theorem 3), a more careful choice of T is required
to guarantee that the weight-2 quotient of Rord,T-new can be controlled to be O and
that ρn arises from this weight-2 quotient. First, we choose T to simultaneously
make Rord,T-new

' W (Fp f )[[U ]] and Rord,T-new
2 ' W (Fp f )[[U ]]/I , where I ⊂ (p,

U )N for a large number N . We then add another prime to the level to introduce
the minimal polynomial gπ (U ) of π (the uniformizer of O) as an obstruction in
the weight-2 ring. Essential use is made of the techniques of [10].

It is worth remarking that in the proof of Theorem 2 we lift the representation ρn

to a characteristic-zero geometric lift (of weight 2), in spite of it being impossible
to kill the minimal weight-2 dual Selmer (and Selmer) group of ρ̄ using primes
which are nice for ρn (not just ρ̄!) when O/Zp is ramified.

In the appendix, we apply the isomorphisms W (Fp f )[[U ]] ' Rord,T-new
'

Tord,T-new above to extend the approach of [9] to modularity of geometric lifts ρ of
ρ̄ by p-adic approximation, without imposing the condition that ρ is defined over
the Witt vectors. (This application was the initial impetus for the work done here.)
This condition was essential in [9] again because GL2(O/(π 2))→ GL2(O/(π))
is split if O/Zp is ramified. The appendix uses only Theorem 1 of this paper
(and not the more involved Theorem 2), together with level-lowering arguments.
(In the recent paper [18] the strategy of [9] is combined with the Taylor–Wiles
patching argument to prove modularity-lifting theorems in new cases.)

2. The setup

Let p > 5 be a prime. We consider representations ρ̄ : GQ → GL2(Fp f ) of
S-type.

Let O be the ring of integers of a finite extension K of Qp with uniformizer π
and residue field Fp f . Suppose that [K : Qp] = d = e f , with e, f the ramification
and inertial degrees. Let ε be the p-adic cyclotomic character, and let ε̄ be its mod-
p reduction. We consider lifts ρn : GQ → GL2(O/(π n)) and ρ : GQ → GL2(O)
of ρ̄.
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DEFINITION 4. – We say that ρn (respectively, ρ) is full if ρn(GQ) contains
SL2(O/(π n)) (respectively, ρ(GQ) contains SL2(O)).

– We say that ρn (respectively, ρ) is ordinary of weight 2 if its restriction to an
inertia group Ip at p is conjugate to ( ε ∗0 1 ), where ε is the cyclotomic character
and the ∗ may or may not be trivial. (The arguments in this paper work also for
representations whose restriction to Ip is of the form

(
εk−1

∗

0 1

)
with k > 2 and ρ̄

is distinguished at p, with the further conditions on ρn below when k = 2 and
ρ̄ is split at p.)

We assume that the representations ρ, ρn , and ρ are odd, have full image and
determinant ε, and that ρ̄ is modular and of weight 2.

We will consider both

– the weight-2 ordinary deformation theory of ρ̄; and

– the arbitrary-weight ordinary deformation theory of ρ̄.

We always impose the ordinarity condition ρn|Ip ' ( ε ∗0 1 ), and furthermore the
following.

• If ρ̄|G p =
(
ε̄ ∗
0 1

)
is nonsplit and flat, then ρn|G p is either flat or semistable; that

is, if ρn|G p is not flat, ρn|G p = (
ε ∗
0 1 ), and the ∗ arises from taking a p-power

root of a nonunit of Zp.

• If ρ̄|G p =
(
ε̄ 0
0 1

)
, then ρn|G p is flat.

The first condition on ρn|G p is necessary for local at p characteristic-zero lifts to
exist. The second condition is more restrictive. We do not know how to deal with
the second case above if ρn|G p is not flat.

Let S0 and S be the sets of ramified primes of ρ̄ and ρn respectively (these
include p and∞). By our assumptions it follows that S ⊃ S0 ⊃ {p,∞}. We also
assume that ρn is balanced, a condition which we now explain (cf. Definition 7).

For each v ∈ S0, a smooth quotient of the versal weight-2 deformation ring of
ρ̄|Gv

has been defined on pages 120–124 of [13] and in [17]. The points of (the
Spec of) this smooth quotient are our allowable deformations and are denoted Cv.
Corresponding to the tangent space of this smooth quotient is a subspace Lv ⊂

H 1(Gv, Ad0ρ̄). Fact 5 follows from the discussion in [13] referred to above.

FACT 5. For all v ∈ S0 there exist Cv and Lv as above satisfying dimLv =

dim H 0(Gv, Ad0ρ̄)+ δvp, where δvp = 0 or 1 depending on v 6= p and v = p.

Let M be an Fp f [GQ]-module with Gm-dual M∗, and let R be the union of the
places whose inertial action on M is nontrivial and {p,∞}. Let Mv ⊂ H 1(Gv,
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M) with annihilator M⊥

v ⊂ H 1(Gv,M∗) under the perfect local pairing

H 1(Gv,M)× H 1(Gv,M∗)→ H 2(Gv,Fp f (1)) ' Fp f .

Set the Selmer group for the subspaces Mv ⊂ H 1(Gv,M) to be

H 1
M(G R,M) := Ker

(
H 1(G R,M)→

⊕
v∈R

H 1(Gv,M)
Mv

)
,

and the dual Selmer group to be

H 1
M⊥(G R,M∗) := Ker

(
H 1(G R,M∗)→

⊕
v∈R

H 1(Gv,M∗)
M⊥

v

)
.

Recall Proposition 1.6 of [19].

PROPOSITION 6.

dim H 1
M(G R,M)− dim H 1

M⊥(G R,M∗)

= dim H 0(GQ,M)− dim H 0(GQ,M∗)+
∑
v∈R

(
dimMv − dim H 0(Gv,M)

)
.

Fact 5, Proposition 6, and the fact that ρ̄ is odd with full image together
imply that the ordinary weight-2 Selmer group H 1

L(G S0, Ad0ρ̄) and its dual
Selmer group H 1

L⊥(G S0, Ad0ρ̄∗) have the same dimension. We need the following
balancedness assumption.

DEFINITION 7. Let v ∈ S. We assume that a smooth quotient of the versal
deformation ring for ρ̄|Gv

exists with points Cv and induced subspace Lv ⊂

H 1(Gv, Ad0ρ̄) such that dim H 0(Gv, Ad0ρ̄) = dimLv. We also require that ρn|Gv

be of type Cv.

We define local conditions L̃v for the full adjoint.

DEFINITION 8. (1) For v 6= p, set

L̃v := Lv⊕H 1
nr (Gv,Fp f )⊂ H 1(Gv, Ad0ρ̄)⊕H 1(Gv,Fp f )= H 1(Gv, Adρ̄),

namely, the direct sum of Lv, and the Fp f -valued unramified twists in the
dual numbers. Set C̃v to be all unramified twists of the points Cv.

(2) For v = p, set W = ( ∗ ∗0 0 ) and L̃p = Ker(H 1(G p, Adρ̄) → H 1(Ip,

Adρ̄/W )). Then L̃p ⊃ Lp and L̃p ⊃ H 1
nr (G p,Fp f ), the unramified twists,

though L̃p is larger than the direct sum of these subspaces. Set C̃p to be the
ordinary deformations of ρ̄ of any weight.
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3. Local deformation rings

3.1. Ordinary deformation rings at p. We need Lemmas 9 and 10 for (5) of
Proposition 11.

LEMMA 9. Let L be the composite of Qp(µp∞) and the Zp-unramified extension
of Qp. Let ψ : G p → Z∗p be a character with ψ ≡ ε mod p. Then there exists
a nonsplit representation ρψ : G p → GL2(Zp) with ρψ =

(
ψ ∗
0 1

)
, where ∗ ≡ 0

mod p but ∗ 6≡ 0 mod p2. Furthermore, after base change to L, the ∗ arises,
via Kummer theory, as the composite of finite extensions of L obtained by taking
p-power roots of units of elements of L.

Proof. That ρψ exists follows from the well-known fact that

dim H 1(G p,Qp(ψ)) =

{
2 ψ = ε

1 ψ 6= ε.

Simply take g ∈ H 1(G p,Qp(ψ)), consider ρg : G p → GL2(Qp) given by
ρ(τ) =

(
ψ(τ) g(τ )

0 1

)
, and conjugate by an appropriate power of

(
p 0
0 1

)
to get the

desired integral representation ρψ . Rather than deal with ρψ , we deal with its
mod-pm reduction, ρψ,m . Let Lm be the composite of Qp(µpm ) and the Z/(pm−1)-
unramified extension of Qp. Note that the ∗ in ρψ,m gives rise to a cyclic extension
of order pm−1, not order pm .

When ψ = ε we just take ρε,m to arise from the splitting field of x pm
− (1 +

p)pm−1 .
For ψ 6= ε, let d be the unique integer satisfying ψ ≡ ε mod pd and ψ 6≡ ε

mod pd+1. Let Dm be the maximal abelian extension of Lm whose Galois group is
killed by pm−1. Let Km be the composite of Lm and the field fixed by Kernel(ρψ,m).

Dm

Km

Lm

Qp
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The Kummer pairing Gal(Dm/Lm) × L∗m/L∗m
pm−1
→ µpm−1 is perfect and

Gal(Lm/Qp)-equivariant, so Gal(Dm/Lm) is isomorphic to the Gm-dual of
L∗m/L∗m

pm−1
as a Gal(Lm/Qp)-module. As Km/Lm is a cyclic extension of order

pm−1 and Km/Qp is Galois with Gal(Lm/Qp) acting on Gal(Km/Lm) by the
character ψ , we see that Km arises over Lm by adding pm−1th roots of an element
α ∈ L∗m/(L

∗

m)
pm−1 which, by the above Gm-duality, generates a ε/ψ-eigenspace

in this group. So we need to prove such an eigenspace exists in the unit part of
L∗m/(L

∗

m)
pm−1 .

Recall that L∗m ' 〈πm〉 ×ULm , where πm is a uniformizer of Lm and ULm is the
group of units. Write α = π pk a

m u, where p - a and u ∈ ULm , so Km = Lm(α
1/pm−1

).
Let σ ∈ Gal(Lm/Qp), and set σ(πm) = πmwσ and σ(u) = uσ , where wσ , uσ ∈
ULm . We have

σ(α) = σ(π pk a
m u) = σ(πm)

pk aσ(u) = π pk a
m w pk a

σ uσ .

But we also have

σ(α) ≡ (α)ε/ψ(σ) ≡ (π pk a
m u)ε/ψ(σ) mod (L∗m)

pm−1
,

so we get
(π pk a

m )ε/ψ(σ)−1
≡ a unit mod (L∗m)

pm−1
.

This can only happen if the left-hand side is trivial; that is, if the exponent of πm

is a multiple of pm−1. Thus

pk

(
ε

ψ
(σ)− 1

)
≡ 0 mod pm−1.

