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overview paper

Bayesian approaches to acoustic modeling:
a review
shinji watanabe1 and atsushi nakamura2

This paper focuses on applications of Bayesian approaches to acoustic modeling for speech recognition and related speech-
processing applications. Bayesian approaches have been widely studied in the fields of statistics and machine learning, and one
of their advantages is that their generalization capability is better than that of conventional approaches (e.g., maximum likeli-
hood). On the other hand, since inference in Bayesian approaches involves integrals and expectations that are mathematically
intractable in most cases and require heavy numerical computations, it is generally difficult to apply them to practical speech
recognition problems.However, there have beenmany such attempts, and this paper aims to summarize these attempts to encour-
age further progress on Bayesian approaches in the speech-processing field. This paper describes various applications of Bayesian
approaches to speech processing in terms of the four typical ways of approximating Bayesian inferences, i.e., maximum a pos-
teriori approximation, model complexity control using a Bayesian information criterion based on asymptotic approximation,
variational approximation, and Markov chain Monte Carlo-based sampling techniques.
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I . I NTRODUCT ION

Speech recognition systems, which convert speech into text,
make it possible for computers to process the informa-
tion contained in human speech. The current successes in
speech recognition and related speech-processing applica-
tions are based on pattern recognition that uses statistical
learning theory. Maximum likelihood (ML) methods have
become the standard techniques for constructing acoustic
and language models for speech recognition. They guar-
antee that ML estimates approach the stationary values of
the parameters. ML methods are also applicable to latent
variable models, such as hidden Markov models (HMMs)
and Gaussian mixture models (GMMs), thanks to the
expectation–maximization (EM) algorithm [1]. Acoustic
modeling based on HMMs and GMMs is one of the most
successful examples of the ML–EM approach, and it has
been greatly developed in previously reported studies [2–4].

However, the performance of current speech recognition
systems is far from satisfactory. Specifically, the recogni-
tion performance ismuch poorer than the human capability
of recognizing speech. This is because speech recognition
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suffers from a distinct lack of robustness to unknown con-
ditions, which is crucial for practical use. In a real environ-
ment, there aremany fluctuations originating in various fac-
tors such as the speaker, context, speaking style, and noise.
For example, the performance of acoustic models trained
using read speech degrades greatly when the models are
used to recognize spontaneous speech due to the mismatch
between the read and spontaneous speech characteristics
[5]. More generally, most of the problems posed by current
speech recognition techniques result from a lack of robust-
ness. This lack of robustness is an obstacle to the deploy-
ment of commercial applications based on speech recogni-
tion. This paper addresses various attempts to improve the
acoustic model training method beyond the conventional
ML approach by employing Bayesian approaches.

In Bayesian approaches, all the variables that are intro-
duced when models are parameterized, such as model
parameters and latent variables, are regarded as probabilis-
tic variables, and their posterior distributions are simply
obtained by using the probabilistic sum and product rules.
The difference between the Bayesian and ML approaches
is that the estimation target is a probability distribution
in the Bayesian approach, whereas it is a parameter value
in the ML approach. Based on this posterior distribution
estimation, the Bayesian approach can generally achieve
more robust model construction and classification than
an ML approach [6–8]. However, the Bayesian approach
requires complex integral and expectation computations
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to obtain posterior distributions when models have latent
variables. For example, to infer the posterior distribution
of HMM/GMM model parameters � given speech feature
vectors O, we need to calculate the following equation:

p(�|O) =
∑

Z

p(O, Z|�)p(�)

p(O)
, (1)

where Z is a set of HMM state and GMM compo-
nent sequences. Once we obtain the posterior distribu-
tion, we classify category c (phoneme or word) given new
speech feature vectors x based on the following posterior
distribution:

p(c|x, O) =
∫

p(c|�, x)p(�|O)d�. (2)

Since the integral and expectation often cannot be com-
puted analytically, we need some approximations if we are to
implement a Bayesian approach for a classification problem
in speech processing.

