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Thermal Marangoni effects play important roles in bubble dynamics such as bubbles
generated by water electrolysis or boiling. As macroscopic bubbles often originate from
nucleated nanobubbles, it is crucial to understand how thermocapillarity operates at the
nanoscale. In this study, the motion of transient bulk gas nanobubbles in water driven by
a vertical temperature gradient between two solid plates is investigated using molecular
dynamics simulations and analytical theory. The simulation results show that due to the
thermal Marangoni force, nanobubbles move towards the hot plate at a constant velocity,
similar to the behaviour of macroscale gas bubbles. However, unlike macroscale gas
bubbles whose thermal conductivity and viscosity are negligible compared to those of
water, the thermal conductivity and viscosity of nanoscale gas bubbles are significantly
increased due to their large gas density. The thermal resistance and the slip length are
also found to matter at the liquid–gas interface, though they decrease with increasing
gas densities. The previous thermocapillary theory for macroscale bubbles is extended by
considering all these nanoscopic effects. Expressions of the Marangoni force and the drag
force are derived. By balancing the Marangoni force and the drag force, the theoretical
velocity of the nanobubble migration in a thermal gradient is obtained. When using the
measured transport properties of liquid, gas, and their interfaces, the theoretically obtained
velocity is consistent with the result of the molecular simulations. We find that the slip
length is too small to have considerable effects on nanobubble motions in the current
liquid–gas system.
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1. Introduction
The study of transient gaseous bulk nanobubbles is of interest across various fields, such
as water electrolysis, catalysis involving dissolved gases, water treatment, agriculture,
medicine, and the flotation of fine particles (Zhu et al. 2016; Wu et al. 2019; Batchelor
et al. 2022; Li & Zhang 2022; Zhang et al. 2024; Yadav, Nirmalkar & Ohl 2024). For
instance, in the flotation process, nanobubbles offer a higher surface area to volume ratio
and longer contact times for attachment to particles compared to macroscale bubbles,
thereby enhancing particle–bubble collision and attachment efficiency (Li & Zhang 2022).
In medicine therapy, drugs or therapeutic agents can be encapsulated within the shell of
coated nanobubbles and then be released in targeted positions (Batchelor et al. 2022).
Therefore, achieving active control over the movements of bulk nanobubbles is essential
for improving the efficiency of applications involving these bubbles.

For free surface flows, the gradient of surface tension can often lead to considerable
shear stress at the free surface, significantly altering flow behaviours. A concentration
gradient of solutes in a solvent can cause a surface tension gradient, and the resulting flow
is known as solutal Marangoni flow. For instance, a free surface can be contaminated by
surface-active agents such as surfactants. When the transport of surfactants on the free
surface is dominated by advection, indicated by a relatively large Marangoni number
or Péclet number, the distribution of surfactants tends to be non-uniform. This non-
uniformity results in a surface tension gradient and a shear stress on the free surface
(Manikantan & Squires 2020). This Marangoni stress often acts against the advection
flow, making surfactants crucial in stabilizing emulsions (Parker, Claesson & Attard 1994;
Constante-Amores et al. 2021), damping waves on ocean surfaces (Erinin et al. 2023;
Lohse 2023), translating drops and bubbles (Chen & Stebe 1997; Lohse & Zhang 2020),
and deteriorating superhydrophobic surfaces (Rodriguez-Broadbent & Crowdy 2023).
Notably, the effects of surfactants on the free surface, as described by the Boussinesq–
Scriven model (Scriven 1960), not only alter the surface tension but also introduce a new
property, i.e. surface viscosity (Zhang & Ding 2023). Apart from surfactants, ions in water
can also increase or decrease the surface tension according to the empirical Hofmeister
series (Boström et al. 2001). Recent studies have shown that ion-related solutal Marangoni
effects significantly impact the coalescence of hydrogen bubbles and thereby the current
density during water electrolysis (Park et al. 2023; Liu et al. 2023).

In non-isothermal systems, a surface tension gradient and the resulting Marangoni
flow can arise from temperature variations on the free surface, as the surface tension
of a liquid can change significantly with temperature. Thermal Marangoni effects are
common in processes such as water electrolysis (Park et al. 2023; Bashkatov et al. 2023),
drop evaporation (Ristenpart et al. 2007; Shiri et al. 2021; Kant et al. 2024), vapour
bubble detachment during boiling (Christopher & Wang 2001), the stability of liquid films
(Kalliadasis, Kiyashko & Demekhin 2003), the motion of drops or bubbles in liquids
(Young, Goldstein & Block 1959), and plasmonic bubbles (Namura et al. 2015; Zeng
et al. 2021). The surface tension of most liquids decreases with increasing temperature.
However, there are so-called ‘self-rewetting’ fluids whose surface tension increases with
increasing temperature. During boiling, where vapour bubbles are produced on the heating
solid, these ‘self-rewetting’ fluids flow spontaneously to hotter regions on the solid due to
the Marangoni force, removing dry spots on the solid and thus enhancing heat transfer
(Abe 2006; Hu et al. 2014). In many non-isothermal and multicomponent liquid systems,
thermal Marangoni and solutal Marangoni effects coexist. For example, during water
electrolysis, Ohmic heating in the electrolyte and the electrode generates a hot spot near
the electrode. This results in a thermal Marangoni force that keeps bubbles attached to
the electrode (Bashkatov et al. 2023). In the meantime, solutal Marangoni forces due to
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ions may generate forces whose directions depend on the type of ions (Park et al. 2023).
Another example is the periodic bouncing of plasmonic bubbles produced in a binary
liquid, which is due to the competition between solutal and thermal Marangoni forces
(Zeng et al. 2021).

