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Abstract
This paper revisits the canonical assumption of nonconvex capital adjustment costs in lumpy investment
models as in Khan and Thomas [(2008) Econometrica 76(2), 395–436], which are assumed to follow a
uniform distribution from zero to an upper bound, without distinguishing between the mean and the
variance of the distribution. Unlike the usual claim that the upper bound stands for the size (represented by
themean) of a nonconvex cost, I show that in order to generate an empirically consistent interest elasticity
of aggregate investment, both a sizable mean and a sizable variance are necessary. The mean governs the
importance of the extensive margin in aggregate investment dynamics, while the variance governs how
sensitive the extensive margin is to changes in the real interest rate. As a result, both the mean and the
variance are quantitatively important for aggregate investment dynamics.

Keywords: Lumpy investment; Ss model; firm heterogeneity

1. Introduction
In all current lumpy investment models such as Khan and Thomas (2008), the nonconvex capital
adjustment cost ξjt is uniformly distributed with support U[0, ξ̄ ] independently across firms and
time. A conventional calibration of a small upper bound ξ̄ which matches the firm-level lumpy
investment moments claims that lumpy investment is irrelevant for aggregate dynamics.

However, recent literature [Fang (2020), Koby andWolf (2020) andWinberry (2021)] reverses
the claim that microeconomic investment lumpiness is inconsequential for macroeconomic anal-
ysis. As argued by Koby and Wolf (2020), whether general equilibrium feedback smooths out the
effects of micro frictions is governed by the sensitivity of investment with respect to changes in
the costs of and the returns to capital. These costs and returns are either mainly reflected in real
interest rate changes or are isomorphic to such changes.1

In Khan and Thomas (2008), aggregate investment is extremely price-sensitive; the partial equi-
librium interest rate semi-elasticity of firm investment is almost 500 percent. As a result, small
countercyclical changes in prices are enough to smooth out themovements in investment demand
caused by micro lumpiness given prices. In contrast, in Winberry (2021), Koby and Wolf (2020)
and Fang (2020), the partial equilibrium interest rate semi-elasticity of firm investment is only
between 5 to 8 percent. As a result, they show that lumpy investment matters for business cycle
dynamics and the effectiveness of economic policies.
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The key argument in these papers Fang (2020), Koby and Wolf (2020) and Winberry (2021)]
is that the upper bound ξ̄ of the distribution of nonconvex capital adjustment costs should be
calibrated as much larger. This upper bound ξ̄ determines how sensitive aggregate investment is
to changes in the real interest rate. The calibration of a small (large) upper bound ξ̄ generates
a large (small) interest elasticity of aggregate investment. Quasi-experimental evidence on firm-
level investment responses to tax changes [Zwick and Mahon (2017) and Koby and Wolf (2020)]
suggests a small interest elasticity. Consequently, the upper bound ξ̄ should be large.

What is the economics meaning of calibrating such a large upper bound ξ̄? In all current mod-
els, the setup implicitly assumes that the mean μξ = ξ̄ /2 and the standard deviation σξ = ξ̄ /

√
12

are isometric
(
μξ = √

3σξ

)
. This assumption means that when calibrating ξ̄ , we jointly choose

the expected size (mean) and the uncertainty (variance) of the nonconvex adjustment cost faced
by the firms. Then, which one determines the interest elasticity of aggregate investment?

In this paper, I answer this question through disciplining the economic meanings of the
expected size (mean) and the uncertainty (variance) of the nonconvex adjustment cost. I assume
the nonconvex adjustment cost follows a uniform distribution with mean and variance {μξ , σξ }:

ξjt ∼U
[
μξ − √

3σξ ,μξ + √
3σξ

]
. (1)

I first compare the interest elasticity of aggregate investment over both dimensions of {μξ , σξ },
departing from a conventionally calibrated lumpy investment model. The model generates unre-
alistically large interest elasticities of aggregate investment when either the mean or the variance
approach zero. I find that both a sizable mean and a sizable variance are necessary to generate an
empirically consistent interest elasticity of aggregate investment.

Further inspection of the mechanism shows that themean and the variance play different roles.
A decomposition of the interest elasticity between the extensive margin and the intensive margin
indicates the different roles of the mean and the variance. Without a sizable mean, the unrealisti-
cally large interest elasticity is mainly from the unconstrained intensivemargin.2 Without a sizable
variance, the unrealistically large interest elasticity is mainly from the oversensitive extensive mar-
gin. The underlying distribution of the extensive margin adjustment probability and intensive
margin investment rate confirm these patterns.