There have already been many attempts to undertake
Bayesian speech processing by approximating the above
Bayesian inference [8, 9]. The most famous application
of Bayesian approaches employs maximum a posteriori
(MAP) approximation, which uses the maximum value of
the posterior distribution instead of integrating out the
latent variable or model parameter [7]. Historically, MAP-
based speech recognition approaches constitute the first
successful applications of Bayesian approaches to speech
processing. These approaches were introduced in the early
1990s to deal with speaker adaptation problems in speech
recognition [10, 11]. Around 1995, they started to be applied
to more practical speech processing problems (e.g., con-
tinuous density HMM [12], which is a standard acoustic
model in speech recognition, and speaker recognition based
on a universal background model [13]). Other successful
methods are based on the Bayesian information criterion
(BIC), which is obtained by using asymptotic approxima-
tions [14, 15]. Starting around 2000, these methods have
been applied to wide areas of speech processing, from pho-
netic decision tree clustering to speaker segmentation [16–
19]. Recently, advanced Bayesian topics such as variational
Bayes (VB) and Markov chain Monte Carlo (MCMC) have
been actively studied in the machine learning field [8], and
these approaches are also starting to be applied to speech
processing [20–23], by following the successful Bayesian
applications based on MAP and BIC.

Focusing on the four major trends as regards approx-
imating Bayesian inferences, i.e., MAP approximation,
asymptotic approximation for model complexity control,
variational approximation, and MCMC, this paper aims to
provide an overviewof the various attempts described above
in order to encourage researchers in the speech-processing
field to investigate Bayesian approaches and guide them in
this endeavor.

In addition to the above topics, there are other inter-
esting Bayesian approaches that have been successfully

applied to speech recognition, e.g., on-line Bayesian adap-
tation [24, 25], structural Bayes [26, 27], quasi-Bayes [28–
30], graphical model representation [31–33], and Bayesian
sensing HMM [34]. Although we do not focus on these
approaches in detail, they have been summarized in other
review and tutorial articles [35–37].

I I . MAP

MAP approaches were introduced into speech recogni-
tion to utilize prior information [10–12]. The Bayesian
approach is based on posterior distributions of the distri-
bution parameters, while the ML approach only considers
a particular value for these distribution parameters. Let
O = {ot ∈ R

D |t = 1, . . . , T} be a given training dataset of
D-dimensional feature vectors and Z = {zt |t = 1, . . . , T}
be a set of corresponding latent variables. The posterior dis-
tribution for a distribution parameter �c of category c is
obtained by using thewell-knownBayes theorem as follows:

p(�c |O, m) =
∑

Z

∫
p(O, Z|�, m)p(�|m)

p(O|m)
d�−c , (3)

where p(�|m) is a prior distribution for all distribution
parameters �, and m denotes the model structure index,
for example, the number of Gaussian components or HMM
states. Here, −c represents the set of all categories except c .
In this paper, we regard the hyperparameter setting as the
model structure, and include its variations in the index m.
From equation (3), prior information can be utilized via
estimations of the posterior distribution, which depends on
prior distributions.

Equation (3) generally cannot be calculated analyti-
cally due to the summation over latent variables. To avoid
the problem, MAP approaches approximate the distribu-
tion estimation as a point estimation. Namely, instead of
obtaining the posterior distribution in equation (3), MAP
approaches consider the following value

�M AP
c = argmax

�c

p(�c |O, m)

= argmax
�c

∑
Z

p(O, Z|�c , m)p(�c |m).
(4)

This estimation can be efficiently performed by using the
EM algorithm. The MAP approximation was first applied
to the estimation of single-Gaussian HMM parameters
in [10] and later extended to GMM–HMMs in [11, 12].
The effectiveness of MAP approaches can be illustrated in
a speaker recognition task where prior distributions are
set by speaker-independent HMMs. For example, Gauvain
and Lee [12] compares speaker adaptation performance by
employing ML and MAP estimations of acoustic model
parameters using the DARPA Naval Resources Manage-
ment (RM) task [38]. With 2 minutes of adaptation data,
the ML word error rate was 31.5 and was worse than
the speaker independent word error rate (13.9) due to
the over-training effect. However, the MAP word error
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rate was 8.7, clearly showing the effectiveness of the
MAP approach. MAP estimation has also been used in
speaker recognition based on universal backgroundmodels
[13], and in the discriminative training of acoustic mod-
els in speech recognition as a parameter-smoothing tech-
nique [39].

