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Abstract

Let A and Ã be unbounded linear operators on a Hilbert space. We consider the following problem. Let
the spectrum of A lie in some horizontal strip. In which strip does the spectrum of Ã lie, if A and Ã are
sufficiently ‘close’? We derive a sharp bound for the strip containing the spectrum of Ã, assuming that
Ã − A is a bounded operator and A has a bounded Hermitian component. We also discuss applications of
our results to regular matrix differential operators.
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1. Introduction and statement of the main result

LetH be a complex separable Hilbert space with a scalar product (·, ·), norm given by
‖ · ‖ =

√
(·, ·) and unit operator I. By L(H) we denote the set of all bounded operators

in H . For an operator A on H , D(A) is its domain, A∗ and A−1 are the adjoint and
inverse operators, respectively, σ(A) is the spectrum, Rz(A) = (A − zI)−1 (z � σ(A))
is the resolvent, and λj(A) (j = 1, 2, . . .) denote the eigenvalues of A taken with their
multiplicities. In addition, for ω > 0, we denote by

Hω := {z ∈ C : |Im z| < ω}
the horizontal strip of height 2ω which is symmetric with respect to the real axis.
Following [10, Section 4.1], we will say that an operator A onH is a strip-type operator
of height ω (in short, A ∈ Strip(ω)) if σ(A) ⊂ Hω and sup|Im z|≥ω′ ‖Rz(A)‖ < ∞ for all
ω′ > ω. Finally,

ωst(A) := inf{ω ≥ 0 : A ∈ Strip(ω)}
is called the spectral height of A.

We consider the following problem. Let A and Ã be strip-type operators on H . In
which strip does the spectrum of Ã lie if ωst(A) is known and Ã and A are sufficiently
‘close’? We also discuss applications of our results to matrix differential operators.
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The strip-type operators form a wide class of unbounded operators in a Banach
space. The important example here is the logarithm of a sectorial operator, arising
in various applications (see [10, 16]). The natural functional calculus for strip-type
operators appears first in [2]. It is discussed in [11] in a general setting and used in
[3]. The theory of strip-type operators is developed in [9, 16, 17] and the references
given therein. For more details, see [10, Ch. 4]. To the best of our knowledge, the
above-mentioned problem has not been considered in the literature, although it is
important for the localisation of spectra and in various applications.

Furthermore, A is said to be a strong strip-type operator of height ω, if for any
ω′ > ω there is an Lω′ such that

‖Rz(A)‖ ≤ Lω′
|Im z| − ω′ for |Im z| > ω′.

From [10, Example 4.1.1.2, page 92], if iA generates a C0-group eiAt in a Hilbert space,
then A is a strong strip-type operator of height θ(eiAt), where θ(eiAt) is the group type
of eiAt. In particular,

ωst(A) = θ(eiAt). (1.1)

Throughout the paper it is assumed that D(A) is dense in H , A = AR + iAI , where AR
and AI are self-adjoint operators, and

AI ∈ L(H). (1.2)

According to the Stone theorem (see [10, Section 4.1]), the operator iAR generates
a C0-group eitAR (−∞ < t < ∞) of unitary operators. In particular, for t ≥ 0 it is
a semigroup. Moreover, by [5, Theorem II.4.6], iAR generates a bounded analytic
semigroup. Hence, by [5, Proposition III.1.12], iA generates a bounded analytic
semigroup, since AI is bounded. Thus, under condition (1.2), A is a strip-type operator
and therefore (1.1) holds.