Since σ is arbitrary, the definition of d implies that k+d > m−1, so k > m−d−1.
Thus, when we take the pm−d−1th root of α and adjoin this to Lm , we are taking
the root of a unit. So ρψ,m−1−d arises as desired, by taking the p-power root of a
unit. Now simply let m →∞.

It is possible to build mod-pm representations that are extensions of 1 by ψ that
do arise by taking pm−1th roots of nonunits of Lm . The proof of Lemma 9 shows
that such extensions, however, do not lift to characteristic zero when ψ 6= ε.

LEMMA 10. Let the hypotheses be as in Lemma 9, and let ψ = ε. Then
Kernel(ρε,m) fixes the splitting field of x pm

− a for some a ∈ Zp. This Galois
representation corresponds to a finite flat group scheme over Zp if and only if, up
to pm th powers, a ∈ Z∗p.
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Proof. We only sketch the proof.
It is (again) well known that H 1(G p,Zp/(pm)(ε)) ' (Zp/(pm))2. The

representations associated to the splitting fields of x pm
− p and x pm

− (1 + p)
correspond to cohomology classes that form a basis for this module.

Since ∗ ≡ 0 mod p and ∗ 6≡ 0 mod p2, we have that a is a pth power in Zp but
not a p2th power.

If a is a unit, it is clear that the G p-module corresponding to ρε,m comes from
a finite flat group scheme over Zp.

Using Fontaine–Lafaille theory, [7], one can count how many extensions of
Z/(pm)(ε) by Z/(pm) there are in the category of finite flat group schemes over
Zp up to isomorphism. One finds m − 1 of them where the ∗ is as above. These
correspond to a = (1+ p)p, (1+ p)p2

, . . . , (1+ p)pm−1 , all of which are units.

We need to determine the arbitrary-weight ordinary deformation rings for
the various possibilities of ρ̄|G p and check that they are smooth of the correct
dimension so that Proposition 12 holds. We also need to ensure that the sets
of weight-2 points of each these ordinary rings contain the points of the
corresponding weight-2 deformation rings. For ρ̄ flat this leads to some minor
technicalities in cases (3) and (5) below. In case (5) of Proposition 11 we see that
the arbitrary-weight ordinary tangent space is too large and the corresponding ring
is not smooth. We construct a specific smooth quotient of this ring in the correct
number of variables. Its weight-2 points are flat. This is where the second bullet
point at the beginning of Section 2 arises.

PROPOSITION 11. Let η̄ : G p → F∗p f be a nontrivial unramified character. Set
h0
= dim H 0(G p, Adρ̄). Up to twist we have the following possibilities for ρ̄|G p

and its local deformation ring.

(1) ρ̄|G p =
(
η̄ε̄ 0
0 1

)
. Here, dim L̃p = 4, h0

= 2, and the ordinary deformation ring
is smooth in four variables.

(2) ρ̄|G p =
(
η̄ε̄ ∗
0 1

)
. Here, dim L̃p = 3, h0

= 1, and the ordinary deformation ring
is smooth in three variables.

(3) ρ̄|G p =
(
ε̄ ∗
0 1

)
is flat. Here, dim L̃p = 3, h0

= 1, and the ordinary deformation
ring is smooth in three variables.

(4) ρ̄|G p =
(
ε̄ ∗
0 1

)
is not flat. Here, dim L̃p = 3, h0

= 1, and the ordinary
deformation ring is smooth in three variables.

(5) ρ̄|G p =
(
ε̄ 0
0 1

)
. Here, dim L̃p = 5, and the ordinary deformation ring is not

smooth, but it has a smooth quotient in four variables whose characteristic-
zero points include all points of weight k > 2 and all flat points of weight
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k = 2. So we redefine L̃p to be the four-dimensional subspace induced by
this quotient and note that h0

= 2.

Proof. Let U ⊂ Adρ̄ be the upper triangular matrices. In each case we will
compare the unrestricted (local) upper triangular deformation theory of ρ̄|G p to
its (local) ordinary deformation theory.

(1) L̃p includes the two unramified twists, the one ramified twist of η̄ε̄, and the
nontrivial extension of 1 by η̄ε̄, so dim L̃p = 4. One easily sees that dim H 2(G p,

U ) = 0 and dim H 1(G p,U ) = 5, so the upper triangular deformation ring is
smooth in five variables. Its ordinary quotient is formed by forcing the lower right
entry to be unramified. This involves the one relation that comes from setting the
ramified part of the lower right entry, when evaluated at a topological generator
of the Galois group over Qp of the cyclotomic extension, to be trivial. Since this
relation necessarily cuts the tangent space down by one variable, we can take it to
be a variable of the five-dimensional upper triangular ring, so the ordinary ring is
smooth in four variables.

(2) One computes dim H 2(G p,U ) = 0 and dim H 1(G p,U ) = 4, so the upper
triangular deformation ring is smooth in four variables. Let U 1 be the matrices of
the form

(
a b
0 −a

)
. One computes dim H 1(G p,U 1) = 2, and from Table 3 of [13]

we have dimLp = 1. As Lp ⊂ H 1(G p,U 1), any element of H 1(G p,U 1) not
in Lp is ramified on both diagonals. A linear combination of this class and the
ramified twist will be trivial on the lower right entry, and thus ordinary. Of course
the unramified twist is in L̃p, so dim L̃p = 3. That the ordinary ring is smooth in
three variables follows from the argument in the proof of (1).

(3) That dim L̃p = 3 follows from Proposition 13 of [15]. One easily sees that
dim H 2(G p,U )= 0 and dim H 1(G p,U )= 4, so the upper triangular deformation
ring is smooth in four variables. As before, its ordinary quotient involves one
relation that forces the lower right entry to be unramified, which again implies
that the ordinary ring is smooth in three variables.

(4) Then the short exact sequence 0 → U 1
→ U → U/U 1

→ 0 and routine
Galois cohomology computations give that H 1(G p,U 1) → H 1(G p,U ) is an
injection of a two-dimensional space into a four-dimensional space. The cokernel
is spanned by the images of the ramified and unramified twists. There are two
independent extensions of 1 by ε̄, so at least one dimension of H 1(G p,U 1) is
ordinary.

If all of H 1(G p,U 1) ⊂ H 1(G p,U ) is ordinary then, taking into account the
unramified twist, dim L̃p > 3. The only way that dim L̃p = 4 = dim H 1(G p,U )
is if the ramified twist belongs to L̃p, which we know does not happen. Thus
dim L̃p = 3 in this case.
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If only one dimension of H 1(G p,U 1) is ordinary (this is what actually happens,
but proving it is messier than the weaker argument used here) then the same proof
as in (2) implies that dim L̃p = 3.

Since dim L̃p = 3 in all cases and the upper triangular ring is smooth in four
variables, the ordinary ring is smooth in three variables.

(5) This case is a bit more involved, as the ordinary ring is not smooth. First note
that L̃p contains the two unramified twists, the ramified twist of ε̄, and the two
extensions of 1 by ε̄, and so dim L̃p = 5. We will replace it by a four-dimensional
subspace.

Let D be the maximal pro-p abelian extension of L , the composite of Zp-
unramified extension of Qp and Qp(µp∞). Then, in this case, any ordinary
deformation of ρ̄ has meta-abelian image and factors through Gal(D/Qp). By
Kummer theory D is generated by p-power roots of elements of L . Let K ⊂ D
be the subfield generated by p-power roots of units of L .

D

K

L

Qnr
p Qp(µp∞)

Qp

Let ψ1, ψ2 : G p → Z∗p be unramified characters, each congruent to 1 mod p.
We will consider a series of ring homomorphisms

Rord � Rord,unit � Rord,unit
k � Rord,unit,ψ2

k � Rord,unit,ψ1,ψ2
k ,

where the superscript ‘unit’ indicates the quotient of the ordinary ring whose
deformation factors through Gal(K/Qp), and the presence of the unramified
character ψi as a superscript indicates that we are fixing ψi in the i i spot on the
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diagonal. The subscript k indicates the weight. So Rord,unit,ψ1,ψ2
k is the deformation

ring parameterizing deformations of ρ̄|G p that factor through Gal(K/Qp) and are

of the form
(
εk−1 ε̃2−kψ1 ∗

0 ψ2

)
. For instance, the ring Rord,unit

k puts no restrictions on
the unramified diagonal characters.

Consider Rord,unit,ψ1,ψ2
k . The tangent space for this ring is one dimensional, as

follows. No twists by characters on the diagonal are allowed, and the très ramifiée
extension of 1 by ε̄ is not allowed either. Only the peu ramifiée extension of 1
by ε̄ is allowed. Thus the corresponding deformation ring is Zp[[U ]]/I1. If I1

contains a nonzero element g(U ), then by the Weierstrass preparation theorem
we can assume that g(U ) = pr h(U ), where h(U ) is a distinguished polynomial,
or h(U ) ≡ 1 or 0. But Lemma 9 gives the existence of nonsplit characteristic-zero
deformations. Conjugating these by

(
pm 0
0 1

)
gives different deformations of ρ̄ for

each m (though of course these representations are all isomorphic), so our ring has
infinitely many characteristic-zero points, and h(U ) would have infinitely many
roots, a contradiction. Thus h(U ) ≡ 0, I1 is trivial, and Rord,unit,ψ1,ψ2

k ' Zp[[U ]].
The ring Rord,unit,ψ2

k has two-dimensional tangent space (the unramified twist of
ε̄ is now allowed), and so Rord,unit,ψ2

k ' Zp[[U1,U2]]/I2. But, for each choice of
ψ1, we see that this ring has a different quotient isomorphic to Zp[[U ]]. If I2 6= (0)
Krull’s principal ideal theorem (see Corollary 11.18 of [1]) implies that Rord,unit,ψ2

k
has Krull dimension at most 2. Then a Noetherian ring of Krull dimension at
most 2 has infinitely many components of Krull dimension 2, a contradiction.
Thus I2 = 0. Similarly, Rord,unit,

k has three-dimensional tangent space, and so
Rord,unit

k ' Zp[[U1,U2,U3]]/I3. But, for each choice of ψ2, we see that this ring
has a different quotient isomorphic to Zp[[U1,U2]]. If I3 6= (0), the same Krull
dimension argument as above gives a contradiction. Thus I3 = 0. Finally, Rord,unit

has four-dimensional tangent space, as only the très ramifiée extension of 1 by ε̄
is not allowed. We have, for each k > 2,

Rord,unit � Rord,unit
k ' Zp[[U1,U2,U3]],

so, arguing as before, Rord,unit
' Zp[[U1,U2,U3,U4]].

Using Lemma 9, we see that it remains to show that weight-2 flat deformations
of ρ̄ factor through Rord,unit in the ψ1 = ψ2 = ψ case. This follows immediately
from Lemma 10.

PROPOSITION 12. For v 6= p, dim L̃v = dim H 0(Gv, Adρ̄) and dim L̃p =

dim H 0(G p, Adρ̄)+ 2.

Proof. For v 6= p, it is known that dimLv = dim H 0(Gv, Ad0ρ̄). As we switch
from Ad0ρ̄ to Adρ̄,

dim H 0(Gv, Adρ̄)− dim H 0(Gv, Ad0ρ̄) = 1 = dim L̃v − dimLv.

https://doi.org/10.1017/fms.2015.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.17


C. Khare and R. Ramakrishna 12

The v = p result follows from Proposition 11.