I I I . B I C

BIC approaches were introduced into speech recognition to
perform model selection [16, 17]. To deal with model struc-
ture in a Bayesian approach, we can consider the following
posterior distribution:

p(m|O) =
∑

Z

∫
p(O, Z|�, m)p(�|m)p(m)

p(O)
d�, (5)

where p(m) denotes a prior distribution for the model
structure m. However, as with MAP approaches,
equation (5) cannot be calculated analytically due to the
summation over latent variables. The BIC only focuses on
models that do not have latent variables. Under the asymp-
totic assumption (i.e., the assumption that there is a large
amount of data), one can obtain the following equation:

log p(m|O) ∝ log p(O|�, m) − #(�)

2
log T . (6)

The first termon the right-hand side is a log-likelihood term
and the second term is a penalty term,which is proportional
to the number of model parameters, denoted by #(�).

This criterion is widely used in speech processing. For
example, it enables phonetic decision tree clustering to be
performed in [16, 17] without having to set a heuristic stop-
ping criterion as was done in [40]. Shinoda and Watanabe
[16] show the effectiveness of the BIC/MDL1 criterion for
phonetic decision tree clustering in a 5000 Japanese word
recognition task by comparing the performance of acoustic
models based on BIC/MDL with models based on heuris-
tic stopping criteria (namely, the state occupancy count and
the likelihood threshold). BIC/MDL selected 2069 triphone
HMM states automatically with an 80.4 recognition rate,
while heuristic stopping criteria selected 1248 and 591 states
with recognition rates of 77.9 and 66.6 in the best and
worst cases, respectively. This result clearly shows the effec-
tiveness of model selection using BIC/MDL. An extension
of the BIC objective function by considering a tree struc-
ture is also discussed in [41], and an extension based on VB
is discussed in Section IV. In addition, BIC/MDL is used
for Gaussian pruning in acoustic models [19], and speaker
segmentation [18]. BIC-based speaker segmentation is a
particularly important technique for speaker diarization,
which has been widely studied recently [42].

MAP and BIC, together with Bayesian Predictive Classi-
fication (BPC) [43, 44], which marginalizes model param-
eters so that the effect of over-training is mitigated and

1BIC and minimum description length (MDL) criteria have been
independently proposed, but they are practically the same. Therefore, they
are identified in this paper and referred to as BIC/MDL.

Table 1. Comparison of VBEC and other Bayesian
frameworks in terms of Bayesian advantages.

Bayesian advantage VBEC MAP BIC/MDL BPC

(1) Prior utilization
√ √

– –
(2) Model selection

√
–

√
–

(3) Robust classification
√

– –
√

robust classification is obtained, can be practically realized
in speech recognition. However, while Bayesian approaches
can potentially have the three following advantages:

(1) Effective utilization of prior knowledge through prior
distributions (prior utilization).

(2) Model selection that obtains a model structure with the
highest probability of posterior distribution of model
structures (model selection).

(3) Robust classification by marginalizing model parame-
ters (robust classification).

MAP, BIC, and BPC each have only one. In general, these
advantages make pattern recognition methods more robust
than those based on ML approaches. For example, a MAP-
based framework approximates the posterior distribution
of the parameter by using a MAP approximation to utilize
prior information. BIC/MDL- and BPC-based frameworks,
respectively, perform some sort of model selection and
robust classification. These approaches are simple and pow-
erful frameworks with which to transfer some of the advan-
tages expected fromBayesian approaches to speech recogni-
tion systems. However, they also lose some of these advan-
tages due to the approximations they introduce, as shown
in Table 1. In the next section, we introduce anothermethod
for approximating aBayesian inference, variational approxi-
mation, which includes all three Bayesian advantages simul-
taneously unlike the MAP, BIC, and BPC approaches.

I V . VB

This section presents an application ofVB, a technique orig-
inally developed in the field of machine learning [45–48],
to speech recognition. With this VB approach, approxi-
mate posterior distributions (VB posterior distributions)
can be obtained effectively by iterative calculations simi-
lar to the EM algorithm used in theML approach, while the
three advantages of the Bayesian approaches are retained.
Therefore, the framework is formulated using VB to replace
the ML approaches with Bayesian approaches in speech
recognition. We briefly review a speech recognition frame-
work based on a fully Bayesian approach to overcome the
lack of robustness described above by utilizing the three
Bayesian advantages [20, 21]. A detailed discussion of the
formulation and experiments can be found in [49].