The study of macroscopic bubble motion by thermal Marangoni forces was pioneered
by Young et al. (1959) (referred to as YGB59 theory hereafter). Through experiments,
they showed that small bubbles could be held stationary or even driven downwards
against gravity by a strong negative temperature gradient. This is due to the competition
between the Marangoni force and the buoyancy force. They also analytically derived
the bubble velocity, under the assumption of small Reynolds numbers, small Marangoni
numbers, and a spherical bubble shape. Later, this analytical solution was examined
extensively by other experiments (Thompson & DeWitt 1979; Hardy 1979; Thompson,
DeWitt & Labus 1980; Morick & Woermann 1993; Treuner et al. 1996). Under terrestrial
conditions, the Marangoni effect is often masked by the buoyancy force exerted on the
bubble due to gravity. Special interest is thus given to experiments of Marangoni-driven
bubbles in micro-gravity environments (Thompson & DeWitt 1979; Thompson et al. 1980;
Treuner et al. 1996) where the buoyancy force is considerably decreased. However, as the
YGB59 work did not present the expressions of Marangoni forces and drag forces exerted
on the bubble, approximate expressions were used in literature (Morick & Woermann
1993; Lubetkin 2003; Zeng et al. 2021). The YGB59 solution was also generalized to
large Reynolds numbers (Balasubramaniam & Chai 1987) and large Marangoni numbers
(Balasubramaniam & Subramanian 2000). With the development of computational
methods and power, numerical simulations of the Navier–Stokes equations and the heat
advection–diffusion equation were performed (Haj-Hariri, Shi & Borhan 1997; Liu &
Zhang 2015; Abu-Al-Saud, Popinet & Tchelepi 2018; Meulenbroek, Vreman & Deen 2021)
to study thermocapillary motions of bubbles under shape deformations in terms of large
Reynolds numbers.

Bulk nanobubbles, characterized by radii smaller than a micrometre, exhibit behaviour
similar to bubbles in reduced-gravity environments, as they are largely unaffected by
gravity. Consequently, Marangoni forces may play a dominant role in controlling their
motion. While there are extensive studies on the behaviour of macroscopic bubbles driven
by temperature gradients, research on nanobubbles influenced by such gradients remains
relatively sparse. Nanoscale heat transfer and flow can often behave in a manner that is
different from that at the macroscale. For example, interfacial thermal resistance plays a
crucial role in nanoscale heat transfer problems. Many works have shown the existence of
a temperature jump across the liquid–solid surface (Barrat & Chiaruttini 2003; Alosious
et al. 2019; Hadjiconstantinou & Swisher 2022), the liquid–liquid interface, and the liquid–
gas interface (Patel, Garde & Keblinski 2005; Plascencia, Bird & Liang 2022; Dockar,
Gibelli & Borg 2023). The slip length has also been shown to play a major role in
microflows and nanoflows (Lauga, Brenner & Stone 2007; Bocquet & Charlaix 2010).
Compared to the well-studied liquid–solid slip, recently there has been more interest in
studying the slip length at the liquid–liquid interface (Poesio, Damone & Matar 2017;
Telari, Tinti & Giacomello 2022; Hilaire et al. 2023). However, it remains unclear whether
the YGB59 theory (Young et al. 1959), which assumes temperature and velocity continuity
at the liquid–gas interface, works at the nanoscale.

Due to the small spatial and temporal scales of nanobubbles, and due to the
unavoidable contaminants, studying clean nanobubble dynamics in experiments remains
challenging (Lohse & Zhang 2015). As a result, molecular dynamics simulations have
become a valuable tool for investigating nanobubbles, including nanobubble evolution
in water electrolysis (Maheshwari et al. 2016; Zhang & Lohse 2023; Zhang et al.
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2024), nanobubble cavitation (Vedadi et al. 2010; Shekhar et al. 2013; Menzl et al.
2016; Gao, Wu & Wang 2021), vapour nanobubble nucleation (Gallo et al. 2020; Tinti
et al. 2023) and the coalescence of bulk nanobubbles (Bird, Smith & Liang 2021).
Note that clean bulk nanobubbles in saturated or undersaturated environments tend to
dissolve within microseconds, as predicted by the Epstein–Plesset theory (Epstein &
Plesset 1950; Lohse & Zhang 2015). However, compared to the time scales of other
nanobubble hydrodynamic phenomena, such as cavitation and coalescence, the time scale
of dissolution is relatively longer. Therefore, on very short time scales, the effect of
nanobubble dissolution, which causes a time-dependent bubble radius, may be neglected
for simplicity, as demonstrated in previous studies.

To unveil the mechanism of nanobubble motions driven by thermal Marangoni flows,
here the movement of a gas nanobubble between two solid plates with a temperature
gradient is investigated by well-controlled molecular dynamics simulations. The previous
thermal Marangoni flow theory for macroscale gas bubbles is extended by considering
potentially enhancing nanoscopic interfacial effects such as the thermal resistance and
the slip length across the liquid–gas interface. Expressions of the Marangoni force and the
drag force are derived. By balancing the Marangoni force and the drag force, the theoretical
velocity of bubble migration is determined. Finally, the simulation results are compared
with the theory, finding good agreement.

This paper is organized as follows. In § 2, the procedure of molecular simulations is
described. Section 3 shows the bubble trajectories from simulations. This section also
includes a systematic measurement of the transport properties of water, gas, and their
interfaces. Section 4 derives a model for nanobubble displacement. The comparison
between simulation results and theories is then made. We conclude our paper in § 5 with
a summary and an outlook.

2. Molecular simulations of nanobubble motion in a temperature gradient
Molecular dynamics (MD) simulations are used to simulate the motion of bulk gas
nanobubbles in liquid between two solid plates whose temperatures are different. We adopt
the open-source code LAMMPS (Plimpton 1995). As shown in figure 1(a), the molecular
system consists of water molecules (represented in orange), gas atoms (represented in
green), atoms of the bottom solid (represented in red) with a higher temperature Th , and
atoms of the top solid (represented in blue) with a lower temperature Tl .

The mW water potential is adopted to model water. The mW water model is a
monatomic water model proposed by Molinero & Moore (2009). It uses the Stillinger–
Weber potential:

E =
∑

i

∑
j>i

φ2
(
ri j

) +
∑

i

∑
j �=i

∑
k> j

φ3
(
ri j , rik, θi jk

)
,

φ2 (r)= Aε
[

B
(σ

r

)p −
(σ

r

)q]
exp

(
σ

r − aσ

)
,

φ3 (r, s, θ)= λε(cos θ − cos θ0)
2 exp

(
γ σ

r − aσ

)
exp

(
γ σ

s − aσ

)
. (2.1)

Here, A = 7.049556277, B = 0.6022245584, ε= 6.189 kcal mol−1, σ = 2.3925Å,
a = 1.80, λ= 23.15, γ = 1.20, cos θ0 = −1/3, p = 4 and q = 0. Compared to other water
models such as TIP4P/2005 and SPC/E, the mW water model has a good accuracy of
surface tension and a low computational cost (Molinero & Moore 2009). For example,
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(a) (b)T = Tl T = Tl

T = Th T = Th

Lp

Lz

Lp

z

FMa

R

Lx
γ +

–γ

Figure 1. (a) A snapshot of a gas nanobubble in water between two solid plates in MD simulations. The
top plate has a lower temperature Tl , and the bottom plate has a higher temperature Th . (b) Sketch of a gas
nanobubble in water between two solid plates. Here, γ is the local surface tension of the bubble surface, and
the bubble portion with a lower (higher) temperature has a higher (lower) surface tension, denoted as γ+ (γ−).
This creates a Marangoni flow around the bubble, resulting in a Marangoni force FMa on the bubble.

a large time step can be chosen for the mW water model (Molinero & Moore 2009). In the
current simulations, it is 8 fs.