Finally, I show the dynamic implications of the importance of having a sizablemean and a siz-
able variance. Without a sizable mean, there is neither state-dependency nor non-linearity of the
state-dependency due to the micro lumpiness. The countercyclical changes in real interest rates
hardly generate any state-dependency in aggregate investment. Without a sizable variance, the
state-dependency and the non-linearity of the state-dependency are both unrealistically strong.
The large interest elasticity to countercyclical changes in real interest rates smooths out the reces-
sionary effects when the economy is in recession. Therefore, a sizablemean and a sizable variance
are both quantitatively necessary for aggregate investment dynamics.

This paper is organized as follows. Section 2 presents the model and the solution method.
Section 3 shows the interest elasticity of aggregate investment with respect to the mean and the
variance, respectively. Section 4 further inspects the mechanism. Section 5 shows the impulse
responses in alternative calibrations. Finally, Section 6 concludes.

2. The model
The economy consists of a fixed unit mass of firms j ∈ [0, 1] which produce homogeneous output
yjt and a unit measure continuum of identical households who consume output and supply labor.
Technology: The production function is as follows:

yjt =Atzjtkα
jtn

ν
jt , α + ν < 1, (2)
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where kjt and njt indicates the idiosyncratic capital and labor employed by the firm j, and At is
aggregate productivity. For each firm, the idiosyncratic TFP zjt follows a log-normal AR(1):

log
(
zjt
)= − (

1− ρz) σ z2

2
(
1− ρz2) + ρzlog

(
zjt−1

)+ εjt , εjt ∼N
(
0, σ z) . (3)

Adjustment costs: The investment cost function includes two components: a direct cost ijt and a
fixed nonconvex capital adjustment cost ξjt paid in units of labor if the firm adjusts by more than
a small proportion of their current capital stock (|ak|):

c
(
ijt
)= ijt + 1(|ijt |>akjt) ·wt · ξjt , ξjt . (4)

Firm Optimization: I denote by VA(kjt , zjt ;�t
)
, VNA(kjt , zjt ;�t

)
, and V

(
kjt , zjt ;�t

) ≡
Eξjt Ṽ

(
kjt , zjt , ξjt ;�t

)
the value functions of a firm with an active investment choice, with-

out an active investment choice, and with expected draw of ξjt . The aggregate state �t =(
At ,	t ,μt

(
k, z, ξ

))
where 	t is a vector comprising the stochastic discount factor and wage at

time t, and μt(k, z, ξ ) is the distribution of firms. The value functions are as follows:

VA(kjt , zjt ;�t
)=max

i,n

{
yjt −wtnjt − c

(
ijt
)+E

[

t,t+1V

(
k∗
jt+1, zjt+1;�t+1

)]}
, (5)

VNA(kjt , zjt ;�t
)= max

i∈[−ak,ak],n

{
yjt −wtnjt − c

(
ijt
)+E

[

t,t+1V

(
kCjt+1, zjt+1;�t+1

)] }
, (6)

where the stochastic discount factor 
t,t+1 is derived from the household problem since house-
holds own all the firms. kCjt+1 and k∗

jt+1 are the constrained and non-constrained capital choices.
The firm will choose to pay the fixed cost if and only if VA(kjt , zjt ;�t

)−wtξjt >

VNA(kjt , zjt ;�t
)
. There is a unique threshold ξ∗(kjt , zjt ;�t

)
at which the firm breaks even:

ξ∗
t
(
kjt , zjt ;�t

)= VA(kjt , zjt ;�t
)−VNA(kjt , zjt ;�t

)
wt

. (7)

If a firm draws a fixed cost ξjt below ξ∗(kjt , zjt ;�t) (which I denote as ξ∗ for short), the firm
pays the fixed cost and then actively adjusts its capital, otherwise it does not. The value function
is:

V
(
kjt , zjt ;�t

)= −
wt
(
ξ∗ + ξ

)
2

+ ξ∗ − ξ

2
√
3σξ

VA(kjt , zjt ;�t
)+

(
1− ξ∗ − ξ

2
√
3σξ

)
VNA(kjt , zjt ;�t

)
,

(8)

where ξ = μξ − √
3σξ is the lower bound of the fixed cost. The firm expects to pay the fixed cost

when drawing ξjt lower than ξ∗(kjt , zjt ;�t). With probability ξ∗−ξ

2
√
3σξ

, the firm chooses to actively
invest, otherwise it stays inactive. Therefore, the capital stock evolves by the law of motion:

kjt+1 =
⎧⎨
⎩

(1− δ) kjt + i∗jt ξjt < ξ∗(kjt , zjt ;�t
)