A) Application of VB to speech recognition
As we saw earlier, Bayesian approaches aim at obtaining
posterior distributions for the model parameters, but these
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posterior distributions cannot be generally obtained ana-
lytically. The goal of VB is to approximate these posterior
distributions using some other distributions, referred to as
variational distributions, which are optimized so that they
are as close as possible, in some sense yet to be defined,
to the true posterior distributions. The variational distri-
butions are generally assumed to belong to a family of
distributions of a simpler form than the original poste-
rior distributions. Here, we consider an arbitrary posterior
distribution q , and assume that it can be factorized as

q(�, Z, m|O) =
∏

c

q(�c |Oc , m)q(Zc |Oc , m)q(m|Oc),

(7)

where c is a category index (e.g., a phoneme if we deal with a
phoneme-based acoustic model). VB then focuses onmini-
mizing the Kullback–Leibler divergence from q(�, Z, m|O)

to p(�, Z, m|O), which can be shown to be equivalent to
maximizing the following objective functional:

Fm[q(�c |Oc , m), q(Zc |Oc , m)]

=
〈
log

p(Oc , Zc |�c , m)p(�c |m)

q(�c |Oc , m)q(Zc |Oc , m)

〉
q(�c |Oc ,m),q(Zc |Oc ,m)

,

(8)

where the brackets 〈〉 denote the expectation, i.e., 〈g (y)〉p(y)

≡ ∫
g (y)p(y)dy for a continuous variable y and 〈g (n)〉p(n)

≡ ∑
n g (n)p(n) for a discrete variable n. Equation (8) can

be shown to be a lower bound of the marginalized log like-
lihood. The optimal posterior distribution can be obtained
by a variational method, which due to the factorization
assumption (7) leads to:

q̃(�c |Oc , m) = argmax
q(�c |O,m)

Fm[q(�c |Oc , m), q(Zc |Oc , m)],

q̃(Zc |Oc , m) = argmax
q(Zc |O,m)

Fm[q(�c |Oc , m), q(Zc |Oc , m)],

q̃(m|O) = argmax
q(m|O)

∑
c

Fm[q(�c |Oc , m), q(Zc |Oc , m)].

(9)

By assuming that p(m) is a uniform distribution, we
obtain the proportion relation between q̃(m|O) and Fm,
and an optimal model structure where theMAP probability
can be selected as follows:

m̃ = argmax
{m}

q̃(m|O) = argmax
{m}

Fm. (10)

This indicates that by maximizing the totalFm with respect
to not only q(�c |Oc , m) and q(Zc |Oc , m) but also m, we
can obtain the optimal parameter distributions and can
select the optimal model structure simultaneously [47, 48].
The VB approach is applied to a continuous density HMM
(left-to-right HMM with a GMM for each state) in the
variational Bayesian estimation and clustering (VBEC) for
speech recognition framework [20, 21]. The continuous
density HMM is a standard acoustic model that represents

Fig. 1. Superiority of VBEC-based acoustic model construction for a small
amount of training data.

a phoneme category for speech recognition. VBEC is a fully
Bayesian framework, where all the following acousticmodel
procedures for speech recognition (acoustic model con-
struction and speech classification) are re-formulated in a
VB manner:

• Output distribution setting
→ Output and prior distribution setting

• Parameter estimation by ML Baum–Welch
→ Posterior estimation by VB Baum–Welch

• Model selection by using heuristics
→ Model selection by using variational lower bound

• Classification using ML estimates
→ BPC using VB posteriors

Consequently, VBEC includes the three Bayesian advan-
tages unlike the conventional Bayesian approaches, as illus-
trated in Table 1.

B) Experiments and related work
We briefly illustrate the effectiveness of the VBEC frame-
work using the results of speech recognition experiments
(see [49] for details). Figure 1 compares word accura-
cies on Japanese read speech data (JNAS) for various
amounts of training data used in acoustic model construc-
tion. The difference between VBEC and conventional ML-
and BIC/MDL-based acoustic modeling is whether or not
the approach utilizes prior distributions. VBEC significantly
improved the performance for a small amount of train-
ing data, which shows the effectiveness of (1) a prior uti-
lization function in Bayesian approaches. Table 2 shows
experimental results for the automatic determination of
the acoustic model topology by using VBEC and the con-
ventional heuristic approach that determines the model
topology by evaluating ASR performance on development
sets. In the various ASR tasks, VBEC obtained compara-
ble performance to the conventional method by selecting
appropriate model topologies without using a development
set, which shows the effectiveness of (2) a model selection
function in Bayesian approaches. Finally, Fig. 2 shows a
comparison ofword accuracieswithCorpus of Spontaneous
Japanese (CSJ) data [5] in speaker adaptation experiments.
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Table 2. Automatic determination of acoustic model topology.