Except for water itself, the intermolecular potentials U between i-type atoms and j-type
atoms are simulated with the standard Lennard-Jones 12–6 potential:

U (ri j )=

⎧⎪⎨
⎪⎩

4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6
]

if ri j � rc,i j ,

0 if ri j > rc,i j .

(2.2)

Here, ri j , εi j , σi j and rc,i j are the pairwise distance, energy parameter, length parameter
and cut-off distance, respectively. The complete list of parameters among water (W), gas
(G) and solid (S) is given in table 1. The gas modelled by the standard 12–6 Lennard-
Jones potential represents nitrogen, and it has density ρ∞ = 1.147 kg m−3 at 1 atm and
300 K. The molar mass of the gas is 28 g mol−1. As noted earlier, clean bulk nanobubbles
in saturated or undersaturated environments tend to dissolve in microseconds, as predicted
by the Epstein–Plesset theory (Epstein & Plesset 1950; Lohse & Zhang 2015). We indeed
find that in our molecular simulations, a nanobubble dissolves over time, leading to a time-
dependent bubble radius. This obviously complicates the theoretical modelling and goes
beyond the scope of current work to validate the YGB59 theory (where a constant bubble
radius is assumed) to the nanoscale. To circumvent this problem, one can tune the energy
parameter, distance parameter and cut-off distance between gas and water to obtain a small
gas solubility. In current simulations, the cut-off distance between water and gas is set to
be 21/6σGW = 3.4 nm so that only the repulsive force between gas and water is effective,
leading to an extremely small gas solubility. The same simulation strategy was used when
simulating nanobubble cavitation (Shekhar et al. 2013).

The box has lateral size Lx = 19.2 nm and L y = 19.2 nm; see figure 2(b). The height
Lz of this box is fixed during the bubble movement, but it varies for different cases with

1008 A39-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.219


Y. Zhang and D. Lohse

Atom type Atom type εi j (kcal mol−1) σi j (angstroms) γc,i j (angstroms)

G G 0.188 3.75 16.5
G W 1.0 3.07 3.4
G S 0.26 3.32 16.5
W S 0.15 3.32 16.5
S S 5.0 3.32 16.5

Table 1. Interaction parameters among water (W), gas (G) and solid (S).

Case Bubble radius (nm) Density ρ (1/Å3) Box height Lz (nm) Tl (K) Th (K) Simulation runs

1 5.0 0.0063 39.0 300 350 5
2 3.1 0.0096 38.4 300 350 9
3 5.0 0.0063 39.0 300 325 5

Table 2. Simulated three cases with different settings.

(a) (b)
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Figure 2. (a) Snapshots of the bubble movement in the MD simulations at three different times for case 1.
(b) For the same simulation, the three-dimensional trace of the bubble motion is shown.

different bubble radii, as discussed below and shown in table 2. The height of each solid
plate at the lower and upper ends of the domain is L p = 0.96 nm. Both the top and bottom
plates are made of five layers of atoms with the same density as water for simplicity.
Periodic boundary conditions are applied in the lateral directions. On the temperature
conditions, the bottom hot plate is held at 350 K or 325 K, and the top cold plate is held
at 300 K using the Langevin thermostat with damping factor 100 fs. A constant spring
force 10 kcal mol−1 Å−2 is applied to each atom in the plates to tether them to their initial
position. The positions and velocities of the fluid atoms (liquid and gas) are updated based
on Newton’s second law without extra thermostating.

The tank is initially filled with 467 200 water atoms and is isothermal with temperature
300 K. Then N water atoms next to each other centred at h0 = 28.8 nm are switched
into gas atoms, which forms a nanobubble. Notably, the nanobubble is initially tethered
to its initial position through a spring force so that it can only expand or shrink without
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Brownian motions. During this process, the top plate can move vertically to maintain the
ambient liquid pressure at 1 atm in response to the appearance of the nanobubble. Two
different situations with N = 1196 and N = 3316 are simulated. The corresponding radii of
the obtained nanobubbles at equilibrium are measured to be 3.1 nm and 5.0 nm, consistent
with the prediction of the real gas law (Zhang & Lohse 2023). At equilibrium, the position
of the top plate barely moves, and Lz = 38.4 nm for R = 3.1 nm, and Lz = 39 nm for
R = 5.0 nm, are measured and listed in table 2. After obtaining the initial configuration,
the Langevin thermostat is applied to the two plates. The formed nanobubbles are still
tethered to their initial positions for another 100 ns, during which a steady temperature
gradient is produced between the two solid plates. After 100 ns, the nanobubbles are
released so that they can move freely in the liquid. Due to the thermal motions of
nanobubbles, for each case, several realizations (see table 2) have to be run to improve
the statistics.

3. Results from the MD simulations

3.1. Nanobubble displacement
Figure 2(a) shows snapshots of the moving bubble (projected at the x−z plane) obtained
from the molecular simulations at three different times for case 1. Just as for the case
of macroscopic bubbles driven by a temperature difference, the nanobubble moves to the
hot plate due to the thermal Marangoni force. Figure 2(b) plots the three-dimensional
trajectory of the moving bubble. It can be seen that though on average the nanobubble
moves downwards towards the hot plate, it experiences considerable thermal motions in
all three directions during the movement. Thus, as shown in figures 3(a–c), a number
of realizations have been performed to get the mean bubble trajectory, from ensemble
averaging. For example, for case 1, five realizations represented by grey lines in Figure 3(a)
have been conducted. The red line represents the mean value of the five realizations. The
error bars stand for the standard deviations of the five samples. For case 2, the performed
numbers of independent realizations are 9, as smaller bubbles are more vulnerable to
thermal fluctuations, evidenced by the larger standard deviations of the samples, as shown
in figure 3(b). For case 3 in figure 3(c), five realizations were performed. The obtained
mean bubble distance as a function of time for the three cases is shown in figure 3(d) for
comparison. The dependence of bubble distances on time is linear when the bubbles are
away from the plates. This means that the Marangoni force that drives the bubble motion
is balanced by the drag force. Thus thermocapillarity works down to the nanoscale. By
a linear fitting of the data from 10 ns to 20 ns, the corresponding bubble velocity UM D
is obtained, as shown in table 3. To quantitatively compare the simulation results with
the YGB59 theory (Young et al. 1959), one has to systematically measure the transport
properties of the simulated liquid and gas.