Let

D(Ã) = D(A) and q := ‖A − Ã‖ < ∞. (1.3)

Then ‖ÃI‖ ≤ q + ‖AI‖ and therefore Ã is also a strip-type operator.
We introduce the notation x(t) = eitAx0 (x0 ∈ D(A)), α(AI) = sup σ(AI) and

β(AI) = inf σ(AI). Then

d
dt

(x(t), x(t)) = 2Re (iAx(t), x(t)) = −2(AIx, x) ≤ −2β(AI) ≤ 2‖AI‖ ‖x(t)‖2

and

d
dt

(x(t), x(t)) = −2(AIx, x) ≥ −2α(AI)(AIx, x).
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Consequently, ‖eiAtx0‖ ≤ ‖x0‖e‖AI‖t for t ≥ 0). Thus, from (1.1), ωst(A) ≤ ‖AI‖.
Similarly,

ωst(Ã) ≤ ‖ÃI‖. (1.4)

This inequality is rather rough. Below, we present a considerably sharper estimate.
To this end, note that according to (1.1), ‖e±iAt‖ ≤ const. eωstt (t ≥ 0), and thus the

operators −(cI ± iA), for c ∈ R, generate the exponentially stable semigroups e−(cI±iA)t,
provided c > ωst. Hence, the integral

Xc :=
∫ ∞

0
e−(iA+cI)∗te−(iA+cI)t dt (c > ωst) (1.5)

strongly converges and

‖Xc‖ ≤
∫ ∞

0
e−2ct‖e−iAt‖2 dt.

We are now in a position to formulate our main result, which we prove in Section 2.

THEOREM 1.1. Let conditions (1.2) and (1.3) hold. Let Xc be defined by (1.5) for some
c > ωst. Then ωst(Ã) < c, provided q‖Xc‖ < 1/2.

Now put

wc(A) :=
1

2π

∫ ∞
−∞
‖(iA + (is + c)I)−1‖2 ds.

By the classical Parseval–Plancherel equality [1, Theorem 5.2.1], for any x ∈ H ,

(Xcx, x) =
( ∫ ∞

0
e−(Ic+iA)∗te−(Ic+iA)tx dt, x

)
=

∫ ∞
0
‖e−(Ai+Ic)tx‖2 dt

=
1

2π

∫ ∞
−∞
‖(iA + (is + c)I)−1x‖2 ds.

Hence,

‖Xc‖ ≤ wc(A). (1.6)

If A is normal, that is, AA∗ = A∗A, then by the spectral representation (see, for instance,
[12]), we easily see that ‖eiAt‖ = e−tβ(A), where β(A) := inf Im σ(A) and t ≥ 0. But
β(A) ≥ −ωst(A). Therefore,

‖Xc‖ ≤
∫ ∞

0
e−2(c+β(A)) dt =

1
2(c + β(A))

=
1

2(c − ωst(A))
(c > ωst(A)).

Making use of Theorem 1.1, we obtainωst(Ã) ≤ ωst(A) + q + ε for ε > 0. Hence, letting
ε → 0, we arrive at the following result.

COROLLARY 1.2. Let conditions (1.2) and (1.3) hold and let A be normal. Then
ωst(Ã) ≤ ωst(A) + q. In particular, if A is self-adjoint, then ωst(Ã) ≤ q.
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Let us show that Theorem 1.1 is sharp. To this end, assume that K ∈ L(H) and A are
self-adjoint commuting operators and Ã = A + iK. Suppose also that σ(A) and σ(K)
are discrete. Then σ(Ã) consists of the eigenvalues

λjk(Ã) = λj(A) + iλk(K) (j, k = 1, 2, . . .).

Hence, ωst(Ã) = supk |λk(K)| = q, since q = ‖Ã − A‖ = ‖K‖ = supk |λk(K)|. But due to
Corollary 1.2, ωst(Ã) ≤ q, since ωst(A) = 0. So the bound in Theorem 1.1 is attained in
this case.

2. Proof of Theorem 1.1

We need the following well-known theorem (see [4, Theorem 5.1.3, page 217]).