Propositions 6 and 12 give, taking into account v = ∞,

COROLLARY 13. dim H 1
L̃(G S, Adρ̄)− dim H 1

L̃⊥(G S, Adρ̄∗) = 1.

3.2. Local deformation rings at nice primes. Finally, we recall the notion
of nice primes for a representation. The definition given below is a blend of that
given in [14] (see Section 2 and Proposition 2.2) and that of [17] that is suited for
our purposes.

DEFINITION 14. Let ρ̄ : GQ→ GL2(Fp f ) odd, ordinary, full, and weight 2, with
trivial nebentype be given. Let R be a local Artin ring with residue field Fp f , and
let ρR : GQ → GL2(R) lift ρ̄. The prime q is called ρR-nice if q is not ±1 mod
p, ρR is unramified at q , and ρR(Frq) has eigenvalues q and 1 and order prime to
p. We simply call q nice if it is ρ̄-nice.

For nice primes q , the local at q deformation ring has a smooth quotient whose
points Cq consist of Steinberg deformations. There is an induced subspace Lq ⊂

H 1(Gq, Ad0ρ̄).

PROPOSITION 15. Let ρR be odd, ordinary, weight 2, with full reduction ρ̄.
Then ρR-nice primes exist, and, for any nice prime q, dimLq = dim H 0(Gq,

Ad0ρ̄) = 1, and a smooth quotient of the deformation ring exists with points Cq .
Proposition 12 applies for nice primes, so dim L̃q = 2 = dim H 0(Gq, Adρ̄), and
C̃q consists of all unramified twists of points of Cq .

Proof. We are given that ρ̄ is full and detρ̄ = ε̄, so, for a ∈ Fp, a 6= ±1, choose(
a 0
0 1

)
∈ image(ρ̄). Any prime q with Frobenius in the conjugacy class of this

matrix will be nice. After lifting this matrix to an element of image(ρR) and
raising to a large power of p (say pr ), the new matrix will have tame order
and eigenvalues {a pr

, 1} which are distinct. Any prime with Frobenius in the
conjugacy class of this element will be ρR-nice.

The cohomological results are standard, and we do not give their proofs.

4. Ordinary smooth deformation rings and ρn

For any finite set of primes T ⊃ S with T \S consisting of only nice primes,
we have an ordinary arbitrary-weight deformation ring denoted Rord,T-new. This
parameterizes global deformations that restricted to v ∈ T lie in C̃v.
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DEFINITION 16. The weight-2 quotient Rord,T-new
2 of Rord,T-new parameterizes

deformation that when restricted to Ip are of the form ( ε ∗0 1 ), except in the case
when ρ̄|G p itself is of the form ( ε ∗0 1 ) and finite flat. We then either consider (i)
deformations that are finite flat, or (ii) when ρ̄|G p is not split, also semistable
deformations of weight 2, that is of the form ( ε ∗0 1 ).

We remark that in previous papers we used the notation T \S0-new to indicate
that all nice primes were in the level of the modular form. Since it is less
cumbersome, we use T -new here instead. Results toward Theorem 17 (cf.
Theorem 1 of introduction) below are proved in [3].

THEOREM 17. Suppose that ρn : GQ → GL2(O/(π n)) is odd, ordinary, weight
2, modular, has full image and determinant ε, and is balanced. Then there exists
a finite set of primes T ⊇ S such that the universal ordinary ‘new at T ’ ring
Rord,T-new

' W (Fp f )[[U ]], and there are surjections

Rord,T-new � Rord,T-new
2 � O/(π n)

from this ring to its weight-2 quotient and then to O/(π n) inducing ρn .

It is not a consequence of Theorem 1 that ρn lifts to a T -new weight-2
characteristic-zero representation. For instance, if n = 3 and O = Zp[

√
p], it

is possible that

Rord,T-new
2 ' Zp[[U ]]/ ((U − p)(U − 2p)(U − 3p)) ,

and ρ3 arises from U 7→
√

p. The smoothness of Rord,T-new immediately implies
the existence of characteristic-zero lifts, but these lifts may not have classical
weight, let alone weight 2. Theorem 2 addresses this. Indeed, Theorem 3 and
Lemma 33 ensure that the above example occurs!

4.1. Group theoretic lemmas. We need the following lemma of Boston (see
[2]) and Lemma 19 for Lemma 20.

LEMMA 18. (Boston) Let p > 3. Let R be a complete local Noetherian ring with
residue characteristic p. Let ρ : G → GL2(R) be a representation, and assume
that the image of the projection

ρ2 : G → GL2(R)→ GL2
(
R/m2

R

)
is full, that is, it contains SL2

(
R/m2

R

)
. Then the image of ρ contains SL2(R).
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LEMMA 19. Let p > 5 and G ⊂ GL2(Fp f ) be a full subgroup; that is,
SL2(Fp f ) ⊂ G. Assume also when Fp f = F5 that G = GL2(F5). Then H 1(G,
Ad0ρ̄) = 0.

Proof. This is Lemma 2.48 of [4], except in the case when Fp f = F5 and G =
GL2(F5). The latter case is covered in Lemma 1.2 of [6].

LEMMA 20. Let G ⊂ GL2(O/(π r )) be a subgroup. Suppose that the hypotheses
of Lemma 19 are satisfied for the image of G → GL2(Fp f ), and that the image of
the projection p2 : G → GL2(O/(π 2)) is full. Then dim H 1(G, Ad0ρ̄) = 1.

Proof. Since the image of p2 is full, the hypothesis of Lemma 18 is satisfied, so
G ⊃ SL2(O/(π r )).

Let Γ be the kernel of the projection G → GL2(Fp f ). We have the exact
inflation-restriction sequence

0→ H 1(G/Γ, Ad0ρ̄Γ )→ H 1(G, Ad0ρ̄)→ H 1(Γ, Ad0ρ̄)G/Γ .

As G/Γ is the image of the projection p1 : G → GL2(Fp f ), Lemma 19 implies
that the first term is trivial.

Also, as Γ acts trivially on Ad0ρ̄,

H 1(Γ, Ad0ρ̄)G/Γ
= HomG/Γ (Γ, Ad0ρ̄).

For any γ ∈ HomG/Γ (Γ, Ad0ρ̄), Kernel(γ ) ⊃ Γ ′, the commutator subgroup
of Γ .

Set a = 1+ π and r = πx/(2+ π), and use fullness to see that(
a 0
0 a−1

)(
1 r
0 1

)(
a 0
0 a−1

)−1 (1 r
0 1

)−1

=

(
1 π 2x
0 1

)
∈ Γ ′ ⊂ Kernel(γ ).

Similarly, (
1 0
π 2 y 1

)
∈ Γ ′ ⊂ Kernel(γ ).

As Kernel(γ ) is stable under the action of G/Γ ,(
1 0
1 1

)(
1 π 2z
0 1

)(
1 0
−1 1

)
=

(
1− π 2z π 2z
−π 2z 1+ π 2z

)
⊂ Kernel(γ ).

Multiplying on the left and right by suitable matrices(
1 0
π 2 y 1

)
and

(
1 π 2x
0 1

)
,
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we have (
1+ π 2z 0

0 (1+ π 2z)−1

)
∈ Kernel(γ ).

As every element of

Γ2 := {A ∈ SL2(O/(π r )) | A ≡ I mod (π 2)}

can be written as a product

A =
(

1 0
π 2 y 1

)(
1+ π 2z 0

0 (1+ π 2z)−1

)(
1 π 2x
0 1

)
,

we have Kernel(γ ) ⊃ Γ2. Since Γ/Γ2 ' Ad0ρ̄,

dim HomG/Γ (Γ, Ad0ρ̄) = dim HomG/Γ (Γ/Γ2, Ad0ρ̄)

= dim HomG/Γ (Ad0ρ̄, Ad0ρ̄) = 1,

so dim H 1(G, Ad0ρ̄) 6 1. As O/Zp is ramified, GL2
(
O/(π 2)

)
'

GL2
(
Fp f [U ]/(U 2)

)
is nontrivial as we are given full image, so dim H 1(G,

Ad0ρ̄) = 1.

4.2. Selmer groups and cohomological results. We gather the necessary
cohomological results we need to prove Theorems 1 and 2. For Theorem 1
we need Lemma 24 (which depends on Proposition 21) and Proposition 23.
Proposition 22 is needed for Theorem 2. All sets of primes Z below will be finite,
and contain S, and Z\S will consist of nice primes. Recall the local conditions
Lv and L̃v from Definition 8.

PROPOSITION 21. Let h ∈ H 1
L̃(G Z , Adρ̄) and φ ∈ H 1

L̃⊥(G S, Adρ̄∗). If h ∈
H 1(G Z ,Fp f ) ⊂ H 1(G Z , Adρ̄) then h = 0. If φ ∈ H 1(G Z ,Fp f (1)) ⊂ H 1(G Z ,

Adρ̄∗) then φ = 0.

Proof. If h ∈ H 1(G Z ,Fp f ), it corresponds, when viewed as a lift to the dual
numbers, to a twist by a character which gives rise to a Z/(p)-extension of Q.
Definition 8 implies that L̃v ∩ H 1(Gv,Fp f ) is spanned, for all v, by the Fp f -
valued unramified twists, so the corresponding global extension is unramified
everywhere over Q, so h = 0.

Set M = Fp f , and for all v set

Mv = L̃v ∩ H 1(Gv,Fp f ) = H 1
nr (Gv,Fp f ).
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We just showed that H 1
M(G Z ,M) = 0. As dimMv = dim H 0(Gv,M) = 1 for

v 6= ∞, Proposition 6 gives dim H 1
M⊥(G Z ,M∗) = 0 as well. It suffices to show

that φ ∈ H 1
M⊥(G Z ,M∗).

Any φ ∈ H 1(G Z ,Fp f (1)) ∩ H 1
L̃⊥(G Z , Adρ̄∗) cuts out an extension L/Q(µp)

that is Galois over Q, and Gal(Q(µp)/Q) acts on Gal(L/Q(µp)) by ε̄. At v 6= p,
unramified cohomologies are exact annihilators under the local duality pairing, so
L̃⊥v ∩ H 1(Gv,Fp f (1)) = H 1

nr (Gv,Fp f (1)). (This last group is trivial unless v ≡ 1
mod p.) So, for v 6= p, L/Q(µp) is unramified at v.

For v = p, choose a subspace V ⊂ H 1(G p, Adρ̄) such that

L̃p =
(
Lp ⊕Mp

)
+ V, V ∩

(
Lp ⊕Mp

)
= 0,

so
L̃⊥p =

(
Lp ⊕Mp

)⊥
∩ V⊥ =

(
L⊥p ⊕M⊥

p

)
∩ V⊥,

and thus
L̃⊥p ∩ H 1(G p,Fp f (1)) ⊂M⊥

p .

