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Abstract. The exact solution of the evolution equation for the magnetic field in ideal MHD,
Callebaut (2006), with an azimuthal velocity which is function of r and ϑ only (spherical co-
ordinates) is applied to a bipolar magnetic seed field and to a quadripolar field. Resistivity
and α-effect are not yet taken into account, but the extensions are possible. From the surface
observations we had derived an approximate analytic expression for the differential rotation in
order to work fully analytically in the application. Qualitatively the results for a quadripolar
field are as for a bipolar seed field. The main features are the same: for some latitudes the field
may increase by two orders of magnitude, the separation between sunspots and polar faculae is
clearcut, there is, relatively speaking, a too strong amplification in the polar regions (the latter
occurs in other models too). The hypothesis that the seed fields are situated at the tachocline
is not required: the amplification is active throughout the whole convective zone, albeit with
different strengths, and thus during the transit of the flux tubes from tachocline to the solar
surface too.
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1. Introduction
When a conducting fluid or a plasma in motion is pervaded by a magnetic field an

interaction between the motion and the field takes place and energy may be converted.
The field may be increased or decreased by the dynamo action while it looses energy by
resistive dissipation. In turn the motion is influenced by the Lorentz force. The applica-
tions range from laboratory experiments and industrial use (generation of electricity by
dynamos in cars or power plants, pollution problems) to astrophysics. The latter appli-
cation involves the Sun, stars, galaxies and planets (in particular the Earth). Here we are
essentially interested in the solar application, in particular the generation of the butterfly
diagrams of the sunspots and of the polar faculae. However, the application has not to
be limited to the Sun, in particular as an exact and easy analytical solution is given
for the equation of evolution for the magnetic field in the ideal magnetohydrodynamic
(MHD) approximation. The basic equations concerned with the magnetic field H are the
equation of evolution for the field together with the conservation of magnetic flux:

∂tH = rot(v × H) − rot η rot H + rot αH, (1.1)

divH = 0, (1.2)
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where v is the velocity and η = 1/µσ is the resistivity with σ the conductivity and µ the
magnetic permeability taken to be constant (SI units).

In general the electromagnetic equations above have to be supplemented by the whole
set of (hydrodynamic) equations linked to them through the velocity on the one hand
and through the Lorentz force on the other hand. However, in the case of the so-called
kinematic dynamo it is assumed that v is given. This simplification restricts the set of
equations to (1) and (2). Moreover, we consider ideal MHD, i.e. η = 0, and we neglect
the α term as well for a first approximation.

2. Solution
Suppose that the velocity is purely azimuthal and depends only on r and ϑ:

vϕ = rω(r, ϑ)sinϑ, (2.1)

where ω(r, ϑ) is the angular frequency and (r, ϑ, ϕ) are spherical coordinates. The general
solution of

∂tH = rot(v × H), (2.2)

and equation (1.2), which gives single-valued magnetic field components, is then,
Callebaut (2006),

Hr =
−∂ϑΦ
r2sinϑ

+ Pr(r, ϑ, ωt − ϕ), (2.3)

Hϑ =
∂rΦ

rsinϑ
+ Pϑ(r, ϑ, ωt − ϕ), (2.4)

Hϕ =
−t∂(ω,Φ)
r∂(r, ϑ)

+ Pϕ(r, ϑ, ωt − ϕ), (2.5)

where the Jacobian is introduced. Pr, Pϑ and Pϕ are purely periodic functions of ωt− ϕ
and contain r and ϑ in addition. They are completely arbitrary, except that they still have
to satisfy equation (2), and, of course, may not have singularities. As we are looking for
long-term field amplification and not in the waxing and waning of the field in a timespan
of one solar rotation we do not consider them any further here although they may be
relevant in other situations.

The stream function Φ is an arbitrary function of r and ϑ only. We note that, upon
dropping the periodic terms, Hr and Hϑ are independent of time while Hϕ depends
linearly on time. Hence there is no violation of the theorem of Cowling which states that
no stationary rotationally symmetric dynamo can exist. The linear growth with time is
a consequence of the fact that the (differential) rotation is stationary.