(1− δ) kjt + iCjt otherwise
. (9)

Household optimization:Households’ expected utility is as follows:

E0
∞∑
t=0

βt
(
C1−η
t

1− η
− θNt

)
,

subject to the budget constraint: Ct + 1
Rt Bt ≤ Bt−1 +wtNt + �F

t . Here β is the discount factor of
households, θ is the disutility of working, Rt is the real interest rate, Bt is one period bonds, wt is
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the nominal wage, and �F
t is the nominal profits from all the firms. The first order conditions of

consumption, labor, and bonds deliver:

wt = −Un(Ct ,Nt)

Uc(Ct ,Nt)
= θCη

t , (10)


t,t+1 = 1
Rt

= β
Uc(Ct+1,Nt+1)

Uc(Ct ,Nt)
= β

(
Ct
Ct+1

)η

. (11)

Equilibrium Definition:

Definition 1. A Recursive Equilibrium for this economy is defined by a set of value functions and
policy functions

{
V
(
k, z;�

)
, VA (k, z;�), VNA (k, z;�), ξ∗ (k, z;�), k∗ (k, z;�), kC (k, z;�)}, a

set of quantity functions {C(�) , N(�), Y(�), K(�)}, a set of price functions {w(�) , 
(�), R(�)},
and a distributionμ′(�) that solves the firms’ and households’ problems and satisfies market clearing
such that:

(i) Taking the price functions as given, the policy functions solve firms’ optimization.
(ii) Taking the price functions as given, the quantity functions solve households’ optimization.
(iii) Goods market clears: Y(�)= C(�)+ I(�)+ 	k(�), where 	k(�) is the total adjustment

cost.

Solution method: I follow the sequence space solution strategy as in Boppart et al. (2018) to solve
the model which involves two parts. First, I solve the Stationary Equilibrium at the steady-state,
which delivers all the steady-state equilibrium objects and provides the cross-sectional moments
for the calibration. Second, I solve the Transitional Equilibrium starting from the Stationary
Equilibrium and transit back to the same Stationary Equilibrium. The Transitional Equilibrium
then provides the dynamic moments for the calibration and the impulse response functions.
Details of the solution method are presented in the appendix.

3. Mean, variance, and the interest elasticity of investment
Benchmark calibration: I calibrate the benchmark model with mean and variance bundled
(henceforth, bundled model) as in Khan and Thomas (2008)

(
the uniform distribution has sup-

port from 0 to an upper bound: ξjt ∼U
[
0, ξ̄

]
, so μξ = √

3σξ = ξ̄ /2
)
to hit the target investment

moments. For fixed parameters, I choose the discount factor β = 0.99 to match an annual interest
rate of 4%., elasticity of intertemporal substitution η = 1 for log utility, leisure preference θ = 2 to
match a one-third working time share, capital exponent α = 0.25 and the labor exponent ν = 0.60
to match a labor share of two-thirds and decreasing returns to scale of 85%, quarterly capital
depreciation δ = 0.026, free capital adjustment region a= 0.001, and persistence of idiosyncratic
TFP shock ρz = 0.95. For fitted parameters, I choose σ z = 0.05 and ξ̄ = 0.6 to match the average
investment rate (10.5%), the standard deviation of investment rates (0.13), the spike rate3 (17%),
and the partial equilibrium interest elasticity of aggregate investment (−5), reflecting the empirical
moments as measured in Zwick and Mahon (2017) and Koby and Wolf (2020).4

How to measure the interest elasticity? The partial equilibrium interest elasticity of aggregate
investment is defined by how aggregate investment, as yielded by the collective decisions of
all heterogeneous firms, responds to an unexpected real interest rate shock5. For instance, −5
means when firms face an unexpected real interest rate cut of 1%, partial equilibrium aggregate
investment increases by 5%. Quasi-experimental evidence in Zwick and Mahon (2017) and Koby
and Wolf (2020) suggests this interest-elasticity should be about −5.
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Figure 1. PE interest elasticity over ξ̄ .
Note: In the benchmark model, the uniform distribution starts from 0 to an upper bound: ξjt ∼ U[0, ξ̄ ]. It bundles the mean
and the variance by ξ̄ :μξ = √

3σξ = ξ̄ /2. Therefore, increasing ξ̄ increases bothμξ and σξ simultaneously.