Thus φ|Gv
∈M⊥

v for all v; that is, φ ∈ H 1
M⊥(G Z ,M∗), which we already proved

is trivial, so φ = 0.

Note that, for h ∈ H 1(G Z , Ad0ρ̄) and q /∈ Z nice, h|Gq 6= 0 is equivalent to
h|Gq /∈ Lq . Similarly, for h ∈ H 1(G Z , Adρ̄), write h = h Ad0ρ̄ + hsc with h Ad0ρ̄ ∈

H 1(G Z , Ad0ρ̄) and hsc ∈ H 1(G Z ,Fp f ). For q /∈ Z nice, h|Gq /∈ L̃q is equivalent
to h Ad0ρ̄ |Gq /∈ Lq , which we just saw is equivalent to h Ad0ρ̄ |Gq 6= 0.

Recall that III1
Z (M) is the kernel of the restriction map H 1(G Z ,M) →

⊕v∈Z H 1(Gv,M).

PROPOSITION 22. Let h ∈ H 1
L(G Z , Ad0ρ̄), φ ∈ H 1

L⊥(G Z , Ad0ρ̄∗), and let q /∈ Z
be nice.

(1) The injective inflation map

H 1(G Z , Ad0ρ̄)→ H 1(G Z∪{q}, Ad0ρ̄)

has codimension 0 or 1. If III1
Z (Ad0ρ̄∗)|Gq = 0, then the codimension is 1.

(2) If φ|Gq 6= 0, then the maps

H 1(G Z∪{q}, Ad0ρ̄)→
⊕
v∈Z

H 1(Gv, Ad0ρ̄)

Lv

and H 1(G Z , Ad0ρ̄)

→

⊕
v∈Z

H 1(Gv, Ad0ρ̄)

Lv

have the same kernel.
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(3) If h, φ|Gq 6= 0 then

dim H 1
L(G Z∪{q}, Ad0ρ̄) = H 1

L(G Z , Ad0ρ̄)− 1,
dim H 1

L⊥(G Z∪{q}, Ad0ρ̄∗) = dim H 1
L⊥(G Z , Ad0ρ̄∗)− 1.

(4) If H 1
L(G Z , Ad0ρ̄)|Gq = 0, φ|Gq 6= 0, then

H 1
L(G Z∪{q}, Ad0ρ̄) = H 1

L(G Z , Ad0ρ̄),

dim H 1
L⊥(G Z∪{q}, Ad0ρ̄∗) = dim H 1

L⊥(G Z , Ad0ρ̄∗).

(5) If H 1(G Z , Ad0ρ̄∗)|Gq = 0, then

H 1(G Z∪{q}, Ad0ρ̄)→
⊕
v∈Z

H 1(Gv, Ad0ρ̄)

Lv

and

H 1(G Z , Ad0ρ̄)→
⊕
v∈Z

H 1(Gv, Ad0ρ̄)

Lv

have the same image.

Proof. As the proofs of all parts are similar, we only prove part (2). We use the
normal local Selmer condition for v ∈ Z , but just for this proof we set Lq =

H 1(Gq, Ad0ρ̄), so L⊥q = 0. We apply Proposition 6 with the sets Z and Z ∪ {q}.
Then

dim H 1
L(G Z∪{q}, Ad0ρ̄)− dim H 1

L⊥(G Z∪{q}, Ad0ρ̄∗)

= dim H 1
L(G Z , Ad0ρ̄)− dim H 1

L⊥(G Z , Ad0ρ̄∗)+ 1.

As L⊥q = 0, we have H 1
L⊥(G Z∪{q}, Ad0ρ̄∗) ⊂ H 1

L⊥(G Z , Ad0ρ̄∗), and since φ|Gq 6=

0 this containment is proper. As the dual Selmer goes down by 1 in dimension as
we switch from Z to Z ∪ {q}, the above equation implies that the dimension of
the Selmer does not change as we switch from Z to Z ∪ {q}. Since Lq = H 1(Gq,

Ad0ρ̄) we have H 1
L(G Z , Ad0ρ̄) ⊂ H 1

L(G Z∪{q}, Ad0ρ̄), and the result follows.

PROPOSITION 23. Let h ∈ H 1
L̃(G Z , Adρ̄), φ ∈ H 1

L̃⊥(G Z , Adρ̄∗), and let q be
nice.

(1) The injective inflation map

H 1(G Z , Adρ̄)→ H 1(G Z∪{q}, Adρ̄)

has codimension 0 or 1. If III1(Adρ̄∗)|Gq = 0, then the codimension is 1.
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(2) If h|Gq /∈ L̃q and φ|Gq 6= 0, then

dim H 1
L̃(G Z∪{q}, Adρ̄) = H 1

L̃(G Z , Adρ̄)− 1,

dim H 1
L̃⊥(G Z∪{q}, Adρ̄∗) = dim H 1

L̃⊥(G Z , Adρ̄∗)− 1.

The proof of Proposition 23 is similar to that of Proposition 22, and is not
included. See Section 1, particularly Lemma 1.2, of [17] for the proof of (2).

Consider the deformation to the dual numbers given by

GQ
ρn
→ GL2 (O/(π n))→ GL2

(
O/(π 2)

)
' GL2(Fp f [U ]/(U 2)).

Then f ∈ H 1(GQ, Ad0ρ̄) corresponds to this composite representation, and
the fullness assumption implies that f 6= 0. As the determinant of the above
composite representation is ε̄, f ∈ H 1

L(G S, Ad0ρ̄) ⊂ H 1
L̃(G S, Adρ̄); that is, f

lives in the trace-zero cohomology. This is important, as in the end f will span
the tangent space of our arbitrary-weight ordinary ring and the tangent space of its
weight-2 quotient. By Corollary 13 we may take {φ1, . . . , φs} and {h1, . . . , hs, f }
as bases of H 1

L̃⊥(G S, Adρ̄∗) and H 1
L̃(G S, Adρ̄).

LEMMA 24. For i ∈ {1, 2, . . . , s}, let Qi be the set of nice primes such that, for
qi ∈ Qi ,

• φi |Gqi
6= 0 (equivalently, φi,Ad0ρ̄∗ |Gqi

6= 0),

• hi,Ad0ρ̄ |Gqi
6= 0 and hi,sc|Gqi

= 0,

• for j 6= i , φ j , h j |Gqi
= 0, and

• qi is ρn-nice; that is, ρn(Frqi ) =
(

qi 0
0 1

)
, where this element has order prime to

p.

Then Qi is nonempty.

Proof. It suffices to show that the conditions above are independent Chebotarev
conditions; that is, they determine linearly disjoint extensions over K := Q(ρ̄),
and thus can be simultaneously satisfied.

Each of the cohomology classes above, when restricted to the absolute Galois
group of the field K , becomes an element of HomGal(K/Q)(G K ,M) for M = Adρ̄
or Adρ̄∗. For M = Ad0ρ̄ or Ad0ρ̄∗, the independence of the first three conditions
has been established in [13] and [17]. The case of full adjoint cohomology
results from these works and Proposition 21 as follows. Write φi = φi,Ad0ρ̄∗ +

φi,Fp f (1), where φi,Ad0ρ̄∗ ∈ H 1(G S, Ad0ρ̄∗) and φi,Fp f (1) ∈ H 1(G S,Fp f (1)). We
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claim that the set {φ1,Ad0ρ̄∗, . . . , φs,Ad0ρ̄∗} is independent. Indeed, suppose that∑s
j=1 a jφ j,Ad0ρ̄∗ = 0 is a dependence relation. Then

s∑
j=1

a jφ j =

s∑
j=1

a j(φ j,Ad0ρ̄∗ + φ j,Fp f (1))

=

s∑
j=1

a jφ j,Fp f (1) ∈ H 1
L̃⊥(G S, Ad0ρ̄∗) ∩ H 1(G S, µp),

which is 0 by Proposition 21, a contradiction. Let L be the composite of the
fields fixed by the kernels of φi |G K . Then Gal(L/K ) contains, when viewed as a
Fp f [Gal(K/Q)]-module, s copies of Ad0ρ̄∗ by [12], [17]. A similar argument
gives that the composite of the fields fixed by the kernels of hi |G K and f |G K

contains s + 1 copies of Ad0ρ̄. This reduces the independence of the first three
conditions to the same question with Ad0ρ̄ and Ad0ρ̄∗ cohomology where it is
known.

The fourth condition is a complete splitting condition from K to Ln , the field
fixed by the kernel of ρn . The Jordan–Hölder components of Gal(Ln/K ) are
Fp f [Gal(K/Q)]-submodules of Adρ̄ that are either Adρ̄ or Ad0ρ̄. As the fields
fixed by the kernels of the φi |G K give Adρ̄∗ (or Ad0ρ̄∗) extensions, these are
linearly disjoint over K from Ln . The fields fixed by the kernels of the hi |G K give
rise to Adρ̄ (or Ad0ρ̄) extensions of K . If the composite of these fields intersects
Ln nontrivially, then, as this intersection is abelian over K , the proof of Lemma 20
applied to ρn implies that this composite contains Kernel( f |G K) and f is in the
span of the trace zero parts of {h1,Ad0ρ̄, . . . , hs,Ad0ρ̄}. Proposition 21 then implies
that f is in the span of {h1, . . . , hs}, a contradiction. Thus the composite of the
fields fixed by the hi is linearly disjoint over K from Ln .

4.3. Proof of Theorem 1. We prove Theorem 1 in this section. In the case
when n = 1 so ρ1 = ρ̄, this was proved by Lundell in [11]. Dealing with n > 1 is
what requires the more complicated parts (3) and (5) of Proposition 11.

Proof of Theorem 1. Choose qi ∈ Qi of Lemma 24, and set Q = {q1, . . . , qs} and
T = S ∪ Q. Part (2) of Proposition 23 implies that the Selmer and dual Selmer
groups decrease in dimension by 1 for each qi at which we allow ramification.
Thus H 1

L̃⊥(GT , Adρ̄∗) = 0, and H 1
L̃(GT , Adρ̄) is spanned by f , so Rord,T-new

'

W (Fp f )p[[U ]]. Since we assume that ρ̄ is modular and absolutely irreducible, [5]
implies that Rord,T-new has characteristic-zero points in all classical weights. Thus
it is in fact a Hida family. By the fourth condition on the qi ∈ Qi we see that ρn

arises as a point of Rord,T-new
2 , the weight-2 quotient of Rord,T-new.

https://doi.org/10.1017/fms.2015.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.17


C. Khare and R. Ramakrishna 20

5. ρn lifts to an O-valued weight 2 point

Let ρn : GQ→ GL2(O/(π n)) be as in Theorem 1. Suppose also that ρn|Gv
∈ Cv

for all v ∈ S. Recall that for v = p we require that, if ρ̄ =
(
ε̄ 0
0 1

)
, then Cp is taken

to be the flat deformations, so we must assume that ρn|G p is flat.
If ρ̄|G p =

(
ε̄ ∗
0 1

)
is flat and ρn is flat (but not semistable), we take Cp to

be the flat deformations. If ρn is not flat but semistable, we take Cp to be
the semistable deformations. The universal representations corresponding to the
deformation rings considered in Theorem 2 are locally at p of type Cp. We
consider accordingly the appropriate ring Rord,T-new

2 as in Definition 16.
The goal of this section is to prove Theorem 25 (cf. Theorem 2 of the

introduction).