THEOREM 2.1. Suppose that B is the infinitesimal generator of the C0-semigroup T(t)
on a Hilbert space H . Then T(t) is exponentially stable if and only if there exists a
bounded positive definite operator P such that

(Bz, Pz) + (Pz, Bz) = −(z, z) (z ∈ D(B)). (2.1)

Moreover, if B is the infinitesimal generator of an exponentially stable
C0-semigroup then from [4, Section 5.5.3a, Equation (5.62)], for any Q ∈ L(H)
the equation

(Bz1, Pz2) + (Pz1, Bz2) = −(z1, Qz2) (2.2)

has a solution P ∈ L(H) which, again by [4, Section to 5.5.3a], is representable as

P =
∫ ∞

0
eB∗tQeBt dt. (2.3)

For a self-adjoint operator S we write S > 0 (S < 0), if S is positive (negative) definite.
Let D(B) = D(B∗) and B∗P + PB = −C2 (with C > 0) on D(B) for some positive
definite P ∈ L(H). Then

C−1B∗PC−1 + C−1PBC−1 = C−1B∗CC−1PC−1 + C−1PC−1CBC−1 = −I.

That is, M∗Y + YM = −I, where M = CBC−1 and Y = C−1PC−1.
According to Theorem 2.1, M generates an exponentially stable semigroup. Since

M and B are similar, we arrive at the following result.

COROLLARY 2.2. Let D(B) = D(B∗) and B∗P + PB < 0 on D(B) for some positive
definite P ∈ L(H). Then sup Re σ(B) < 0.

PROOF OF THEOREM 1.1. From (2.3),

(cI + iA)∗Xc + Xc(cI + iA) = I. (2.4)

Put E = Ã − A. Then from (2.4),

(iÃ + cI)∗Xc + Xc(iÃ + cI) = (iA + cI)∗Xc + Xc(iA + cI) − iE∗Xc + iXcE
= I − iE∗Xc + iXcE.
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If 2q‖Xc‖ < 1, then (iÃ + cI)∗Xc + Xc(iÃ + cI) > 0. By Corollary 2.2, it follows that
sup Re σ(−iÃ − cI) < 0. So −c − Re (ix − y) = −c + y < 0 for any x + iy ∈ σ(Ã).
Thus sup Im σ(Ã) < c. Replacing Ã by −Ã and proceeding in the same way,
we find −c + Re (ix − y) = −c − y < 0. Thus inf Im σ(Ã) > −c. This proves the
theorem. �

3. Spectral strips of differential operators with matrix coefficients

Let L2 = L2([0, 1],Cn) be the space of functions defined on [0, 1] with values in Cn

and the scalar product

( f , h)L2 =

∫ 1

0
( f (x), h(x))n dx ( f , h ∈ L2),

where (·, ·)n means the scalar product in Cn. On the domain

D(A) = {u ∈ L2 : u′′ ∈ L2 and u(0) = u(1) = 0},

consider the operator

Ã = − d2

dx2 + C(x) (x ∈ (0, 1)), (3.1)

where C(x) is an n × n matrix continuously dependent on x. We consider this operator
as a perturbation of the operator

A = − d2

dx2 + C0 (x ∈ (0, 1)) (3.2)

with a constant n × n matrix C0. By way of example, one can take C0 = C(0) or
C0 =

∫ 1
0 C(x) dx.

Clearly,

(AI f )(x) = C0I f (x) ( f ∈ L2, x ∈ [0, 1], C0I = (C0 − C∗0)/2i)

and

q = ‖A − Ã‖L2 ≤ sup
x
‖C(x) − C0‖n.

Here ‖A − Ã‖L2 is the operator norm in L2 of A − Ã and ‖ · ‖n means the spectral matrix
norm (the operator norm with respect to the Euclidean vector norm).

Take into account that the operator S defined on D(A) by S := −d2/dx2 commutes
with constant matrices. Since the eigenvalues of S are π2k2 (k = 1, 2, . . .), by simple
calculations we can show that σ(A) consists of the eigenvalues λjk(A) = π2k2 + λj(C0)
(k = 1, 2, . . . , j = 1, . . . , n), where λj(C0) are the eigenvalues of C0 taken with their
multiplicities. Thus,

ωst(A) = ωst(C0) := max
j
|Im λj(C0)|.
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Since S and C0 commute, we have eiAt = eiC0teiSt. Hence, taking into account that S =
S∗ and therefore ‖eiSt‖ = 1, we can write ‖eiAt‖L2 ≤ ‖eiC0t‖n and

‖Xc‖L2 ≤
∫ ∞

0
e−2ct‖e−iC0t‖2n dt. (3.3)

To estimate ‖eiC0t‖n, for an n × n matrix M, introduce the quantity g(M) which
measures the departure from normality:

g(M) :=
[
N2

2 (M) −
n∑

k=1

|λk(M)|2
]1/2

,

where N2(M) := (trace (M∗M))1/2 is the Hilbert–Schmidt (Frobenius) norm of M and
λk(M) (k = 1, . . . , n) are the eigenvalues of M taken with their multiplicities.