My exact numerical exercise in Sections 3 and 4 is to have the economy start at steady-state
and hit by a one-time unexpected drop in real interest rate in the first period to generate the
real interest rate series {rt}Tt=0 = {r∗, r∗ + �r, r∗, . . . , r∗}. I then feed the stochastic discount factor
series {
t}Tt=0 =

{
1

1+r∗ ,
1

1+r∗+�r , . . . ,
1

1+r∗
}
and the steady-state wage series {wt}Tt=0 = {w∗} into

the partial equilibrium and solve for the aggregate investment series {It}Tt=0. The partial equilib-
rium interest elasticity is then calculated as ∂ logIt/∂rt at time t = 1. More specifically, I choose
�r = −0.25%, therefore, a ∂ logI1/∂r1 = −5 means such a one-time unexpected drop in the real
interest rate boosts aggregate investment by 1.25%.

Upper bound ξ̄ and interest elasticity: In Figure 1, I plot the model’s interest elasticity as the
choice of ξ̄ varies from 0.025 to 1. First, the interest elasticity of aggregate investment is very sen-
sitive to changes in the upper bound of the nonconvex adjustment costs.6 Second, a relatively large
value of ξ̄ = 0.6 gives an interest elasticity of −5. Conversely, if ξ̄ is smaller, the aggregate invest-
ment will be oversensitive to interest rate changes. In Khan and Thomas (2008), ξ̄ = 0.0083/4,
which will deliver an interest elasticity around −500. This will imply that lumpy investment is
irrelevant for aggregate dynamics as in Khan and Thomas (2008). However, their irrelevance result
is not consistent with the joint dynamics of aggregate investment and the real interest rate over
the business cycle as shown in Winberry (2021).

Mean, variance, and interest elasticity:Now I depart from the benchmark calibration of ξ̄ = 0.6.
Instead, I study two alternative groups of calibrations: One, fixing the variance σ ∗

ξ = ξ̄ /
√
12=

0.6/
√
12 and varying the mean μξ from 0 to 2μ∗

ξ = ξ̄ to show how the interest-elasticity changes
and two, fixing the mean μ∗

ξ = ξ̄ /2= 0.6/2 and varying the variance σξ from 0 to 2σ ∗
ξ = ξ̄ /

√
3,

to show how the interest elasticity changes. I use an identical quasi-experimental real interest rate
shock as the one in the bundled model experiment above.
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(a) (b)

Figure 2. PE interest elasticity overμξ and σξ .
Note: The variance-fixed model fixes the variance by choosing σ ∗

ξ = ξ̄ /
√
12 and the mean-fixed model fixes the mean by

choosingμ∗
ξ = ξ̄ /2. The twomodels are identical along both vertical dotted lines whenμξ = 0.3 and σξ � 0.17.

The findings plotted in Figure 2 are very interesting. First, the interest elasticity is not solely
determined by the expected size (mean) of the nonconvex cost. Unlike common claims that the
interest elasticity is controlled by the expected size of the nonconvex cost, the uncertainty (vari-
ance) plays a role. In panel (a), even though themean is set to be relatively large, when the variance
approaches zero, the interest elasticity is massive. Given the fixedmean, themodel hits the targeted
interest elasticity when the variance is equal or larger to that of the bundled model. Second, the
interest elasticity is not solely determined by the uncertainty (variance) of the nonconvex cost.
In panel (b), even though the variance is fixed to be relatively large when the mean approaches
zero, the interest elasticity is again massive. Given the fixed variance, the model hits the targeted
interest elasticity when themean is equal or larger to that of the bundled model.

What is the mechanism behind choosing themean and the variance, respectively?

4. The mechanism
To further inspect the mechanism behind the differences between the mean and the variance, I
demonstrate results from three models with three alternative calibrations: (1) the carefully cal-
ibrated bundled model (Bundled); (2) a mean-fixed model

(
μ∗

ξ = ξ̄ /
√
12
)
with zero variance(

Zero-σξ

)
; and (3) a variance-fixed model

(
σ ∗

ξ = ξ̄ /2
)
with zero mean

(
Zero-μξ

)
.