3.2. Transport properties of the simulated water and gas
Though the mW water model (Molinero & Moore 2009) adopted here is a standard
model, to our knowledge, its transport properties such as surface tension and viscosity as
a function of temperature are not available in the literature. A systematic measurement of
these mentioned properties is thus performed. The surface tension of water is measured by
the standard method using the mechanical definition of surface tension at the atomic level
(see Appendix A). The value of surface tension at different temperatures ranging from
300 K to 350 K is shown in figure 4(a). In this temperature range, water surface tension
decreases linearly with temperature, and dγ /dT = −0.082 mN m−1 K−1 is obtained by
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Cases �Tef f
(K)

ki

(WK−1m−1)
μi

(mPas)
bo

(nm)
bi

(nm)
G

(10−8m2KW−1)
UM D

(ms−1)
UMacro
(ms−1)

UNano−N S
(ms−1)

UNano−F S
(ms−1)

1 41 0.0466 0.0270 0.3 0.61 2.0 0.62 0.91 0.67 0.68
2 41 0.054 0.0326 0.15 0.52 1.1 0.43 0.56 0.40 0.42
3 21 0.0466 0.0270 0.3 0.61 2.0 0.38 0.45 0.34 0.35

Table 3. Comparisons among the bubble velocity results of MD simulations (UM D ), the theoretical velocity
ignoring the gas thermal conductivity and the viscosity (UMacro), and the revisited theoretical velocity
UNano−N S (UNano−F S) considering nanoscale effects and without (with) the slip length. Here, �Tef f is the
effective temperature difference after considering the solid–liquid thermal resistance.
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Figure 3. Trajectories of the moving bubbles in the molecular simulations for the three different cases. Grey
lines represent different realizations in each case. The solid coloured lines are the mean trajectories of all the
realizations, with the error bars representing the standard deviations: (a) case 1, bubble radius R = 5.0 nm and
�T = 50 K; (b) case 2, bubble radius R = 3.1 nm and �T = 50 K; (c) case 3, bubble radius R = 5.0 nm and
�T = 25 K; (d) mean bubble trajectory for the mentioned three cases, for comparisons.

a linear fitting as shown in figure 4(a). The shear viscosity of water is measured by the
Green–Kubo method as also explained in Appendix A. We obtain that the dynamical
viscosity μo (the superscript o is for the liquid, and the superscript i is for the inner
fluid) of the mW water model at 300 K is approximately 0.35 mPa s, which underpredicts
the experimental value compared to other water models such as TIP4P/2005 and SPC/E
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Figure 4. (a) Surface tension of the mW water model as a function of temperature. Symbols are MD results.
The dashed lines show the linear fitting. (b) Viscosity (left-hand axis) and thermal conductivity (right-hand
axis) for the mW water model. (c) Viscosity (left-hand axis) and thermal conductivity (right-hand axis) of gas
as a function of gas density. (d) Liquid–gas slip (left-hand axis) and thermal resistance (right-hand axis) as a
function of gas density.

(González & Abascal 2010). The dynamic viscosity of water also exhibits a temperature
dependence like surface tension. However, the dependence is weak in the temperature
range 300–350 K. Therefore we take the dynamic viscosity of water to be the mean
dynamic viscosity μo = 0.27 mPa s in this temperature range, for simplicity. In principle,
the thermal conductivity of water can also be measured by the Green–Kubo method, but
this method is known to converge poorly for thermal conductivity (Sirk, Moore & Brown
2013). Thus here the thermal conductivity of water ko is measured by the non-equilibrium
heat flux method (Wirnsberger, Frenkel & Dellago 2015), as shown in Appendix A. Within
the simulated temperature range (300–500 K), the thermal conductivity of water hardly
varies, thus the mean value ko = 0.34 W m−1 K−1 is used. The mW water model
underpredicts the experimental value of water thermal conductivity, while other water
models TIP4P/2005 and SPC/E overpredict the experimental value (Sirk et al. 2013).

Normally for macroscopic gas bubbles, the heat conduction and the flow inside the
bubble are ignored because the heat conductivity and the viscosity of the gas are both
small compared to those for water outside. For a dilute gas, based on the kinetic theory,
its thermal conductivity and viscosity depend only weakly on temperature, and are
independent of gas pressure. Under these conditions, one may ignore the gas and simply
take the property of water to calculate the bubble velocity. Based on the YGB59 theory
(Young et al. 1959), i.e. (4.28), the theoretical bubble velocities for the three cases are
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Figure 5. (a) Snapshot of the liquid–gas system in MD simulations to measure the liquid–gas thermal
resistance. (b) The temperature profile for gas density 0.0036 Å3. (c) The temperature profile for gas density
0.0063 Å3. (d) The temperature profile for gas density 0.0096 Å3. The symbols are MD results, and the red
lines are linear fittings.

then calculated to be 0.91 m s−1, 0.56 m s−1 and 0.45 m s−1 (see UMacro in table 3),
which, however, considerably overpredict the simulated bubble velocity UM D .

There are multiple factors that may cause the mismatch between the MD results and
the YGB59 theory. For nanobubbles whose pressure can be as high as dozens of MPa,
the predictions of the gas viscosity and thermal conductivity, based on the kinetic theory,
may be wrong. Indeed, we find that the thermal conductivity and viscosity of gas strongly
depend on the gas density as shown in figure 4(c), measured by the method discussed
below. Another reason may be that the temperature and velocity continuity condition at
the bubble surface breaks down.

3.3. Thermal resistance and slip length across the liquid–gas interface
Many researchers have shown the existence of a temperature jump across a liquid–solid
interface (Barrat & Chiaruttini 2003; Alosious et al. 2019; Hadjiconstantinou & Swisher
2022), a liquid–liquid interface (Patel et al. 2005) and a liquid–gas interface (Patel et al.
2005; Plascencia et al. 2022; Dockar et al. 2023). A velocity jump may also exist at a
liquid–liquid interface (Poesio et al. 2017; Telari et al. 2022; Hilaire et al. 2023).

To check whether there is thermal resistance between the water–gas interface and the
water–solid interface, we use the setting as shown in figure 5(a), where both gas (in green)
and water (in dark yellow) are confined between two plates held at different temperatures.