THEOREM 25. Let ρn be as in Theorem 1. There exists a finite set of primes T ⊇ S
such that

Rord,T-new
2 ' O � O/(π n)

inducing ρn .

Let j (U ) be the determinant of the universal ordinary representation (arising
from Rord,X-new for a given X ) evaluated at a topological generator of the Galois
group of the cyclotomic Zp-extension of Q so that, at a weight t point Ut ∈ mZ̄p

,
j (Ut) = (1+ p)t−1. (Note that j (U ) is independent of X .) Write j (U ) = 1+ p+
g(U ).

LEMMA 26. The modularity of ρ̄ implies that we may assume that g(U ) ∈
W (Fp f )[[U ]] is a distinguished polynomial.

Proof. The Weierstrass preparation theorem implies that g(U ) = ptv2(U )u(U ),
where v2 is a distinguished polynomial and u(U ) is a unit. We need to prove that
t = 0, so suppose that t > 1.

By [5], Rord,X-new
' W (Fp f )[[U ]] has a point of each classical weight k > 2.

The weight-3 quotient is formed imposing the relation j (U ) = (1 + p)2, that is,
quotienting out by

j (U )− (1+ p)2 = g(U )− p − p2
= ptv2(U )u(U )− p − p2

= p
[
−1− p + pt−1v2(U )u(U )

]
.

As there is at least one weight-2 point in this Hida family, v2(U ) has positive
degree, so the rightmost quantity above is p times a unit, and is never 0 for any
choice of U . Thus if t > 1 there are no weight-3 points, a contradiction.
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Consider the weight-2 quotient Rord,X-new
2 of Rord,X-new. In all cases except (3)

and (5) of Proposition 11, we will be considering the quotient by g(U ), and in
the remaining cases by distinguished polynomial that divides g(U ) whose roots
correspond to lifts that are either semistable or flat of weight 2 as per the case
being considered. For uniformity of notation, we denote byw2(U ) a distinguished
polynomial that generates the kernel of the map Rord,X-new

→ Rord,X-new
2 . (A priori

the roots of the w2(U ) in the flat and semistable case could share a root, but
geometricity and the Weil bounds imply that this is not the case, though we do
not need this here.) Henceforth we will write Rord,X-new/(w2(U )) to indicate the
weight-2 quotient with which we are dealing (the full weight-2 quotient, except
in cases (3) and (5) of Proposition 11) and will control to be O.

5.1. Recollection of earlier work in [14]. Let T be as in Theorem 1. A
key technical ingredient in this section is the main lifting result of [14], which
in turn builds on [10]. The point of [14] was to build a pathological Galois
representation by removing all obstructions to deformation problems. Here we
repeat this procedure for a finite number of steps, but then we introduce an
obstruction later to force Rord,T2-new

2 to be ‘close to’ a specified ring. This closeness
will allow us to choose Rord,T2-new

2 to be isomorphic to a given totally ramified
extension of W (Fp f ).

We recall some of the key ingredients of [14]. Again, we consider Fp f with
q = p f and p > 5. First consider the hypotheses of Section 4 of [14].

• Fullness of the image of ρ̄, which we assume here.

• Triviality of

III1
T (Ad0ρ̄∗) := Kernel

(
H 1(GT , Ad0ρ̄∗)→⊕v∈T H 1(Gv, Ad0ρ̄∗)

)
can be realized as follows. Note that, for T ⊂ Z , III1

Z (Ad0ρ̄∗) ⊂ III1
T (Ad0ρ̄∗).

Then let {θ1, . . . , θt} be a basis for III1
T (Ad0ρ̄∗) and choose nice primes qi such

that the following hold.

– qi is ρn-nice. Recall that this is a complete splitting condition on qi in
Gal(Ln/Q(ρ̄, µp)).

– H 1(GT , Adρ̄)|Gqi
= 0.

– θi |Gqi
6= 0 and j 6= i H⇒ θ j |Gqi

= 0.

Replacing T by T ∪ {q1, . . . , qt} (which we rename T ) gives III1
T (Ad0ρ̄∗) = 0.

• The third hypothesis of Section 4 of [14] was that the local deformations be
specified uniquely. This was equivalent to specifying W (Fp f ) as our smooth
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quotient of each local deformation ring. We simply ignore that here, and use Cv
as our (weight-2) set of local points as usual.

Let T ⊂ Z , and suppose that we have an ordinary weight-2 deformation of
ρ̄, ρR : G Z → GL2(R), where R is a finite complete local Noetherian ring with
residue field Fp f and ρR|Gv

∈ Cv for all v ∈ Z . Let S and S′ be such rings with

S � S′
δ

� R

small surjections; that is, the kernels are principal ideals killed by the maximal
ideal of the source ring and thus isomorphic to Fp f . It is natural to ask whether
ρR deforms to a ρS′ : G Z → GL2(S′) of weight 2. The obstruction lies in
H 2(G Z , Ad0ρ̄). As III1

Z (Ad0ρ̄∗) ⊂ III1
T (Ad0ρ̄∗) = 0 and III1

Z (Ad0ρ̄∗) is dual to
III2

Z (Ad0ρ̄), this obstruction is realized locally. But as ρR|Gv
∈ Cv for all v ∈ Z

and the Cv represent the points of a smooth ring, there are no local obstructions
and ρS′ exists. It may be, however, that there are v0 ∈ Z with ρS′ |Gv0

/∈ Cv0 . In this
case deforming to S may not be possible. The smoothness of the local deformation
rings implies that ρR|Gv

has a deformation to GL2(S′) arising from Cv for all v ∈ Z .
The obstruction to deforming ρS′ |Gv0

to S can be removed by a cohomology class
zv0 ∈ H 1(Gv0, Ad0ρ̄). We call the collection (zv)v∈Z the local condition problem
for ρS′ . Proposition 3.4 of [14] shows that there exists a ρS′-nice prime q , and
h ∈ H 1(G Z∪{q}, Ad0ρ̄), which solves the local condition problem above; that is,
(I + h)ρS′ |Gv

∈ Cv for all v ∈ Z . The difficulty is that we cannot guarantee that
(I + h)ρS′ |Gq ∈ Cq . If this fails for all ρS′-nice primes, Proposition 3.6 of [14]
shows how to add two nice primes q1 and q2 to Z and find a cohomology class
h ∈ H 1(G Z∪{q1,q2}, Ad0ρ̄) such that (I + h)ρS′ |Gv

∈ Cv for all v ∈ Z ∪ {q1, q2}.

5.2. Strategy of the proof of Theorem 2. We use the integer N throughout
this section to denote a large natural number. This largeness will depend only on
ρn : GQ → GL2(O/(π n)). We explain the strategy, which gives an indication of
how N is chosen. The first step is to construct a deformation problem where the
arbitrary-weight ordinary deformation ring will be W (Fp f )[[U ]] and its weight-
2 quotient will surject onto W (Fp f )[[U ]]/(pN ,U Ne), which in turn will surject
onto O/(π n) and give rise to ρn . So

W (Fp f )[[U ]] ' Rord � Rord
2

= W (Fp f )[[U ]]/(w2,N (U ))
� W (Fp f )[[U ]]/(pN ,U Ne)� O/(π n).

If in this composite U maps to an element of O/(π n) whose various lifts to O
have valuation greater than 1/e, then the deformation to O/(π 2) would be trivial,
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contradicting the fullness of ρn . Thus U maps to an element whose lifts to O
are uniformizers. After multiplying by a unit, we may assume that U 7→ π . Our
strategy is to then alter the problem by allowing more ramification so thatw2,N (U )
is exactly of degree e and ‘close to’ gπ (U ), the minimal polynomial of π over
W (Fp f ). The choice of N will depend on |π n

| and the Krasner bound on the
distances between roots of gπ (U ). Furthermore, w2,N has a root yN ,1 such that the
deformation given by U 7→ yN ,1 gives rise to ρn . Thus ρn will have a weight-2
characteristic-zero lifting.

5.3. Weight-2 deformation rings that are large. In this section we will
construct large weight-2 deformation rings that give rise to ρn . The technical
hypotheses on ρn|G p in the introduction arise here.

PROPOSITION 27. For any integer N > n, there exists a set X N ⊇ T such that

Rord,X N -new
2 � W (Fp f )[[U ]]/(pN ,U Ne)� O/(π n).

Proof. Theorem 1.1 of [14], based on techniques of [10], gives examples of
weight-2 deformation rings that are arbitrarily large and ramified at infinitely
many primes. It is proved by taking an inverse limit of certain quotients of
deformation rings that are local Artin rings and satisfy a specified property at
v ∈ S0, namely the local representation at Gv is (the reduction of) a specific
deformation of ρ̄|Gv

to Zp. While the ring W (Fp f )[[U ]]/(pN ,U Ne) is not
explicitly included there, the techniques apply. The deformation of Theorem 1
to O/(π n) factors

W (Fp f )[[U ]] = Rord,T-new � Rord,T-new
2 = W (Fp f )[[U ]]/(w2(U ))� O/(π n)

(5.1)
and U 7→ π in the composite. Let gπ (U ) be the minimal polynomial of π
over W (Fp f ). As U 7→ π gives an isomorphism W (Fp f )[[U ]]/(gπ (U ),U n) '

O/(π n), the kernel of (5.1) is (gπ (U ),U n), so w2(U ) ∈ (gπ (U ),U n). For N > n,
note that pN ,U Ne

∈ (gπ (U ),U n), as they both map to 0 in (5.1).
We will construct a ring R = W (Fp f )[[U ]]/I (not yet a deformation

ring!) that surjects onto W (Fp f )[[U ]]/(pN ,U Ne) and from there onto
W (Fp f )[[U ]]/(gπ (U ),U n) ' O/(π n). We will build R as a series of small
extensions of W (Fp f )[[U ]]/(gπ (U ),U n) and then invoke Proposition 3.6 of [14]
to realize all of these rings as quotients of weight-2 deformation rings. Consider
the map

W (Fp f )[[U ]]/(pgπ (U ),Ugπ (U ),U n)� W (Fp f )[[U ]]/(gπ (U ),U n).
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The kernel is just the ideal (gπ (U )), and this is killed by (p,U ), the maximal
ideal of W (Fp f )[[U ]], so the extension is small. Similarly, the map

W (Fp f )[[U ]]/(pgπ (U ),Ugπ (U ), pU n,U n+1)

� W (Fp f )[[U ]]/(pgπ (U ),Ugπ (U ),U n)

has kernel (U n), and this is also killed by (p,U ). Repeat this process (with more
and more elements in our ideal) until all the generators are of the form prU s gπ (U )
or prU sU n , where r+s = N+Ne. Let I be this ideal of relations. In each relation
either r > N or s > Ne, so I ⊂ (pN ,U Ne) ⊂ (gπ (U ),U n). Then

W (Fp f )[[U ]]/I � · · ·� W (Fp f )[[U ]]/(gπ (U ),U n) ' O/(π n)

is a series of small extensions.
At this point we use the technique of [14] to deform ρn to each small extension,

perhaps allowing ramification at one or two nice primes at each step. If we can
deform ρn all the way to W (Fp f )[[U ]]/I without allowing more ramification, then
we are done. If not, there is a first place at which the small deformation problem is
obstructed. This is not at ρn , as III2

T (Ad0ρ̄) = 0 (being dual to III1
T (Ad0ρ̄∗)), and

the local deformation problems ρn are assumed unobstructed. The smoothness of
the chosen quotients of the local deformation rings implies that there are local
cohomology classes (hv)v∈T that ‘unobstruct’ each of the given local deformation
problems. Proposition 3.4 of [14] implies that with one nice prime q the local
deformation problems at v ∈ T can be ‘unobstructed’ by a global class in
H 1(GT∪{q}, Ad0ρ̄), but possibly this class introduces an obstruction at q . If all
nice primes introduce such an obstruction, the rest of Section 3 of [14] shows how
to allow ramification at two nice primes {q1, q2} so that the obstruction introduced
at these primes cancel one another. Then we deform and move on to the next small
extension. Set X N to be the final set of nice primes.