Adecomposition of the interest elasticity: I first show the decomposition of the interest elasticity
in all three models in terms of both extensive margin and intensive margin investment in Table 1
following the equation below:

d
∑

Ij
dr

= d
∑

EM Ij
dr

+ d
∑

IM Ij
dr

, (12)

where d
∑

Ij is aggregate investment, d
∑

EM Ij is aggregate extensive margin investment, and
d
∑

IM Ij is aggregate intensive margin investment. The carefully calibrated Bundledmodel has an
interest elasticity of −5.1, 96% of the investment response is from the extensive margin, and 4%
is from the intensive margin. The Zero-σξ model has an interest elasticity of about −600, which
is almost entirely from the extensive margin. The Zero-μξ model has an interest elasticity of −80,
but which is mainly from the intensive margin.
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Table 1. A decomposition of the interest elasticity

Bundled Zero-σξ Zero-μξ

Decomp. Total EM IM Total EM IM Total EM IM

Elasticity −5.1 −4.9 −0.2 −601.8 −601.7 −0.1 −80.0 −4.4 −75.6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Percentage — 96% 4% — 100% 0% — 5.5% 94.5%

Note: The Bundledmodel has the calibration that matches the micro investment moments. The Zero-σξ deviates by setting σξ to zero
while all other parameters are unchanged. The Zero-μξ deviates by setting μξ to zero while all other parameters are unchanged. EM
stands for the extensive margin and IM stands for the intensive margin.
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Figure 3. Distributions of the extensive margin and the intensive margin.
Note: This figure shows the distribution of firms’ investment decisions at both the extensive margin and intensive margin
conditional on their productivity and capital stock. Since the intensive margin distributions are not much changed across
models, I only plot these for the Bundled model. We could decompose firms’ investment decisions in two steps. Take the
Bundled model for example; for firms at Productivity Grid 40 and Capital Grid 30, between 15% and 30% of these firms,
according to the extensivemargin rules in panel (b), would invest positively by 10% to 20%, according to the intensivemargin
rules in panel (a), and for firms at Productivity Grid 10 and Capital Grid 35, between 45% and 60% of these firms, according
to panel (b), would disinvest, according to panel (a). Aggregate investment of the economy is, therefore, an integration of the
extensive margin multiplying the intensive margin over the entire distribution.

This decomposition shows that the mean and the variance play different roles. Without a
sizable mean, the response of the aggregate investment to the interest rate is mainly from the
intensive margin. The intensive margin is much too sensitive to real interest rate changes, which
delivers a falsely large interest elasticity of aggregate investment. Without a sizable variance, the
response of aggregate investment to the interest rate is mainly from the extensive margin. The
extensive margin is extremely sensitive to changes in real interest rates. A firm either chooses to
pay μ∗

ξ and invest a lot or stay inactive when the real interest rate changes. Firms on the extensive
margin choose to ”all-in” which creates the unrealistically large interest elasticity.

Distributions of the extensive margin and the intensive margin: In Figure 3, I plot the
interpolated distributions of the extensive margin (adjustment probability) and the intensive
margin (investment rate conditional on adjustment) at the steady states using two-dimensional
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interpolation with respect to productivity and capital stock. Since the intensive margin distribu-
tions are not much changed across models, I only plot these for the Bundled model. Warmer and
darker colors indicate higher investment rates and higher adjustment probabilities.

In panel (a) for the Bundled model, we see that higher productivity and lower capital firms
invest more at the steady state. These firm will also invest more in response to the opportunity
presented by the interest rate shock. In contrast, lower productivity and higher capital firms disin-
vest at the steady state. In panel (b), we see that the extensive margin distribution is layered from
0% probability of adjustment along the diagonal to higher probabilities away from the diagonal
where productivity-capital mismatches are more severe. For the highest (lowest) productivity and
lowest (highest) capital firms, the adjustment probabilities are larger than 75%. Conditional on
draws of the nonconvex adjustment costs, a proportion of the high productivity and low capi-
tal firms to the right of the diagonal would then invest positively and the low productivity and
high capital firms to the left of the diagonal would than disinvest, both according to the intensive
margin rules in panel (a).