1008 A39-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.219


Journal of Fluid Mechanics

(a)

(b) (c) (d )

z = 0

5

4

3

2

1

0 2 4 6 8 10

z = 6.2 nm z = 9.6 nm

V = 0 m s–1V = 5 × 10–4 m s–1

�V = 1.14×10–4 m s–1 �V = 0.69×10–4 m s–1 �V = 0.59×10–4 m s–1

dV/dz = –7.7

×103 s–1
dV/dz = –1.1

×104 s–1
dV/dz = –1.29

×104 s–1

dV/dz = –9.07

×104 s–1
dV/dz = –1.1

×105 s–1
dV/dz = –1.07

×105 s–1V 
(1

0
–
4
 m

 s
–
1
)

V 
(1

0
–
4
 m

 s
–
1
)

V 
(1

0
–
4
 m

 s
–
1
)

5

4

3

2

1

0 2 4 6 8 10

z (nm) z (nm)z (nm)

5

4

3

2

1

0 2 4 6 8 10

ρ = 0.0036 Å3 ρ = 0.0063 Å3 ρ = 0.0096 Å3

Figure 6. (a) Snapshot of the Couette flow to measure the gas–liquid slip. (b) The velocity profile for gas
density 0.0036Å3. (c) The velocity profile for gas density 0.0063Å3. (d) The velocity profile for gas density
0.0096Å3. The symbols are MD results, and the red lines are linear fittings.

While the number of water atoms is fixed in the box, the number of gas atoms is varied
to have different gas densities. After equilibrium, the temperature profile is obtained. For
a low gas number density ρ = 0.0036 Å3, as shown in figure 5(b), we observe noticeable
temperature jumps at the liquid–solid, liquid–gas and gas–solid interfaces. As the gas–
solid interface is not relevant for the Marangoni-driven bubble motion, only the thermal
resistance for the liquid–solid interface and the liquid–gas interface are calculated. To
obtain the temperature jump, we interpolate the linear fitting of the temperature profile
into the interfaces: a temperature jump 3.4 K is obtained for the liquid–solid interface
(at z = 0 nm), and 10.0 K is obtained for the liquid–gas interface (at z = 6.2 nm). By
its definition (4.7), the thermal resistance of the liquid–solid interface is calculated to
be 1.30 × 10−8 m2 K W−1 , and for the liquid–gas interface, it is 4.16 × 10−8 m2 K
W−1. The order of obtained thermal resistance is consistent with results reported in the
literature (Plascencia et al. 2022). Using the ratio of the slopes of temperature profiles in
the liquid and in the gas, the thermal conductivity of the gas of density ρ = 0.0036 Å3 is
0.028 W m−1 K−1.

For the gas density the same as case 1 (ρ = 0.0063Å3) and case 2 (ρ = 0.0096Å3),
the temperature profiles in figures 5(c) and 5(d) show smaller temperature jumps
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7.7 K and 5.3 K at the liquid–gas interface. The thermal resistances of the liquid–
gas are calculated to be 2.0 × 10−8 m2 K W−1 and 1.1 × 10−8 m2 K W−1. The
thermal resistance is thus reduced by increasing the gas density, which is similar to the
theoretical prediction of the solid–gas thermal resistance (Chen et al. 2022) and molecular
simulations of liquid–vapour thermal resistance (Holyst & Litniewski 2008). The thermal
conductivity of the gas with a higher density is, however, increased. For ρ = 0.0063Å3, it is
0.0466 W m−1 K−1 , and for ρ = 0.0096Å3, it is 0.0593 W m−1 K−1. The relation
between gas thermal conductivity or liquid–gas thermal resistance and gas density is
shown in figures 4(c) and 4(d). One can also use the heat flux method (Wirnsberger et al.
2015) to measure the gas thermal conductivity as a function of gas density, and we have
checked that both methods produce the same results. We also note that the temperature
jumps across the liquid–solid interface indeed increase with an increasing heat flux, as
shown by figures 5(b– d), and the mean liquid–solid thermal resistance of the three cases
is 1.22 × 10−8 m2 K W−1, which is used later to estimate the effective temperature
difference that drives nanobubble motions (see Tef f in table 3).

In terms of the slip length between liquid and gas, we use a similar configuration, as
shown in figure 6(a). Here, the left-hand plate can move in the x direction with velocity
5 × 10−4 m s-1 , while the right-hand plate is fixed. The velocity profiles of this Couette
flow are shown in figures 6(b–d) for three different gas densities. One can see that there
are indeed velocity jumps at the liquid–gas interface. The velocity jump decreases with
increasing gas density. By its definition (B1) shown in Appendix B, the slip length for the
gas (liquid) phase bi (bo) is measured to be 1.1 nm (1.3 nm), 0.61 nm (0.3 nm), and 0.52 nm
(0.15 nm), respectively for the three different gas densities. So the slip lengths bi and bo

decrease with increasing gas densities, as shown in figure 4(d). The gas viscosity can be
obtained by the ratio of the slopes of the red fitting lines based on the continuity of the
shear stress. The obtained gas viscosities are 0.0229 mPa s, 0.0270 mPa s and 0.0326 mPa
s, respectively, for the three different gas densities, thus the gas viscosities increase with
increasing gas densities. This relation is also plotted in figure 4(c).

After all, we discovered that the thermal conductivity and viscosity of gas nanobubbles
have been enhanced a lot by the large gas density on the nanoscale. It was also found
that temperature jumps and velocity jumps coexist at the bubble surface, which invalidates
the assumption of temperature and velocity continuities at the bubble surface adopted
by the classic YGB59 theory (Young et al. 1959). Thus the YGB59 theory has to be
generalized. Notably, though we have obtained thermal resistance and slip length from our
simulations whose values are of the same order as reported values in the literature, we have
used an ideal potential to describe the water–gas intermolecular interactions compared to
other more realistic systems (Plascencia et al. 2022; Dockar et al. 2023; Hilaire et al.
2023). However, the existence of thermal resistance and slip at the liquid–gas interface is
generally true.