Recall the cohomology class f that gives rise to ρn mod (π 2). The primes q
used in Proposition 27 were ρn-nice, so f |Gq = 0 and f ∈ H 1

L(G X N , Ad0ρ̄) ⊂

H 1
L̃(G X N , Adρ̄), but this last space could have dimension >1, so the first step in

our strategy is not yet complete. Lemma 28 remedies this.

LEMMA 28. There exists a set YN containing X N of Proposition 27 such
that dim H 1

L̃⊥(GYN , Adρ̄∗) = 0 and dim H 1
L̃(GYN , Adρ̄) = 1, so Rord,YN -new

'

W (Fp f )[[U ]]. Furthermore,

W (Fp f )[[U ]] ' Rord,YN -new � Rord,YN -new
2

= W (Fp f )[[U ]]/(w2,N (U ))� W (Fp f )[[U ]]/(pN ,U Ne)

� O/(π n). (5.2)
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Proof. The proof is similar to that of Lemma 24. Let ρN : G X N →

GL2
(
W (Fp f )[[U ]]/(pN ,U Ne)

)
be the deformation of Proposition 27. We will

need that the image of ρN is full.
The ring W (Fp f )[[U ]]/(pN ,U Ne) has the quotient W (Fp f )/(p2), and there is

the extension

1→ Adρ̄ → GL2
(
W (Fp f )/(p2)

)
→ GL2(Fp f )→ 1, (5.3)

which is well known to be nonsplit for p > 5. The cohomology class f also gives
rise to the split extension

1→ Ad0ρ̄ → GL2
(
Fp f [ε]/(ε2)

)
→ GL2(Fp f )→ 1. (5.4)

Thus there are distinct extensions K1/Q(ρ̄) and K2/Q(ρ̄) with Gal(Ki/Q(ρ̄)) '
Ad0ρ̄ as Fp f [Gal(Q(ρ̄)/Q]-modules for i = 1, 2. This gives the fullness
of image of ρR

ord,YN -new
2

mod (p,U )2, the deformation to GL2(W (Fp f )[[U ]]/

(p,U )2). Lemma 18 implies that ρR
ord,YN -new
2

mod (pN ,U Ne) has full image.
Now take {φ1, . . . , φs} and {h1, . . . , hs, f } as bases for H 1

L̃⊥(G X N , Adρ̄∗) and
H 1

L̃(G X N , Adρ̄). As before, f ∈ H 1
L(G X N , Ad0ρ̄) is the cohomology class arising

from ρn mod (π 2). Let Qi be the Chebotarev set of primes qi satisfying

• φi |Gqi
6= 0 (equivalently φi,Ad0ρ̄∗ |Gqi

6= 0) ,

• hi |Gqi
/∈ L̃qi (equivalently hi,Ad0ρ̄ |Gqi

6= 0) and hi,sc|Gqi
= 0,

• for j 6= i , φ j , h j |Gqi
= 0, and

• qi is ρN -nice; that is, ρN (Frqi ) =
(

qi 0
0 1

)
, where this element has order prime to

p.

Setting
Γ = {A ∈ Image(ρN ) | A ≡ I mod (p,U )}

and using the fullness of ρN established above, one can easily adapt the
proof of Lemma 20 to show that dim H 1(Image(ρN ), Ad0ρ̄) = 1. One then
modifies Lemma 24 to show the above bullet points are independent Chebotarev
conditions.

Let qi ∈ Qi and set YN = X N ∪ {q1, . . . qs}; then, by part (2) of Proposition 23,
dim H 1

L̃⊥(GYN , Adρ̄∗) = 0 and dim H 1
L̃(GYN , Adρ̄) = 1, and this last group has

basis { f }. The ordinary ring Rord,YN -new
' W (Fp f )[[U ]]. The fourth condition

on the Qi implies that the deformation ρN arises from the weight-2 quotient of
Rord,YN -new, so Rord,YN -new

2 � W (Fp f )[[U ]]/(pN ,U Ne).
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The second surjection of (5.2) implies that w2,N (U ) ∈ (pN ,U Ne), and
Lemma 26 implies that w2,N (U ) is a distinguished polynomial. It thus has degree
at least Ne.

5.4. Cutting down the size of weight-2 deformation rings via local
obstructions. Our next step is to add more nice primes of ramification so
that the new weight-2 ordinary ring is a quotient of W (Fp f )[[U ]] by a polynomial
v2,N (U ) of degree exactly e. Furthermore, v2,N (U ) will have a root yN ,1 such that
U 7→ yN ,1 gives rise to ρn .

Let C be a positive number smaller than both |π n
| and the minimum of half the

distances between any pairs of roots of gπ , its Krasner bound.
Recall that U 7→ π in

GYN

ρ
Rord,YN -new
−→ GL2(W (Fp f )[[U ]])→ GL2

(
W (Fp f )[[U ]]/(pN ,U Ne)

)
→ GL2 (O/(π n)) .

Denote by ρgπ ,N the deformation

GYN → GL2
(
Rord,YN -new

= W (Fp f )[[U ]]
)
→ GL2

(
Rord,YN -new

2

)
→ GL2

(
W (Fp f )[[U ]]/(pN ,U Ne)

)
→ GL2

(
W (Fp f )[[U ]]/(pN , gπ (U ),U Ne)

)
.

Let ρp,k be the reduction of the deformation GYN

ρ
Rord,YN -new
−→ GL2(W (Fp f )[[U ]]/

(pN ,U Ne)) mod (p,U k).
Note that

• dim H 1
L̃(GYN , Adρ̄) = 1, and this space has basis { f },

• dim H 1
L(GYN , Ad0ρ̄) = 1, and this space has basis { f },

• dim H 1
L̃⊥(GYN , Adρ̄∗) = 0, and

• dim H 1
L⊥(GYN , Ad0ρ̄∗) = 1, and this space has some basis, say {φ}.

Let Q be the set of primes q satisfying

• H 1(GYN , Ad0ρ̄)|Gq = 0,

• q is ρgπ,N -nice,

• φ|Gq 6= 0, and
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• ρp,e+1(Frq) =
( q(1+U e) 0

0 1−U e

)
.

PROPOSITION 29. The Chebotarev conditions defining Q above are independent
for p > 5.

Proof. The first two conditions are complete splitting conditions in fields above
Q(ρ̄) and can therefore be satisfied simultaneously. They are both Adρ̄ conditions
and thus are independent of the third condition, an Adρ̄∗ condition. It remains to
show the independence of the fourth condition from the previous three. Since it
is a succession of Adρ̄ conditions, we only have to check independence with the
first two conditions and, since e > 1, independence with the first condition follows
from Lemma 20.

Finally we show the independence of the fourth and second conditions. Let
Kgπ,N , Ke and Ke+1 be the fields fixed by the kernels of ρgπ,N , ρp,e and ρp,e+1,
respectively.

Kgπ,N Ke+1

Ke

Q(ρ̄)

Q

As gπ (U ) is distinguished of degree e, Kgπ,N ⊃ Ke. We show that Kgπ,N 6⊇ Ke+1.
The same argument given in the proof of Lemma 28 implies that ρR

ord,YN -new
2

mod (p,U )2 has full image. Lemma 18 then implies that the image of ρR
ord,YN -new
2

mod (pN ,U Ne) contains
( 1+gπ (U ) 0

0 (1+gπ (U ))−1

)
. When we reduce mod (pN , gπ (U ),

U Ne) to ρgπ,N
, this element becomes trivial. But when we reduce mod (p,U e+1)

to ρp,e+1, bearing in mind that gπ (U ) ≡ U e mod p, the image is
(

1+U e 0
0 1−U e

)
. So

Kgπ,N 6⊇ Ke+1. Thus Kgπ,N and Ke+1 are linearly disjoint over Ke. The second
condition is a complete splitting condition in Kgπ,N , while the fourth is a complete
splitting condition in Ke, but not in Ke+1.
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5.5. Proof of Theorem 2. Choose q1 ∈ Q. Part (4) of Proposition 22, using
the first and third bullet points on q1, implies that

dim H 1
L(GYN∪{q1}, Ad0ρ̄) = 1 = dim H 1

L⊥(GYN∪{q1}, Ad0ρ̄∗),

and H 1
L(GYN∪{q1}, Ad0ρ̄) is spanned by { f } and H 1

L⊥(GY∪{q1}, Ad0ρ̄∗) is spanned
by some {φ̃} ramified at q1. Thus Rord,YN∪{q1}-new

2∗ is a quotient of W (Fp f )[[U ]]with
one-dimensional tangent space.

By part (1) of Proposition 23 there are two possibilities:

(1) dim H 1
L̃(GYN∪{q1}, Adρ̄) = 1, or

(2) dim H 1
L̃(GYN∪{q1}, Adρ̄) = 2.

In case (1), Rord,YN∪{q1}-new
' W (Fp f )[[U ]], and its weight-2∗ quotient is formed

by quotienting by the one determinant relation v2∗,N (U ), which we can assume
is a distinguished polynomial by Lemma 26. In case (2), it is possible that
Rord,YN∪{q1}-new

2∗ is a quotient of W (Fp f )[[U ]] by either multiple relations or that
it might not be finite and flat over W (Fp f ). We will deal with this case by adding
another prime of ramification.

While each q1 ∈ Q puts us in one of the two cases above, it is an open (and
difficult!) question to determine if both cases do occur. The length of the argument
below is due to this phenomenon.

5.5.1. Case (1). In the first case, we have deformations associated to the ring
homomorphisms

W (Fp f )[[U ]] ' Rord,YN∪{q1}-new � Rord,YN∪{q1}-new
2

' W (Fp f )[[U ]]/
(
v2,N (U )

)
� W (Fp f )[[U ]]/

(
pN , gπ (U ),U Ne

)
.