However, for the Zero-σξ model and the Zero-μξ model, the extensive margin distributions
are entirely different. The extensive margin in the Zero-σξ model shows a vertical sorting pattern
that is sharply moving from a 0% probability of adjusting to almost a 100% possibility of adjust-
ing. Even slight changes in interest rate would easily cause massive movements in the boundaries,
boosting firms at the margins to dramatically change from 0% to >75% or vice versa. As a result,
the extensive margin is extremely interest rate sensitive. In contrast, the extensive margin adjust-
ment probability in the Zero-μξ model is always higher than 45% and hasmuch smaller variations.
Changes in the interest rate barely cause movements in the boundaries - the extensive margin is
not that sensitive to interest rate changes.

5. Implications of aggregate dynamics
To demonstrate the dynamics implications of the the mechanism behind the differences between
the mean and the variance, I show the impulse responses of aggregate investment to aggregate
TFP shocks in the same three alternative calibrations: (1) the carefully calibrated bundled model
(Bundled); (2) the mean-fixed model

(
μ∗

ξ = ξ̄ /
√
12
)
with zero variance (Zero-σξ ); and (3) the

variance-fixed model
(
σ ∗

ξ = ξ̄ /2
)
with zero mean

(
Zero-μξ

)
.

My exact numerical exercises start the economy at steady-state, then impose an unexpected
aggregate productivity shock with persistence ρ = 0.8: {At}Tt=0 = {A∗,A∗ + a,A∗ + ρa,A∗ +
ρ2a, . . . ,A∗}. I feed the aggregate productivity series into the general equilibrium and solve
for the aggregate investment series {It}Tt=0. To demonstrate the state-dependency and the non-
linearity of the state-dependency due to the micro lumpiness, I solve for four scenarios {a} =
{+5%,−5%,+10%,−10%} as representations for {Small Boom, Small Recession, Large Boom,
Large Recession} for all three models, respectively. I then calculate the impulse responses relative

to the steady-state in absolute value in percentages
{
100%×

∣∣∣ It−I∗
I∗
∣∣∣}T

t=1
.

The impulse responses are plotted in Figure 4. In panel (a) for the Bundled model, we first
observe strong state-dependency: compared to a small recession, aggregate investment responds
by 6%more (21.6% relative to 20.4%) in a small boom. Second, the state-dependency is non-linear
due to the size of the TFP shock: compared to a large recession, aggregate investment responds by
11%more (43.9% relative to 39.5%) in a large boom. These results show how lumpy investment is
consequential for macroeconomic analysis.

However, this is not the case for either the Zero-σξ model or the Zero-μξ model. In panel (b) for
the Zero-σξ model, the state-dependency and the non-linearity of the state-dependency are both
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Figure 4. GE impulse responses to TFP shocks.
Note: The economy starts at steady-state t= 0 is hit by an unexpected aggregate productivity shockwith persistence ρ = 0.8:
{At}Tt=0 = {

A∗, A∗ + a, A∗ + ρa, A∗ + ρ2a, . . . , A∗}. Scenarios {Small Boom, Small Recession, Large Boom, Large Recession} for
all three models have a corresponding TFP shocks {a} = {+5%,−5%,+10%,−10%}, respectively. The impulse responses
relative to the steady-state are absolute value in percentages

{
100%×

∣∣∣ It−I∗I∗
∣∣∣}T
t=1.

unusually strong as well as are the magnitudes of the impulse responses. Aggregate investment
responds by 83% more(134% relative to 73%) and by 153% more (220% relative to 87%) in a
small/larger boom relative to a small/large recession, respectively. This is all because the extensive
margin is extremely sensitive to the countercyclical changes in real interest rates which smooth out
the recessionary effects when the economy is in recessions. In panel (c) for the Zero-μξ model, in
contrast, there is almost no state-dependency or non-linearity of the state-dependency. Since the
response of aggregate investment to the interest rate is mainly from the intensive margin, the
countercyclical changes in real interest rates hardly generate any state-dependency in aggregate
investment.

6. Concluding remarks
Nonconvex capital adjustment costs play an essential role in generating data-consistent lumpy
investment behaviors. The literature usually assumes a uniform distribution for the nonconvex
adjustment cost with support from 0 to an upper bound, which does not distinguish the separate
roles played by the mean and the variance of the distribution. In this paper, I show that both a
sizable mean and a sizable variance are necessary for lumpy investment models to generate an
empirically consistent interest elasticity of aggregate investment. Themean governs the degree to
which the extensive margin accounts for aggregate investment dynamics. In contrast, the vari-
ance controls how sensitive the extensive margin is to interest rate changes. Therefore, both are
quantitatively necessary in a reasonably calibrated lumpy investment model.