3. Choice of the seed field
Equations (2.3–5) give the exact solution of the equation of evolution in ideal MHD.

Given the value of H at any particular time we can write down immediately the magnetic
field at all times. For the desired field amplification in the Sun we have thus to find a
seed magnetic field. As we are not concerned at the moment with the periodic terms in
equations (2.3–5), the choice is already somewhat limited: a seed field independent of ϕ
and in which the Hr and Hϑ components are linked by the flux conservation as in equation
(1.2). This limits the freedom to one component dependent on r and ϑ only. We first
consider the localization of the seed field. Broadly speaking the following localizations
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are possible: the radiative core, the convective zone and the tachocline, separation and
link between the previous ones.

3.1. Fossil field in the core
In view of the gigantic dimensions of the Sun (and its core) and thus the very slow
resistive dissipation a fossil field may be located there. Considering in equation (1.1) on
the right hand side the resistive term only and supposing a periodic field in space, with
wavelength λ, yields for the characteristic decay time

τ =
λ2

4π2η
. (3.1)

The largest λ to be expected should correspond to half a wavelength equal to the
diameter of the core, i.e. λ/2 = 2r0. For r0 = 5 108 m and taking η = 1m2/s, as the
matter is fully ionized (copper has slightly more than η = 0.01m2/s) we obtain τ = 1017 s
or 3 109 year. Hence a fossil field is quite possible, as the lifetime of the Sun is not even
twice this value. However, the wavelengths that are much smaller, e.g. 10 times smaller,
will have a characteristic time which is 100 times smaller and hence they may have
practically vanished. This is important when considering multipolar fields. On the other
hand there may still be a bit of differential rotation in the core, which after say some
thousand years may have resulted in a fairly strong field, which moreover may have
moved radially upward by the buoyancy force to the tachocline, Dudorov, Krivodubskij,
Ruzmaikina & Ruzmaikin(1989).

Hence we get the following picture: at the basis of the tachocline we get a fair field,
whether this is provided by the fossil field alone or in combination with the small dif-
ferential rotation in the core. This field is further amplified strongly by the differential
rotation in the tachocline itself resulting in a very strong field when it has reached
(after many years, say several solar cycles) the upper side of the tachocline, Krivodubskij
(2005). In fact the observations suggest a very strong field in the tachocline: of the order
of 100 kgauss. However, this field may be in layers or filaments. When sufficiently strong
these peel off the tachocline and evolve further toward the solar surface, while the field
may be further amplified by the differential rotation in the convective zone. Taking a
thickness of such a layer as 100 km (≈λ/2) yields 109 s or 30 years as a characteristic
decay time (see expression (3.1)). This means a fairly fast resistive decline for the field
and the amplification should be very strong to compensate for it. Thinner layers are prac-
tically excluded. If one layer peels off in one cycle and the tachocline is about 10 000 km,
then the latter may provide about 100 cycles, or a 1000 years. However, the tachocline is
continually renewed from below. Clearly subsequent layers should have fields strengths of
opposite signs to account for the Hale cycle. Actually this creates a paradox with the pre-
sumed large wavelengths considered above to keep a remnant of the fossil field. However,
the strong differential rotation, the overshooting of the radiative zone and the turbulence
in the tachocline may be responsible for this thin filamentation in the tachocline.

3.2. Regeneration of global magnetic surface fields
The large-scale unipolar magnetic field regions at the solar surface (in short: global
field regions) are generated near the solar equator. Their number varies from 4 to 8.
Neighboring regions have alternating signs: if the field dives into the Sun in one, then it
goes out of the Sun in the neighboring ones. Their boundaries correspond to filaments
bands (filaments and filament channels). These global regions move toward the poles
except during some time in the minimum of the solar activity, when they oscillate around
their so-called ’rest-latitudes’, Callebaut & Makarov (1992), Makarov, Tlatov, Callebaut
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et al. (2002), Makarov, Makarova & Callebaut (2006). What happens at the poles is
not perfectly clear: part of the energy has been dissipated and part of it dives into the
Sun. The latter part may be brought back to the equatorial region, by the meridional
motion and reappear at the solar surface. This corresponds to the so-called flux-transport
dynamo. A good argument for this was given by Charbonneau & Dikpati (2000) who
showed through numerical simulation of their flux-transport dynamo that the shear-layer
toroidal fields of the cycle n have the strongest positive correlation with the polar fields
of the cycle n− 2 compared to that of the cycles n, n− 1 and n− 3. They state that this
correlation is the consequence of the 17–21 years duration of the Sun’s memory about its
past magnetic fields. We refer to Dikpati, de Toma, Gilman, et al. (2004), Dikpati (2005)
and Dikpati (2006).