The last surjection above implies that v2,N (U ) ∈ (pN , gπ (U ),U Ne), so its degree
is at least e. We claim that it is exactly e.

If the degree is greater than e, then Rord,YN∪{q1}-new
2 � Fp f [[U ]]/(U e+1). Call

the corresponding deformation α, and let β be the deformation induced by the
composite

Rord,YN -new
2 � W (Fp f )[[U ]]/(pN ,U Ne)� Fp f [[U ]]/(U Ne)� Fp f [[U ]]/(U e+1).

Note that α|Gq1
∈ Cq1 and

β(Frq1) =

(
q1(1+U e) 0

0 1−U e

)
H⇒ β|Gq1

/∈ Cq1;
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that is, β is not Steinberg at q1. As both α and β are deformations of ρgπ,N mod p
to GL2

(
Fp f [[U ]]/(U e+1)

)
, they differ by a 1-cohomology class k ∈ H 1(GY∪{q1},

Ad0ρ̄); that is,
α = (I +U ek)β.

If k is unramified at q1, then k inflates from H 1(GYN , Ad0ρ̄). But q1 was chosen
so that H 1(GYN , Ad0ρ̄)|Gq1

= 0. Thus k cannot change the local at q1 deformation
where β(Frq1) =

( q1(1+U e) 0
0 1−U e

)
to one in Cq1 . So k is ramified at q1. But we chose

q1 such that φ|Gq1
6= 0, where φ spanned H 1

L⊥(GYN , Ad0ρ̄∗). Parts (1) and (2) of
Proposition 22 then imply that the map

H 1(GYN∪{q1}, Ad0ρ̄)→
⊕
v∈YN

H 1(Gv, Ad0ρ̄)

Lv

has image one dimension larger than the map

H 1(GYN , Ad0ρ̄)→
⊕
v∈YN

H 1(Gv, Ad0ρ̄)

Lv

.

For all v ∈ YN we have that α|Gv
belongs to our deformable class Cv, as does

β|Gv
. But for at least one v ∈ YN we have kv|Gv

/∈ Lv, so α|Gv
= (I +U ek)β|Gv

/∈

Cv, a contradiction. Thus k can be neither ramified nor unramified at q1. This
contradiction implies that v2,N (U ) has degree e.

Recall that v2,N (U ) ∈ (pN , gπ (U ),U Ne), so

v2,N (U ) = a(U )pN
+ b(U )gπ (U )+ c(U )U Ne. (5.5)

As gπ (U ) is the minimal polynomial over W (Fp f ) of π , its roots are distinct.
Since both gπ (U ) and v2,N (U ) are degree e, b(U ) is a unit. Let {yN ,1, yN ,2, . . . ,

yN ,e} be the roots of v2,N (U ). As v2,N (U ) is distinguished of degree e, vp(yN ,i) >
1/e. Observe that

0 = v2,N (yN ,i) = pN a(yN ,i)+ b(yN ,i)gπ (yN ,i)+ c(yN ,i)yNe
N ,i .

The outside terms on the right have valuation at least N and b(yN ,i) is a unit,
so vp(gπ (yN ,i)) > N . Thus yN ,i is very close to a root of gπ (U ). For N large
enough, this closeness is closer than the common Krasner bound C on the roots
of gπ (U ). We claim that each yN ,i is close to a different root of gπ (U ). If this
were false, then a root of gπ would be missed; that is, there would be a root x0 of
gπ (U ) with |x0 − yN ,i | > C for all i . As v2,N (U ) =

∏
(U − yN ,i), we would have

|v2,N (x0)| > C e. Evaluating (5.5) at x0 gives |v2,N (x0)| < p−N , a contradiction for
large N , so the claim is true. After relabeling, we may assume that yN ,1 is close
to π .
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The composite deformations corresponding to

W (Fp f )[[U ]] ' Rord,YN∪{q1}-new � Rord,YN∪{q1}-new
2

� W (Fp f )[[U ]]/(pN , gπ (U ),U Ne)

and

W (Fp f )[[U ]] ' Rord,YN -new � Rord,YN -new
2 � W (Fp f )[[U ]]/(pN , gπ (U ),U Ne)

are the same, as the latter is nice at q1. We know U 7→ π in the latter to give
ρn , so sending U to π in the former gives ρn as well. As yN ,1 is close enough
to π , Krasner’s lemma implies that W (Fp f )[ 1

p ](π) ⊂ W (Fp f )[ 1
p ](yN ,1). As

[W (Fp f )[ 1
p ](yN ,1) : W (Fp f )[ 1

p ]] 6 deg(v2,N (U )) = e, the fields W (Fp f )[ 1
p ](yN ,1)

and W (Fp f )[ 1
p ](π) are equal. Recall that C is smaller than both |π n

| and
the Krasner bound on the roots of gπ (U ). We chose N large enough so that
|yN ,1 − π | < C < |π n

|, so sending U to yN ,1 in the former sequence gives
ρn as well. As Rord,YN∪{q1}-new

2 ' W (Fp f )[[U ]]/(v2,N (U )), we see that ρn lifts
to an O-valued weight-2 Galois representation. This proves Theorem 2 in the
case where we assumed that dim H 1

L(GYN∪{q1}, Adρ̄) = 1 which implied that
Rord,YN∪{q1}-new

' W (Fp f )[[U ]]. In this case we set T2 = T ∪ {q1}.

5.5.2. Case (2). This case can be dealt with by a more intricate purely Galois
cohomological argument that takes two pages and allows ramification at yet
another prime q2 to reduce the question to the point where we can cite case
(1). Alternatively, if we allow ourselves standard ‘R = T’ theorems (the only
place we do so in this paper), we know that RYN∪{q1}

2 is a finite flat complete
intersection and thus isomorphic to W (Fp f )[[U ]]/(v2(U )) for a distinguished
polynomial v2(U ) ∈ (pN , gπ (U ),U Ne). Now we just note that the argument in
case (1) used only the mod-p reductions of the weight-2 rings Rord,YN∪{q1}-new

2 and
Rord,YN -new

2 , so we can proceed as we did there.

5.6. Proof of Theorem 3.

COROLLARY 30. Let ρ̄ : GQ → GL2(Fp f ) be odd, full, ordinary, weight 2, and
have determinant ε. Let O be any totally ramified extension of W (Fp f ). There
exists a set of primes Y ⊃ S0 such that

W (Fp f )[[U ]] ' Rord,Y � Rord,Y-new
2 ' W (Fp f )[[U ]]/(h(U )) ' O.

The degree of the map to weight space along the Hida family Rord,Y-new is [O :
W (Fp f )] when ρ̄ is as in cases (1), (2), and (4) of Proposition 11. In the other
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cases, the degree is strictly greater than [O : W (Fp f )]. There exists a weight-2
form associated to ρ̄ whose completed field of Fourier coefficients has ring of
integers O.

Proof. Use [14] to get a nontrivial weight-2 deformation of ρ̄ to

W (Fp f )[[U ]]/(p,U 2) ' O/(π 2);

that is, the corresponding cohomology class in this deformation to the dual
numbers is nonzero. Now apply Theorem 2.

THEOREM 31. Let ρ̄ : GQ→ GL2(Fp f ) be odd, full, ordinary, weight 2, and have
determinant ε. Let g(U ) ∈ W (Fp f )[U ] be a distinguished polynomial of degree
e with distinct roots, and let ε > 0 be given. Then there exists a set Y ⊃ S0 such
that

W (Fp f )[[U ]] ' Rord,Y-new � Rord,Y-new
2 ' W (Fp f )[[U ]]/(w2(U )),

where w2(U ) has degree e and each root of w2(U ) is within ε of a root of g(U ).
Furthermore, if g(U ) =

∏
gi(U ) where gi(U ) is irreducible over W (Fp f ) of

degree ei , then w2(U ) =
∏
w2,i(U ), where w2,i(U ) is irreducible over W (Fp f )

of degree ei , and its roots are within ε of the roots of gi(U ).

Proof. First choose ε to be less than half the distance between any pair of roots of
g(U ). Use [14] to get a nontrivial weight-2 deformation of ρ̄ to W (Fp f )[[U ]]/(p,
U 2). Now proceed as in Proposition 27 to get a weight-2 deformation ring
surjecting onto W (Fp f )[[U ]]/(pN ,U Ne) with one-dimensional tangent space.
Then add more primes so that the ordinary ring is W (Fp f )[[U ]] and its weight-2
quotient is W (Fp f )[[U ]]/(w2(U )), where w2(U ) ∈ (pN , g(U ),U Ne) is degree e.
The argument in case (1) of Theorem 2 implies that, for N large enough, each
root of w2(U ) is within ε of a distinct root of g(U ). By the choice of ε, the roots
of w2(U ) are distinct. As gi(U ) is a degree-ei irreducible factor of g(U ), let {ri1,

. . . , riei } be its roots, and we know that |ri j−si j | < ε, where si j is a root ofw2(U ).
We write ri j = si j + xi j . Let σ be an automorphism taking ri j to rik . Then

rik = σ(ri j) = σ(si j + xi j) = σ(si j)+ σ(xi j).

As σ preserves sizes,

|rik − σ(si j)| = |σ(xi j)| = |xi j | < ε,

so σ(si j) is the root of w2(U ) ∈ W (Fp f )[U ] close to rik . Thus σ(si j) = sik ,
and the roots of w2(U ) break up into Galois orbits corresponding to the Galois
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orbits of the roots of g(U ) that are close to them. This proves the factorization
statement.

This theorem has the following corollary (cf. Theorem 3 of the introduction),
on using the Lemma 33 below.

COROLLARY 32. Let ρ̄ : GQ → GL2(Fp f ) be odd, full, ordinary, weight 2, and
have determinant ε. Let g(U ) ∈ W (Fp f )[U ] be a distinguished polynomial of
degree e. Then there exists a set Y ⊃ S0 such that

W (Fp f )[[U ]] ' Rord,Y-new � Rord,Y-new
2 ' W (Fp f )[[U ]]/g(U )).

We learned the proof of the lemma below from M. Nori and N. Fakhruddin.

LEMMA 33. Let h(X) be a distinguished polynomials in W (Fp f )[[X ]] of degree n
with distinct roots. Then, for all distinguished polynomials g(X) ∈ W (Fp f )[[X ]]
of degree n which are close enough to h, we have an isomorphism of W (Fp f )-
algebras

W (Fp f )[[X ]]/(h(X)) ' W (Fp f )[[X ]]/(g(X)).

Proof. We use the identifications W (Fp f )[[X ]]/(h(X)) ' W (Fp f )[X ]/(h(X)) '
W (Fp f )n (which allows us to work in the polynomial ring rather than power
series ring) and consider the map α : W (Fp f )n → W (Fp f )n defined as follows.
Given γ ∈ W (Fp f )n , we regard it as an element of W (Fp f )[X ]/(h), and send
it to the tuple (a1, . . . , an) in W (Fp f )n , where the characteristic polynomial
of the endomorphism of W (Fp f )[X ]/(h(X)) given by multiplication by γ is
λn
+ a1λ

n−1
+ a2λ

n−2
+ · · · + an . The image of X under α is given by the

coefficients of h. Using that h has distinct roots, we see that α is an open mapping
in a neighborhood of X , and deduce that all elements in a sufficiently small
neighborhood V of α(X), which will correspond to distinguished polynomials
g of degree n with distinct roots, are in α(U ), where U is the open neighborhood
of X ∈ W (Fp f )n consisting of elements that are congruent to X mod p.