There are two potential directions of future research. First, more realistic estimations of the
mean and the variance using microdata on firm-level investment to better represent the expected
size and the uncertainty of the nonconvex capital adjustment cost faced by firms. Second, the
separate roles of the mean and the variance potentially matter for other dynamic models with
nonconvex adjustment costs such as firm entry and exit, worker hiring and firing, trade entry and
exit, inventory dynamics, and many others.

Acknowledgements. This work is generously supported by a grant from the Swiss National Science Foundation under
project ID “New methods for asset pricing with frictions”.

https://doi.org/10.1017/S1365100522000086 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100522000086


Macroeconomic Dynamics 1175

Notes
1 Consider the dynamics of aggregate investment model, general equilibrium feedbacks and monetary policy are directly
reflected in real interest rate changes and investment stimulus policies are isomorphic to such changes through the marginal
prices of capital.
2 This unconstrained intensive margin is usually constrained by a quadratic adjustment cost in recent literature. To keep this
note dedicated to disciplining the mean and the variance, I leave out the quadratic adjustment cost.
3 Spike rate is defined as the proportion of investment rate larger than 20% in a quarter.
4 To make the results more intuitive, I only include the nonconvex fixed cost and did not include the quadratic adjustment
cost which usually serves to constrain extreme investment behaviors. As a result, the model cannot exactly match all the
micro-investment moments as in Zwick and Mahon (2017).
5 By partial equilibrium, I assume the firms do not take consideration of wage changes as a feedback loop from household
decisions. This is consistent with the reduced form estimation from the partial equilibrium perspective.
6 In contrast, I show the PE wage elasticity of aggregate investment over ξ̄ in the appendix. Since changes in wage are not
directly (but indirect) changes in the costs of and the returns to capital. the wage elasticity of aggregate investment is not
sensitive to ξ̄ at all.
7 By partial equilibrium, I assume the firms not taking consideration of real interest rate changes as a feedback loop from
household decisions. This is consistent with the reduced form estimation from the partial equilibrium perspective.
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Appendix A. Details of the solution methods
Part I: Solving the stationary equilibrium

I first assume the economy at steady-state. This part is very similar as solving an Aiyagari
model. The only difference is firms own capital which is subject to adjustment costs. I search
for equilibrium wage to clear the labor market. The algorithm is as following:

Step. 1. Guess an equilibrium wage;
Step. 2. Solve the firm’s problem using Value Function Iteration;
Step. 3. Calculate aggregate variables from the firm distribution using Young (2010);.
Step. 4. Update the wage with a given weight and return to Step 2 until convergence.

After the convergence, I have the stationary equilibrium aggregate prices �∗ = {
∗ = β ,w∗ =
w∗}, aggregate quantities {C∗(�∗), N∗(�∗), Y∗(�∗), K∗(�∗)}, firm value functions {V∗(k, z;�∗),
VA∗(k, z;�∗), VNA∗(k, z;�∗), policy functions ξ∗∗(k, z;�∗), k′∗(k, z;�∗), l′∗(k, z;�∗)}, and dis-
tribution μ(k, z;�∗) at the stationary equilibrium state.

Part II: Solving the transitional equilibrium
With the stationary equilibrium solutions in hand, I now move to the solution of the transi-

tional equilibrium using a shooting algorithm. The key assumption here is that after a sufficiently
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long enough time, the economy will always converge back to its initial stationary equilibrium after
any temporary and unexpected (MIT) shocks. The following steps outline the shooting algorithm:

Step. 1. Fix a sufficient long transition period t= 1 to t=T (say 200);
Step. 2. Guess or given a sequence of aggregate price {wt ,
t} of length T such that the initial

prices {w1 =w∗,
1 = 
∗} (just simply assuming all the prices stay at steady state works
well) and terminal prices {wT =w∗,
T = 
∗}. Provide a predetermined shock process
of interest, that is, {At}. This implies a time series for the aggregate state {�t}Tt=1. The
aggregate state is just time t.

Step. 3. I know that at time T, the economy is back to its steady state. I have the steady state value
function V

(
k, z;�T

)=V∗ (k, z;�∗) in hand for time T. I solve for the firms’ prob-
lem by backward induction given V

(
k, z;�T

)
and {wT−1,
T−1}. This yields the firm

value function V
(
k, z;�T−1

)
and associated policy functions for capital k′ (k, z;�T−1

)
and labor l

(
k, z;�T−1

)
. By iterating backward, I solve the whole series of both policy

functions
{
k′(k, z;�t)

}T
t=1 and

{
l′(k, z;�t)

}T
t=1.