4. Extension of the YGB59 theory towards the nanoscale
Though Young et al. (1959) (YGB59 theory) derived the correct expression of bubble
velocity, their work did not include the expression of Marangoni forces and drag forces.
This has led to some approximate expressions in the literature (Morick & Woermann
1993; Lubetkin 2003; Zeng et al. 2021), which are valid only at the macroscale. Here,
the YGB59 equation is revisited, and more general expressions for Marangoni forces and
drag forces are obtained, which show important nanoscale effects, such as those of the
thermal resistance and the slip at the interface.
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The governing dimensionless numbers for both fluids (liquid and gas) are the Reynolds
number Re = ρu0 R/μ and the Marangoni number Ma = (dγ /dT )(dT /dz)(R2/(μα)).
Here, ρ, μ, u0, R, γ and α are the density, dynamic viscosity, velocity, radius of the
nanobubble, surface tension and thermal diffusivity, respectively. Assuming that Re and
Ma are much smaller than unity for both fluids, which is valid at the small scale (small R)
of nanobubbles, the momentum equation and continuity equation for both fluids are

μ∇2u = ∇ p, (4.1)

∇ · u = 0, (4.2)

respectively. In the momentum equation, the unsteady term ρ ∂u/∂t is dropped. This is
justified because the ratio of the time scale required for the water velocity to adjust to the
changes in the bubble position (ρR2/μ) to the time scale of bubble movement (R/u0), i.e.
Re, is small. In fact, the largest Reynolds number in our simulations is evaluated to be 0.01
for case 1. Therefore, the water velocity field may be assumed to be quasi-static. The heat
transfer equation for both fluids is

∇2T = 0. (4.3)

The general solution to the temperature field for both fluids in spherical coordinates is

T = A1 + A2

r
+ A3r cos θ + A4

r2 cos θ. (4.4)

Here, Ai (i = 1, 2, 3, 4) is the coefficient to be determined by the boundary conditions.
At the far field, the temperature distribution T o for the outer fluid (i.e. water here – the
superscript o is for the liquid, and the superscript i is for the inner fluid, i.e. gas hereafter)
is

T o = T0 + Γ r cos θ, (4.5)

where T0 is the temperature at the centre of the bubble, and Γ is the temperature gradient.
At the fluid–fluid interface, the continuity of the heat flux requires

ko ∂T o

∂r
= ki ∂T i

∂r
, (4.6)

where we have assumed a spherical bubble with the coordinate system at its centre. For
the temperature condition across the interface, motivated by the observation from our
simulations, we adopt the temperature jump condition across the interface instead of the
continuity of temperature, so that one can have

T o − T i = ko ∂T o

∂r
G, (4.7)

where G is the thermal resistance.
Using the above temperature boundary conditions, the temperature distribution can be

obtained for both fluids:

T o = T0 + Γ r cos θ + (ko − ki )R + koki G

(2ko + ki )R + 2koki G

Γ R3 cos θ
r2 , r � R,

T i = T0 + 3ko R

(2ko + ki )R + 2koki G
Γ r cos θ, r < R. (4.8)
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In terms of the velocity field, the usual way to solve (4.1) and (4.2) is by introducing the
Stokes stream function ψ(r, θ) (Bird, Stewai & Lightfoot 2006)

ur = − 1
r2 sin θ

∂ψ

∂θ
,

uθ = 1
r sin θ

∂ψ

∂r
. (4.9)

Equation (4.1) is then rewritten in terms of the Stokes stream function ψ as

E4ψ = 0, (4.10)

where E2 = (∂/∂r2)+ (sin θ/r2)(∂/∂θ)((1/sin θ)(∂/∂θ)). The general solution to (4.10)
for both fluids is

ψo =
(

C1r−1 + C2r + C3r2 + C4r4
)

sin2θ, r � R, (4.11)

ψ i =
(

D1r−1 + D2r + D3r2 + D4r4
)

sin2θ, r < R. (4.12)

The resulting expressions for the velocities are

uo
r = −2 cos θ

(
C1

r3 + C2

r
+ C3 + C4r2

)
, (4.13)

uo
θ = sin θ

(
−C1

r3 + C2

r
+ 2C3 + 4C4r2

)
, (4.14)

ui
r = −2 cos θ

(
D1

r3 + D2

r
+ D3 + D4r2

)
, (4.15)

ui
θ = sin θ

(
− D1

r3 + D2

r
+ 2D3 + 4D4r2

)
. (4.16)

These factors C and D are determined by the velocity boundary conditions. We assume
that the bubble has velocity U ≡ −u∞ (u∞ > 0). Taking the reference frame with the
bubble, the far-field liquid velocity will be ur = u∞ cos θ and uθ = −u∞ sin θ . Thus the
far-field stream function will be

ψo = −1
2 u∞r2 sin2 θ, r → ∞, (4.17)

so C4 = 0 and C3 = −(1/2)u∞ using (4.11). For the flow inside the nanobubble, the
velocity at r = 0 has to be finite, so that D1 = 0 and D2 = 0 using (4.12). Furthermore,
there are no masses across the bubble surface, and no bubble shape changes, so that uo

r = 0
and ui

r = 0 at r = R. This leads to C1 = (u∞ R − 2C2)R2/2 and D3 = −R2 D4.
For boundary conditions at the liquid–gas interface, the shear stress continuity is obeyed

(Leal 2007):

τ o
rθ − τ i

rθ = −∇sγ. (4.18)

Here, one can obtain −∇sγ = −(1/R)(∂γ /∂θ)= −(1/R)(∂γ /∂T )(∂T /∂θ)= (∂γ /∂T )
(3ko R + 3koki G)/((2ko + ki )R + 2ko)ki GΓ sin θ , knowing the temperature distribution
by (4.8). Later, we define A = (∂γ /∂T )(3ko R + 3koki G)/((2ko + ki )R + 2koki GΓ )
such that we can simply write −∇sγ = A sin θ .

A number of recent works have shown that there exists slip at a fluid–fluid interface
(Poesio et al. 2017; Telari et al. 2022; Hilaire et al. 2023). As seen from the simulation of
the two-phase Couette flow in figure 6, this is indeed the case for the liquid–gas interface
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in our system. Thus it is natural to include slip in the theoretical model for the bubble
velocity. However, how to model the fluid–fluid slip condition is not a well-explored topic.
Even for the liquid–solid slip, the frequently used Navier’s slip condition (Zhang 2024),
which assumes that the slip velocity is proportional to shear stress at the wall, is empirical
(Leal 2007). Thus at first, we still use the classic no-slip condition to derive the theoretical
bubble velocity. Later, we then try to use empirical fluid–fluid slip models to see any
improvements in the predictions.