There is another link which may be clarifying for this flux-transport dynamo theory. It
was shown by Makarov & Makarova (1996) that the peaks in the number of polar faculae
are correlated with the peaks in sunspot number. Makarov succeeded in predicting from
these data that the maximum Wolf number in cycle 23 would be at most 130, and indeed
it came out to be about 120. The relation between polar faculae was further clarified
by Makarov, Makarova & Callebaut (2006): the peaks correspond, but the total number
of polar faculae and the total sunspot number do not show an obvious correlation. This
suggests that part of these phenomena are correlated either through the flux-transport
dynamo and the meridional motion or the α-effect while another part is generated else-
where, that is in the tachocline region. Clearly the solution for the amplification of the
magnetic field given in section 2 applies to both situations. However, as we expect that
the contribution coming from the tachocline is the larger one we shall elaborate this case.

3.3. Expression for a bipolar field

Any magnetic field located in the central part of the Sun may be approximated by a
multipolar field. The Earth and several planets have to a good approximation a dipolar
field and thus it is indicated to start with a dipolar field as a first trial. Moreover, as the
Sun has a fairly symmetrical behavior when averaging over several cycles, we take the
axis along the axis of rotation. Hence we consider the following bipolar field as seed field:

Hbr =
Hbcosϑ

r3
, Hbϑ =

Hbsinϑ

2r3
, (3.2)

where Hb is a constant and where the index b is used to distinguish from the quadripolar
field with index q in next subsection. The field may be situated at the tachocline or
any place in the convective zone. The third component Hbϕ may have any initial value
independent of ϕ; it will further take its appropriate value according to the solution of
the evolution equation given above. As we are mainly interested in the growth of the
field we omit the time independent part of Hbϕ. From equation (3.2) we deduce

Φ =
−Hbsin

2ϑ

2r
, ∂rΦ =

Hbsin
2ϑ

2r2
, ∂ϑΦ =

−Hbsinϑcosϑ

r
. (3.3)

3.4. Expression for a quadripolar field

The bipolar field is certainly a good start. However, the tachocline is situated around 0.7R
and at this (not quite large) distance from the solar center the influence of higher order
polarities will not be negligible. Hence, as a second example, we consider the following
quadripolar field as seed field:

Hqr =
Hqcosϑ

r4
, Hqϑ =

Hqsinϑ

r4
, (3.4)
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while the time independent part of Hqϕ is omitted. Hq is again a constant. When a
combination of a bipolar and a quadripolar one is used the ratio rHb/Hq will be relevant.
We attempted to estimate this value from the observations in Makarov, Tlatov, Callebaut
et al. (2001), but this did not yet work out. In agreement with (3.4) we have for the
corresponding stream function Ψ:

Ψ =
−Hqsin

2ϑ

2r2
, ∂rΨ =

Hqsin
2ϑ

r3
, ∂ϑΨ =

−Hqsinϑcosϑ

r2
. (3.5)

The difference with the bipolar field is not strong: the power of r in the denominator is
a unit more in all expressions here and a factor 2 occurs in some terms; thus it is mainly
the r-dependence which will be investigated by comparison with the bipolar case. It is
possible to investigate the ϑ-dependence by using cosnϑsinmϑ with n = 0, 1, 2, 3, ... and
m = 2, 3, ... in he numerator of Φ and Ψ.

4. Analytic expression for the differential rotation
Helio-seismology provides us with data for the differential rotation, Kosovichev, Schou,

Scherrer et al. (1997). As we have an analytic expression for the magnetic field we ap-
proximate the differential rotation by an analytic expression, using some simplifying
suppositions: the radial dependence of ω varies linearly with r and we take ϑ0 where
∂rω = 0, corresponding to the conical blades in the convective zone where the angular
frequency remains constant (ϑ0 ≈ 53◦). We obtained

ω = ωr0 +
a(r − r0)(cos2ϑ0 − cos2ϑ)(1 + bcos2ϑ)

(R − r0)cos2ϑ0
. (4.1)

Here r0 is the radius of the tachocline. We shall take r0 = 0.7R, with R the solar
radius. Moreover we have approximately a = 5.77 and b = .87.