Choose a γ ∈ U ⊂ W (Fp f )[X ]/(h(X)) such that α(γ ) is given by the
coefficients of a g, as in the previous paragraph. Consider the map W (Fp f )[T ] →
W (Fp f )[X ]/(h(X)) given by T 7→ γ . We deduce that this map has kernel
g(T ), so we get a monomorphism W (Fp f )[T ]/(g(T )) → W (Fp f )[X ]/(h(X))
of W (Fp f )-algebras with finite cokernel, as g and h are both monic of degree n.
We further deduce this is an isomorphism by reducing mod p, which induces an
isomorphism Fn

p f = Fp f [T ]/(ḡ(T )) ' Fp f [X ]/(h̄(X)).

One could ask, like in Krasner’s lemma, for quantitative refinements of this
lemma.
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We end with the following remark. Let a ∈ W (Fp f ) be a nonsquare in W (Fp f ).
Then if one chooses g(U ) = U 2

− ap2 in Theorem 3, the deformation ring will
be an order in the unramified degree-2 extension of W (Fp f ). Thus one can also
obtain nontrivial unramified extensions as completed fields of Fourier coefficients
of the modular form corresponding to our Galois representation.
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Appendix. Modularity of geometric lifts ρ via p-adic approximation

We apply Theorem 1 to proving modularity of certain representations ρ : GQ→

GL2(O), where O is as in the main text, which reduce to modular ρ̄, as in the main
text.

THEOREM 34. Let ρ : GQ → GL2(O) be odd, ordinary, full, balanced, ramified
at only finitely many primes, weight 2, with determinant ε, and have modular
reduction. Further, assume that, when ρ̄ is split at p, ρ is flat at p. Then ρ is
modular.

The method of proof extends the method of [9] which dealt with the case when
K is unramified over Qp. Of course these results are contained in those of the
various ‘R = T ’ theorems pioneered by Wiles and by Taylor and Wiles. Our
point here is to provide a different argument using p-adic approximation. In this
appendix, the proofs are merely sketched: we are rederiving known results using
Theorem 1 and the strategy of [9].

Using Theorem 1, we first prove that, for each n, ρn = ρ mod (π n) is modular
of a level which depends on ρn . We then lower the level of ρn , which paves the
way to proving modularity of ρ : GQ→ GL2(O) by successive approximation.

We have the following corollary of Theorem 1. We keep the notation of the
previous sections: for instance, S0 is the set of primes at which ρ̄ is ramified, and
S is the set of primes at which ρ is ramified.
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COROLLARY 35. (i) We consider a set T of nice primes as in Theorem 1 such
that Rord,T-new

' W (Fp f )[[U ]]. Let Tord,T-new be the corresponding T -new
Hida Hecke algebra. Then the natural surjection Rord,T-new

→ Tord,T-new is
an isomorphism.

(ii) The representation ρn is isomorphic as O[GQ]-representation to a
submodule of the ordinary part of the p-divisible group associated to
JT tensored over Zp with O. Here, JT is the Jacobian of the projective
modular curve Γ1(N pr )∩Γ0(Qn), N is some fixed integer independent of n,
r is an integer which a priori depends on n, and Qn is the product of primes
in the finite set T \S which depends on n.

We say that ρn as in the corollary arises from JT . We also say that ρn arises
from the p-divisible group associated to the ordinary factor J ord

T of JT .

Proof. This follows from Theorem 1, level-raising results of [5], and Hida’s
theory. These results yield that Rord,T-new surjects onto the T -new ordinary Hecke
algebra Tord,T-new, which is finite and torsion free over Λ = Zp[[T ]]. But
using that Rord,T-new

' W (Fp f )[[U ]], we deduce that we have an isomorphism
of Rord,T-new with Tord,T-new. Part (ii) of the corollary follows by standard
arguments.

Proposition 36 follows from arguments in [9], with the twist that, as we allow
primes q ∈ T \S0 that are −1 mod p, we have to keep track of the Atkin–Lehner
operators Wq for q ∈ Qn = T \S0. We have the relation W 2

q = 〈q〉.

PROPOSITION 36. The representation ρn arises from the Qn-old subvariety of
J ord

T , and furthermore all the Hecke operators Tr , for r a prime not in T , act on
ρn by Trace(ρn(Frobr)).

Proof. This is an application of Mazur’s principle (see §8 of [16]) and uses that
q 6≡ 1 mod p. The principle relies on the fact that the Frobq-action on unramified
finite GQq -submodules of the torsion points of JT whose reduction mod q is in the
‘toric part’ of the reduction mod q of JT is constrained. Namely, on the ‘toric part’
the Frobenius Frobq acts by−qWq , where Wq is the Atkin–Lehner involution. We
flesh this out this below.

Consider a prime q ∈ Qn , where Qn = T \S. Then decompose ρn|Dq (which
is unramified by hypothesis) into O/(π n) ⊕ O/(π n), with basis {en, fn} with
Frobq(en) = −Wq .en and Frobq( fn) = −qWq . fn for some character ε as above.
The action of Wq is by a scalar αq , and so we have Frobq(en) = −αqen and
Frobq( fn) = −qαq fn .
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Using irreducibility of ρ, Burnside’s lemma gives that ρ(Fp f [GQ]) = M2(Fp f ),
and hence by Nakayama’s lemma ρn(O[GQ]) = M2(O/(π n)). Thus, using the
surjection from the Hecke algebra acting on J ord

T to O/(π n), we deduce that ρn

arises from an eponymous submodule of J := J ord
T (see also Theorem 3.1 of [18]).

The fact that the q-old subvariety is stable under the Galois and Hecke action
will allow us to deduce that ρn arises from the q-old subvariety of J if we can
show that en is contained in the q-old subvariety of J .

Let J be the Néron model at q of J . Note that as ρn is unramified at q it maps
injectively to J/Fp(F̄p) under the reduction map. Now, if the claim were false,
as the group of connected components of J is Eisenstein, we would deduce that
the reduction of en in J 0(F̄p) maps nontrivially (and hence its image has order
divisible by p) to the F̄p-points of the torus which is the quotient of J 0 by the
image of the q-old subvariety (in characteristic q). But, as we recalled above, it is
well known (see §8 of [16]) that Frobq acts on the F̄p-valued points of this toric
quotient (isogenous to the torus T of J 0, the latter being a semiabelian variety that
is an extension of an abelian variety by T ) by−qWq , which gives a contradiction.
Now taking another prime q ′ ∈ Qn and working within the q-old subvariety of
J , by the same argument we see that ρn occurs in the {q, q ′}-old subvariety of J ,
and eventually that ρn occurs in the Qn-old subvariety of J . The last part of the
proposition is then clear.

We finish the proof of the main theorem of the appendix, Theorem 34.

Proof. For an integer N prime to p, denote by J1(N p∞)ord the direct limit of the
ordinary parts of J1(N pr ) as r varies. From Proposition 36 it is easy to deduce that
ρn , the mod (π n) reduction of ρ, arises from J1(N p∞)ord for some fixed integer N
that is independent of n. Let T be the Hida Hecke algebra acting on J1(N p∞)ord,
generated by the Hecke operators Tr with r prime and prime to N p. We claim that
the ρn give compatible morphisms from T to the O/(π n). To get these morphisms,
let Vn denote a realization of the representation ρn in J1(N p∞)ord which exists by
Proposition 36. Then Vn is GQ-stable, and hence T-stable (because of the Eichler–
Shimura congruence relation mod r , which gives an equality of correspondences
Tr = Frobr + r〈r〉Frobr

−1, where Frobr is the Frobenius morphism at r ). So Vn is
a T-module, and because of the absolute irreducibility (only the scalars commute
with the GQ-action) T acts via a morphism αn : T → O/(π n) as desired, and
the αn are compatible again because of the congruence relation. This gives a
morphism α : T→ O such that the representation associated to α is isomorphic
to ρ, which finishes the proof of the theorem. Then using that the determinant
of ρ is ε and Hida’s control theorem, we deduce that ρ arises from a weight-2
newform.
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Improvements to the method. The weight-2 assumption on ρ̄ and the lifts we
consider (and the assumption on the determinant) is for convenience, and our
methods apply to ρ of weight k > 2 (the Hodge–Tate weights are (k − 1, 0)),
provided that ρ̄ is distinguished at p.

The fullness assumption on ρ and ρn used in the proof of Theorem 1 arises from
the fact that in its absence Lemma 20 is not true. On the other hand one can prove
a more qualitative but less restrictive version of this lemma.

LEMMA 37. Let p > 3. Recall that O is the ring of integers of a finite extension
of Qp, with uniformizer π and residue field Fp f . Let G ⊂ GL2(O) be a closed
subgroup. Assume that the image G1 of G → GL2(Fp f ) contains SL2(Fp f ) and
satisfies hypotheses of Lemma 19. Then dim H 1(G, Ad0ρ̄) is a finite abelian
group.

The proof uses the following: (i) H 1(G1, Ad0ρ̄) = 0 (cf. Lemma 19), and (ii)
the kernel of the homomorphism G → G1 is a finitely generated pro-p group.

G. Böckle has observed that, using such a lemma, one can remove the
assumption on fullness of image of ρ, made in the arguments in the appendix,
by using base change to totally real solvable extensions F/Q and considering
nearly ordinary deformations of ρ̄|G F and Hida’s nearly ordinary Hecke algebras.
Choose a totally real solvable extension F/Q disjoint from the field cut out by
ρ, and whose degree d = [F : Q] is > dim H 1(G, Ad0ρ̄). Then, by choice of F
and the technique of killing dual Selmer groups, and obtaining smooth quotients
of deformation rings of the expected dimension of this paper, one obtains nearly
ordinary deformation rings that are power series rings in d + δ + 1 variables,
where d is the degree of F over Q and δ the Leopoldt defect for F and p, and
such that ρ mod π n arises from the corresponding universal deformation. One
then would exploit the fact that Hida’s nearly ordinary Hecke algebra is finite flat
over Zp[[X0, . . . , Xd+δ]]. By more elaborate level-lowering methods (as in [18])
one would then by a similar strategy as above prove that ρ|G F is automorphic,
which suffices, as F/Q is solvable.

To make the present method of modularity lifting more robust, one would
ultimately hope to also remove the conditions of ordinarity and being balanced
on geometric ρ, and show, assuming that ρ̄ is modular and irreducible, that ρ mod
(π n) is modular of some level for each n, and hence by level-lowering techniques
deduce that ρ itself arises for a new form. For this again base change to solvable
totally real extension of Q and the trivial primes of [8] might be useful to remove
the balanced condition, and to remove ordinarity one would have to use Coleman
families and work on the eigenvariety.
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