Various properties of g(M) can be found in [8, Section 3.1]. In particular,

g2(M) ≤ N2
2 (M) − |trace M2|

and

g2(M) ≤ 2N2
2 (MI) (where MI = (M −M∗)/2i).

In addition, g(zM) = |z|g(M) for z ∈ C. If M is a normal matrix, that is, MM∗ = M∗M,
then g(M) = 0. By [8, Theorem 3.5], for any n × n matrix M,

‖eMt‖ ≤ exp[α(M)t]
n−1∑
k=0

gk(M)tk

(k! )3/2 (α(M) = max
k

Re λk(M), t ≥ 0).

But α(iC0) ≤ ωst(C0) and g(iC0) = g(C0). Thus,

‖eiC0t‖ ≤ exp[ωst(C0)t]
n−1∑
k=0

gk(C0)tk

(k! )3/2 (t ≥ 0)

and from (3.3),

‖Xc‖L2 ≤
∫ ∞

0
exp[−2(c − ωst(C0))t]

( n−1∑
k=0

gk(C0)tk

(k! )3/2

)2
dt

=

∫ ∞
0

exp[−2(c − ωst(C0))t]
n−1∑
j,k=0

gj+k(C0)tk+j

(j! k! )3/2 dt (c > ωst(C0)).

Since ∫ ∞
0

exp[−st]tk dt =
k!

sk+1 (s > 0),

we find ‖Xc‖ ≤ 1
2ζ(c − ωst(C0)), where

ζ(s) =
n−1∑
j,k=0

(j + k)! gj+k(C0)
2j+ksk+j+1(j! k! )3/2 (s > 0).
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Now Theorem 1.1 implies the following result.

COROLLARY 3.1. Let Ã be defined by (3.1) and, for some c > ωst(C0), let the condition

qζ(c − ωst(C0)) < 1

hold. Then ωst(Ã) < c.

Let xn be the unique nonnegative root of the equation

qζ(y) = q
n−1∑
j,k=0

(j + k)! gj+k(C0)
2j+kyk+j+1(j! k! )3/2 = 1 (y > 0), (3.4)

which is equivalent to the equation

y2n = q
n−1∑
j,k=0

(j + k)! gj+k(C0)
2j+k(j! k! )3/2 y2n−k−j−1 = 1. (3.5)

If y > xn + ωst(C0), then qζ(y) < qζ(xn) = 1. Now Corollary 3.1 implies ωst(Ã) < y.
Letting y→ xn + ωst(C0), we obtain the following result.

COROLLARY 3.2. Let Ã be defined by (3.1). Then ωst(Ã) ≤ ωst(C0) + xn.

If C0 is normal, then g(C0) = 0, and with 00 = 1 we have ζ(s) = 1/s and thus xn = q.
The following lemma gives us an estimate for xn in the case g(C0) � 0.

LEMMA 3.3. Let qζ(1) ≤ 1. Then

xn ≤ 2n
√

qζ(1).

PROOF. By (3.4), qζ(xn) = 1 ≥ qζ(1). Since ζ(s) is monotonically decreasing, it
follows that xn ≤ 1. Now (3.5) proves the lemma. �

Corollary 3.2 and the Lemma 3.3 yield the following result.

COROLLARY 3.4. Let Ã be defined by (3.1) and qζ(1) ≤ 1. Then

ωst(Ã) ≤ ωst(C0) + 2n
√

qζ(1).

For recent results on the spectra of differential operators see, for instance, the works
[6, 7, 13, 14, 15, 18, 19] and the references which are given therein.
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