5. Numerical results
5.1. The seed field is a bipolar one

Combining the relevant equations for Φ and ω given in sections (3.3) and (4) yields Hbϕ:

Hbϕ =
5.77Hbtsinϑcosϑ

r3(R − r0)cos2ϑ0

[
r(cos2ϑ0 − cos2ϑ)(1 + 0.87cos2ϑ)

+(r − r0)sin2ϑ(1 − 0.87cos2ϑ0 + 1.74cos2ϑ)
]
. (5.1)

We have tabulated the results for cosϑ0 = 0.6 and r0 = 0.7R in table 1. We took
r = 0.7R, respectively r = R to have an idea how the amplification is changing across
the convective zone, i.e. how the amplification is changing during the travel of the flux
tube through the convective zone. Plotted are R3Hbϕ/tHb and the multiplication factor
per year X = r3Hbϕ/Hb

√
cos2ϑ + 0.25sin2ϑ which is the ratio of Hbϕ after one year and√

H2
br + H2

bϕ.
The general trend is qualitatively the same for both values of r: no growth at the

equator (ϑ = 90◦), a fair growth at latitudes 10◦, the largest growth at 20◦ and further a
decrease to very slow growth (or even reversing growth) near ϑ0. For the sunspot diagram
this seems satisfactory for a first attempt. For the higher latitudes one finds again a strong
growth (constituting a problem: see below) turning to zero growth at the poles. However
quantitatively there is quite a difference between r = 0.7R and r = R; moreover their
ratios are inverted when passing from the sunspot zone to the polar faculae zone.
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ϑ r = R X(R) r = 0.7R X(0.7R)

90◦(eq.) 0 0 0 0
80◦ 5.04 9.7 6.30 4.1
70◦ 8.63 14.9 9.37 5.5
60◦ 8.93 13.5 6.32 3.3
50◦ 4.60 6.1 −3.81 −1.7
40◦ −1.15 −1.4 −18.3 −7.6
30◦ −2.97 −3.3 −30.3 −11.6
20◦ −3.75 −3.9 −32.2 −11.7
10◦ −1.56 −1.6 −20.9 −7.2
0◦ 0 0 0 0

Table 1. Growth of Hbϕ and of the amplification factor per year X (from equator to pole) for
r0 = 0.7R.

As ω is expressed per year we have t in the expression for Hϕ in years too. This means
that with a yearly increase by a factor 10 we obtain a multiplication by about 100 in one
cycle at latitudes of 20◦ near the surface. As the seed value of the magnetic field may be
easily 1 to 100 kgauss the result is fair (due to the expansion of the flux tubes when rising
toward the solar surface an upper limit of about 5000 gauss arises). Indeed, the growing
magnetic flux tube will evolve to larger r due to the buoyancy force and/or convection,
but the growth process continues more or less at the same trend for all latitudes except
around ϑ0. That the sunspots near 10◦–20◦ appear later than those at 30◦ may be due
to a hampering effect of the centrifugal force close to the equator. Indeed, around the
equatorial plane the angular frequency increases, which counteracts the buoyancy force
when magnetic flux tubes with plasma are rising toward the surface. The fact that larger
sunspots appear during the second half of a cycle and precisely in the latitude region
from 15◦–25◦ may be seen as a confirmation of this effect: the field needed a longer time
to overcome the adverse angular frequency gradient and thus grew stronger, resulting in
larger sunspots.

Clearly ϑ0, marking the region where ∂rω = 0, corresponds to a separation between
two regions with different character, the sunspot region and the polar faculae region. It
may be noted that in the region around ϑ0 the field may grow for lower values of r, while
close to the surface it grows in the opposite sense, thus (when the flux tube is rising
to the surface) diminishing the first increase, clearly resulting in poor magnetic activity.
This gives a clear division in latitude between the polar faculae region and the sunspot
region, although basically they are generated by the same mechanism.

Remark that Hϕ is proportional to sinϑ, thus yielding results of the opposite sign in the
hemispheres, as it should be in view of the opposite order of polarity between the leading
spot(s) and the follower(s) in both hemispheres. We made a calculation for r0 = 0.5R too
(exaggerating strongly the possible variation on the location of the tachocline): this yields
in general a similar but smaller amplification. Note that for high latitudes and close to
the tachocline (r0 = 0.7R) the growth may be quite fast too. Although the approximation
for ω may be rather poor for the high latitudes this trend may be partially real. In fact
at the higher latitudes the angular frequency is decreasing with distance from the center
of the Sun. Thus the centrifugal force is helping the buoyancy force there. It follows that
the rising magnetic flux and plasma tubes pop up rather easily and quickly, resulting in
less time to grow, thus resulting in weaker fields and smaller areas (polar faculae, with
fields up to 1.5 kgauss) than in the equatorial region (sunspots). Moreover, as the time
spend by a rising flux and plasma tube at the high latitudes is presumably short near the
solar surface the large growth rates near r = R have there little effect on the magnetic
phenomena coming from deeper regions. However, these growth rates near the surface
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may be important for some phenomena, like the regeneration of the global magnetic field,
which is maybe located in the body of the convective zone and not at its bottom.