Step. 4. Given the policy functions and the steady state distribution as the initial distribution
μ
(
k, z;�1

)= μ
(
k, z;�∗), I use forward simulationwith the non-stochastic simulation

in Young (2010) to recover the whole path
{
μ(k, z;�t)

}T
t=1.

Step. 5. Using the distribution
{
μ(k, z)

}T
1 , I obtain all the aggregate quantities: aggregate output

{Y}Tt=1, aggregate investment {I}Tt=1, aggregate labor demand {N}Tt=1, and aggregate cap-
ital adjustment costs {	k}Tt=1, we could calculate aggregate adjustment costs {	p}Tt=1.
I then use the goods market clearing condition to calculate aggregate consumption
{C}Tt=1. I then calculate the Excessive Demand {�C}Tt=1 by taking the differences
between currently iterated {C}Tt=1 and the previous iteration {Cold}Tt=1.

Step. 6. Given all the aggregate quantities in the previous step and the Excessive Demand
{�C}Tt=1, I update all the aggregate prices. I update all equilibrium prices with a line
search: Xnew

t = speed · fX
({�C}Tt=1

)+ (1− speed) · Xold
t .

Partial equilibrium: Step 1-5 for given sequences of shocks, that is, real interest rate shock which

changes the stochastic discount factor
{
wt =w∗,
t = 1

1+rt

}T
t=1

for given {rt}Tt=1 series.

General equilibrium: Step 1-6 for given sequences of shocks, that is, aggregate productivity shock
for given {At}Tt=1 series. Repeat Steps 2-6 until X

new
t and Xold

t are close enough. Updating all prices
in all periods simultaneously reduces the computation burden dramatically.

In all the experiments, I set T= 200, and a step size of 0.1 (only for the Zero− σξ model, I
choose a step size of 0.0001) to ensure convergence, with the necessary distance between Xnew

t and
Xold
t smaller than 1e-7. I also tested with various choices of T from 50 to 400 to ensure that the

choice of T= 200 does not affect the accuracy of the solution.

B. Upper bound ξ̄ and wage elasticity of investment
In contrast, I show the PE wage elasticity of aggregate investment is not sensitive to ξ̄ . Since
changes in wage is not directly (but indirect) changes in the costs of and the returns to capital.
the wage elasticity of aggregate investment is not sensitive to ξ̄ at all.

How to measure the wage elasticity? The partial equilibrium wage elasticity of aggregate invest-
ment is defined by how aggregate investment, as yielded by the collective decisions of all
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Figure 5. PE wage elasticity over ξ̄ .
Note: In the benchmark model, the uniform distribution starts from 0 to an upper bound: ξjt ∼ U[0, ξ̄ ]. The red dash line is
the PE interest rate elasticity of investment in the data which is about−5.

heterogeneous firms, responds to an unexpected wage shock7. For instance, -5 means when firms
face an unexpected wage cut of 1%, the partial equilibrium aggregate investment increases by 5%.

The exact numerical exercise in this subsection is to have the economy start at steady-state, hit
by a one-time unexpected drop in wage at the first period to generate the wage series {wt}Tt=0 =
{w∗,w∗ + �w, . . . ,w∗}. I then feed the steady-state stochastic discount factor series {
t}Tt=0 ={

1
1+r∗

}
and the wage series {wt}Tt=0 into the partial equilibrium transaction and solve for the

aggregate investment series {It}Tt=0. The partial equilibrium wage elasticity is then calculated as
∂ logIt/∂rt at time t = 1.More specifically, I choose�w= −1% ∗w∗, therefore, a ∂ logI1/∂w1 = −5
means such a one-time 1% unexpected drop in wage boosts 5% aggregate investment increment.

In Figure 5, I plot the model’s wage elasticity against the choice of ξ̄ from 0.025 to 1. From the
figure we could first tell that wage elasticity of aggregate investment is not sensitive to changes
in the upper bound of the nonconvex adjustment costs. Second, aggregate investment is not as
sensitive to changes in wage than to changes in real interest rate.

Cite this article: Fang M (2023). “A Note on nonconvex adjustment costs in lumpy investment models: Mean versus
variance.”Macroeconomic Dynamics 27, 1166–1177. https://doi.org/10.1017/S1365100522000086
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