The no-slip condition at the fluid–fluid interface is

uo
θ = ui

θ . (4.19)

Using the shear stress condition (4.18) and the no-slip condition (4.19), one can obtain

D4 = 4C2 − 3u∞ R

4R3 , (4.20)

C2 = 6μou∞ R2 + 9μi u∞ R2 − 2AR3

12μo R + 12μi R
. (4.21)

Now the Marangoni force exerted on the bubble can be evaluated by integrating the shear
stress:

FMa = −2πR2
∫ π

0
τrθ sin2 θ dθ = −8πμo (u∞ R − 2C2)

= −4π
3
μo 2AR2 − 3μi u∞ R

μo +μi
. (4.22)

Similarly, by integrating the normal stress σrr = −p + 2μ(∂ur/∂r), the pressure drag
force experienced by the bubble is

FP = 2πR2
∫ π

0
σrr sin θ cos θ dθ = 8πμo (u∞ R − C2)

= 2πμo 2AR2 + 6μou∞ R + 3μi u∞ R

3μo + 3μi
. (4.23)

One can see that the eventual expression of the pressure drag depends on C2, which
again depends on the boundary condition at the liquid–gas interface. For a clean bubble
with a negligible gas viscosity, τrθ = 0 so that C2 = u∞ R/2 and FP = 4πμou∞ R, which
recovers the classic drag on a conventional bubble. For our case, C2 is different. By letting
FMa + FP = 0, one finds that C2 = 0. Using (C2), the velocity of the bubble (U ≡ −u∞)
is obtained as

U = − 2R

2μo + 3μi

ko R + koki G(
2ko + ki

)
R + 2koki G

∂γ

∂T
Γ. (4.24)

If there is no temperature jump (G = 0), then (4.24) reduces to the result of YGB59
theory (Young et al. 1959):

U = − 2R

2μo + 3μi

ko

2ko + ki

∂γ

∂T
Γ. (4.25)

In this case, the Marangoni force and drag force are

FMa = −4πμo
R2 ∂γ

∂T

2ko

2ko + ki
Γ −μi u∞ R

μo +μi
, (4.26)
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FP = 2πμo
R2 ∂γ

∂T

2ko

2ko + ki
Γ + 2μou∞ R +μi u∞ R

μo +μi
. (4.27)

For macroscale gas bubbles whose viscosity and thermal conductivity are usually ignored,
the velocity becomes

U = − R

2μo

∂γ

∂T
Γ, (4.28)

and the forces are FMa = −4π(∂γ /∂T )Γ R2 and FP = 4πμou∞ R + 2π(∂γ /∂T )Γ R2.
Thus the drag force is increased by the presence of the surface tension gradient. This
extra term 2π(∂γ /∂T )Γ R2 was not included in previous works about bubble motions
in temperature gradients on the macroscale (Morick & Woermann 1993; Lubetkin 2003;
Zeng et al. 2021). Reassuringly, if one investigates the total force FMa + FP on the bubble,
then it is 4πμou∞ R − 2π(∂γ /∂T )Γ R2, which is the same for the previous study and the
current study.

With all the measured transport properties of liquid, gas, and their interfaces, as
summarized in table 3, now the theoretical velocity of nanobubbles without slip UNano−N S
(see (4.24)) can be evaluated. As shown in table 3, UNano−N S values for the three cases
agree reasonably well with the simulation results UM D . This highlights the consideration
of the enhanced nanoscopic effects such as gas thermal conductivity, gas viscosity and
liquid–gas thermal resistance for accurate descriptions of the nanobubble motion in a
temperature gradient.

However, will the consideration of the slip improve the prediction even more? To answer
this question, we have to use ‘empirical’ slip conditions for the fluid–fluid interface
to include slip in the theoretical model of bubble velocity. In analogy to Navier’s slip
condition for a liquid–solid interface, the slip condition for a fluid–fluid interface is
proposed to be (Hilaire et al. 2023)

u1 − u2 = b1

μ1
τ1 = b2

μ2
τ2, (4.29)

where u1, b1 and τ1 (u2, b2 and τ2) are the interfacial velocity, slip length and interfacial
shear stress of fluid 1 (fluid 2). For a clean surface where τ1 = τ2, (4.29) means b1/b2 =
μ1/μ2. However, in our case, τ1 �= τ2 due to the extra Marangoni stress at the interface.
Thus to account for this inconsistency, an extended slip model for the fluid–fluid interface
may be (see Appendix B)

uθ
o − uθ

i = bo

μo
τ o

rθ + bi

μi
τ i

rθ . (4.30)

Note that the definition of slip length in (4.30) is different from (4.29).
Using this boundary condition, the obtained bubble velocity with finite slip UNano−F S

is (see Appendix C)

U = − 2R

2μ0 + 3μi 1 + 2bo/R

1 + 3bi/R

ko R + koki G(
2ko + ki

)
R + 2koki G

∂γ

∂T
Γ. (4.31)

One can see that the slip from the inner phase bi may speed up the bubble movement since
the inner circulation is reduced by the slip. In contrast, the slip from the outer phase may
slow down the bubble since the also reduced outer flow is the reason for bubble movement.
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However, using the slip lengths bi and bo measured from independent MD simulations
(see table 3), the consideration of slip does not change the theoretical prediction too much
in our case (see UNano−F S in table 3) because b/R is small. But a large liquid–liquid slip
may also exist in other systems, such as at the interface between different types of polymer
melts (Himmel & Wagner 2013), so the consideration of slip may then become necessary.

Notably, the small difference between UNano and UM D may be attributed to several
reasons. First, the water viscosity shows a weak temperature dependence in the
temperature range from 300 K to 350 K. However, we have used the mean viscosity in
this temperature range for simplicity. Second, the Brownian motions of bubbles are strong
in MD simulations, and only a limited number of realizations have been performed due to
the high computational costs. Third, the solid plates may affect the flow field, though we
have used the data of bubble displacements away from the plates.

5. Conclusions and outlooks
In summary, motivated by the fact that macroscopic bubbles often originate from
nucleated nanobubbles, the nanobubble motion in a temperature gradient is investigated
by molecular dynamics simulations and approximate analytical calculations. Unlike
macroscopic bubbles, whose thermal conductivity and viscosity are normally ignored
compared to those of water, the simulation results show that the gas thermal conductivity
and viscosity of nanobubbles are enhanced to a great extent due to the high internal
pressure and the high gas density, and have to be considered. The thermal resistance and
slip length across the interface are also found to exist on the liquid–gas interface. The
thermocapillary theory by Young et al. (1959) for macroscale bubbles is thus extended by
considering those effects. For the liquid–gas slip condition, an empirical model is used.
Expressions for the Marangoni force, the drag force and the bubble migration velocity are
derived. The theoretical bubble velocity evaluated using the measured transport properties
of liquid, gas, and their interfaces matches well with the results of molecular simulations.
This work highlights the need to consider nanoscopic effects for accurate predictions
of nanobubble motions driven by thermal Marangoni flows. However, the small slip
length in the current liquid–gas system does not have considerable effects on nanobubble
motions.