The helping hand of the centrifugal force to the buoyancy force at high latitudes may
explain too that the polar faculae cycle preceeds the sunspot cycle by about 5 years as
clearly shown in several papers (Makarov, Makarova & Sivaraman (1989), Makarov &
Makarova (1996), Makarov, Tlatov & Sivaraman (2003), Makarov, Tlatov & Callebaut
(2004), Makarov, Makarova & Callebaut (2006)). Makarov now uses the polar phenomena
with success to predict the behavior of the next sunspot cycle (maximum Wolf number
and peaks in the monthly Wolf numbers). Moreover, there are arguments that near the
bottom of the convective zone in the equatorial region there is an additional push toward
the solar surface as a consequence of the rotation, Krivodubskij (1992), while the same
effect is retarding the upward motion of the flux tubes in all other parts of the convective
zone. Nevertheless a delay of half a solar cycle seems a lot so the action of centrifugal
force (delaying the rising of the flux tubes in the sunspot region, speeding them up in
the polar region) may not be sufficient to explain about half a cycle between the peaks
in the number of polar faculae and the peaks in sunspot number. A neat calculation of
the centrifugal force versus the buoyancy force based on the gradients of the density and
rotational velocity is required here.

5.2. The seed field is a quadripolar one
Combining the relevant equations for Ψ and ω given in sections (3.4) and (4) yields Hqϕ:

Hqϕ =
5.77Hqtsinϑcosϑ

r4(R − r0)cos2ϑ0

[
r(cos2ϑ0 − cos2ϑ)(1 + 0.87cos2ϑ)

+ 2(r − r0)sin2ϑ(1 − 0.87cos2ϑ0 + 1.74cos2ϑ)
]
. (5.2)

Again the change with a bipolar field looks small: r3 is replaced by r4 and a factor
2 appears in the last term. We have tabulated the results again for cosϑ0 = 0.6 and
r0 = 0.7R in table 2. We took again r = 0.7R, respectively r = R. Plotted are now
R4Hqϕ/tHq and the multiplication factor per year Y = r4Hqϕ/Hb which is the ratio of

Hqϕ after one year and
√

H2
qr + H2

qϕ.

ϑ r = R Y (R) r = 0.7R Y (0.7R)

90◦(eq.) 0 0 0 0
80◦ 8.05 8 9.01 2.2
70◦ 12.7 13 13.5 3.2
60◦ 14.7 15 9.24 2.2
50◦ 11.1 11 −5.53 −1.3
40◦ 2.12 2.1 −26.3 −6.3
30◦ −7.8 −7.8 −43.5 −10
20◦ −13.2 −13 −46.3 −11
10◦ −9.87 −9.9 −29.9 −7.2
0◦ 0 0 0 0

Table 2. Growth of Hqϕ and of the amplification factor per year Y (from equator to pole) for
r0 = 0.7R.

Comparison of both tables shows that qualitatively the results are very similar. The
amplification in the polar regions is even more accentuated for the quadripolar field than
for the bipolar one. This has clearly to be ascribed to the strong differential rotation near
the poles. This problem is encountered by several models, Ossendrijver (2003), Dikpati
(2005).
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6. Conclusions
We have used the analytic solution of the equation of evolution for the magnetic field in

ideal MHD to calculate the field amplification in the convective zone. We used an analytic
expression for the angular frequency of the differential rotation. We considered once a
bipolar and once a quadripolar seed field and found fair amplification which may amount
to two orders of magnitude in one cycle in the sunspot region and at high latitudes;
that the amplification is apparently too strong at those high latitudes is a drawback
occurring in other models too. We ascribe it, at least partially, to the delaying action of
the centrifugal force in the sunspot region, counteracting the buoyancy force, that the
sunspots grow larger than the polar faculae. There is a clear cut between the butterfly
diagrams of the sunspots and polar faculae, although basically the mechanism is the same
for both. The theory allows expansion to include flux-transport from the global magnetic
field regions, Callebaut, Hady, Karugila & Khater (2006), and the α-effect as well.
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