Our findings have important implications for controlling nanobubble motions during
water electrolysis and boiling where current models have not taken the nanoscopic effects
into consideration. For example, for the nanobubble detachment, one has to estimate the
thermal Marangoni force that keeps nanobubbles attached to the solid (Park et al. 2023;
Bashkatov et al. 2023). Our results above have proven that nanoscopic effects may change
the thermal Marangoni force significantly at the nanoscale. Another example is the shear
flow over the substrate, which is often used to detach bubbles (Darband, Aliofkhazraei &
Shanmugam 2019). The enhanced gas viscosity at the nanoscale will certainly change the
drag force on surface nanobubbles. Also, for the coalescence of nanobubbles, the enhanced
gas viscosity may have some effects on the film drainage between two nanobubbles and
then the bridge growth dynamics (Eggers, Sprittles & Snoeijer 2024). In the future, it
is also important to see the dynamics of growing or dissolving nanobubbles under a
temperature gradient. Finally, the current slip model is empirical. More research is required
to clarify the liquid–liquid slip condition in the future as well.
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Appendix A: Measurements of transport properties
The surface tension γ is obtained by its mechanic definition. For a planar liquid–vapour
interface perpendicular to the z axis of the molecular simulation, γ is given by

γ =
∫ ∞

−∞
(SN − ST ) dz. (A1)

Here, S is the atomic definition of the pressure tensor in molecular simulations, SN is the
normal component of S , and ST is the tangential component. The dynamic viscosity is
obtained from the Green–Kubo expression

μ= V

kB T

∫ ∞

0
〈Szx (t) Szx (0)〉 dt, (A2)

where V is the volume of the liquid, and Szx is the off-diagonal stress. To calculate
the viscosity numerically in MD simulations, a cubic box of molecules undergoing
thermal motions is simulated with periodic conditions in all three directions. The temporal
correlation of the shear stress, which decays to zero with time, is then obtained from the
MD simulation (see figure 7a) and integrated to obtain the viscosity (see figure 7b).

The heat flux method is used to calculate the thermal conductivity of water, as described
by Wirnsberger et al. (2015). A periodic cubic box with length 4.8 nm filled with 3703
water atoms is simulated. An energy currentF F = 1.38 × 10−7 J s−1 is subtracted and
added into the specific region of the system to sustain a temperature gradient as shown in
figure 7(c). The thermal conductivity can then be calculated as k = F/(2A dT/dz), where
A is surface area, and the factor 1/2 is due to the periodicity condition (Wirnsberger et al.
2015).
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Figure 7. (a) Temporal correlations of the stress when measuring the mW water model with temperature
275.6 K. (b) Integrating the temporal correlation. (c) Temperature distribution in the heat flux method.
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Figure 8. Two-phase Couette flow between two plates: (a) no-slip, (b) finite slip.

Appendix B: Fluid–fluid slip condition
For a clean surface, the stress continuity of τ1 = τ2 means b1/b2 =μ1/μ2 in (4.29).
However, in this way, the defined b1 and b2 may not be the intrinsic slip of the fluid–
fluid interface, since τ1 �= τ2 if there is other shear stress such as the Marangoni stress at
the interface. Here, an extension of (4.29) is proposed. Unlike (4.29), where the definition
of slip velocity is the same for both fluids (i.e. u1 − u2), it may be different for two fluids,
in fact. For example, consider a simple two-phase Couette flow shown in figure 8. The
interfacial velocity is u1 = u2 = u0 when there is no slip at the fluid–fluid interface, as
shown in figure 8(a). When there is a slip, as shown in figure 8(b), u1 > u0 and u2 < u0.
So the slip velocity for fluid 1 is u1 − u0 , while it is u2 − u0 for fluid 2. Thus the slip
condition may be

u1 − u0 = b1

μ1
τ1,

u2 − u0 = − b2

μ2
τ2. (B1)

The difference between u1 and u2 is thus

u1 − u2 = b1

μ1
τ1 + b2

μ2
τ2. (B2)

For a clean surface, τ1 = τ2, (B2) becomes

u1 − u2 =
(

b1

μ1
+ b2

μ2

)
τ1 =

(
b1

μ1
+ b2

μ2

)
τ2, (B3)

which is effectively the same as (4.29). Note that the value of the slip length depends
on how exactly it is defined. The factor in front of the stress will be the same for (4.29)
and (B2) when τ1 = τ2. The extended model may be general as there is no requirement of
τ1 = τ2 and b1/μ1 = b2/μ2.

To extract the slip length from our independent MD simulations shown in figure 6(a),
we need to know u0. It is simply given by u0 = U/(1 +μ2h1/(μ1h2)), where h1 = 6.2
nm and h2 = 3.4 nm are the heights of the two fluid domains. For the case of a gas
density 0.0096Å3 shown in figure 6(d), μ2/μ1 = 0.12 so that u0 = 4.1 × 10−4 m s−1. By
the definition of slip, bo = 0.15 nm and bi = 0.52 nm are obtained.
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Appendix C: Bubble velocity with finite slip
Using the shear stress condition (4.18) and the finite slip condition (4.30), one can obtain

D4 =
C2

(
2
R

+ 6bo

R2

)
−

(
3
2

+ 3bo

R

)
u∞

6bi R + 2R2 , (C1)

C2 = 6μ0u∞
(
3bi R + R2) + 3μi u∞

(
3R2 + 6bo R

) − 2A
(
R + 3bi

)
R2

12μ0
(
R + 3bi

) + 12μi (R + 3bo)
. (C2)

Now the Marangoni force exerted on the bubble can be evaluated by integrating the shear
stress:

FMa = −2πR2
∫ π

0
τrθ sin2 θ dθ = −8πμo (u∞ R − 2C2)

= −4π
3
μo 2A

(
R + 3bi

)
R2 − 3μi u∞ R2

μ0
(
R + 3bi

) +μi (R + 3bo)
. (C3)

The pressure drag force experienced by the bubble is

FP = 2πR2
∫ π

0
σrr sin θ cos θ dθ = 8πμo (u∞ R − C2)

= 2πμo 2A
(
R + 3bi

)
R2 + 6μou∞

(
R2 + 3bi R

) + 3μi u∞
(
R2 + 6bo R

)
3μ0

(
R + 3bi

) + 3μi (R + 3bo)
. (C4)

The condition FMa + FP = 0 leads to C2 = 0 and thus the expression of bubble velocity
with finite slip (4.31).
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