Japanese read speech Japanese isolated word Japanese lecture English read speech
(JNAS) (JEIDA) (CSJ) (WSJ)

VBEC 91.7  97.9  74.5  91.3 
(# states, # components) (912, 40) (254, 35) (1986, 32) (2504, 32)

ML + dev. Set 91.4  98.1  74.2  91.3 
(# states, # components) (1000, 30) (1000, 15) (3000, 32) (7500, 32)

Fig. 2. Robust classification based on marginalization effect.

VBEC and MAP used the same prior distributions, and
the difference between them is whether or not the model
parameters are marginalized (integrated out). VBEC also
significantly improved the performance for a small amount
of training data, which shows the effectiveness of (3) a robust
classification function in Bayesian approaches. Thus, these
results confirm experimentally that VBEC includes the
three Bayesian advantages unlike the conventional Bayesian
approaches, as shown in Table 1.

VB is becoming a common technique in speech pro-
cessing. Table 3 summarizes the technical trend in speech
processing techniques involving VB. Note that VB has been
widely applied to speech recognition and other forms of
speech processing. Given such a trend, VBEC is playing
an important role in pioneering the main formulation and
implementation of VB-based speech recognition, which is a
core technology in this field. In addition to the approxima-
tion of Bayesian inferences, the variational techniques are
used as an effective approximation method in some speech
processing problems, e.g., approximating the Kullback–
Leibler divergence between GMMs [73], and the Bayesian
treatment of a discriminative HMM by using minimum
relative entropy discrimination [74].

V . MCMC

In previous sections, we described Bayesian approaches
based on deterministic approximations (MAP, asymp-
totic approximation, and VB). Another powerful way to
implement Bayesian approaches is to rely on a sampling

Table 3. Technical trend of speech recognition
using VB

Topic References

Feature extraction [50, 51]
Speech GMM for noise robust ASR
and voice activity detection

[52, 53]

Formulation of Bayesian speech
recognition

[20, 21, 54, 55]

Selection of number of GMM
components

[56–58]

Acoustic model adaptation [59–62]
Determination of acoustic model
topology

[63–67]

Non-parametric Bayes for acoustic
models/speaker diarization

[68–71]

Statistical speech synthesis [72]

method, which obtains expectations by using Monte Carlo
techniques [7, 8]. The main advantage of the sampling
approaches is that they can avoid local optimum problems
in addition to providing other Bayesian advantages (miti-
gation of data sparseness problems and capacity for model
structure optimization). While their heavy computational
cost could be a problem in practice, recent improvements
in computational power and the development of theoreti-
cal and practical aspects have allowed researchers to start
applying them to practical problems (e.g., [75, 76] in nat-
ural language processing). This paper describes our recent
attempts to apply a sampling approach to acousticmodeling
based on MCMC, in particular Gibbs sampling [23, 71, 77].
Gibbs sampling is a simple and widely applicable sampling
algorithm [78] that samples the latent variable zt by using
the conditional distribution p(zt |z\t) where z\t is the set of
all latent variables except zt . By iteratively sampling zt for all
t based on this conditional distribution, we can efficiently
sample the latent variables, which are then used to compute
the expectations (e.g., equation (1)) required in Bayesian
approaches. Here, we focus on an example of a hierar-
chical GMM, called a multi-scale mixture model, used as
an acoustic model in speaker clustering, and introduce a
formulation based on Gibbs sampling.

A) Formulation
Multi-scale mixture model (M3)
M3 considers two types of observation vector sequences.
One is an utterance- (or segment-) level sequence and the
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other is a frame-level sequence. A D-dimensional obser-
vation vector (e.g., MFCC) at frame t in utterance u is
represented as ou,t(∈ R

D). A set of observation vectors in
utterance u is represented as ou � {ou,t}Tu

t=1.
We assume that the frame-level sequence is modeled

by a GMM as usual, and the utterance-level sequence is
modeled by a mixture of these GMMs. Two kinds of latent
variables are involved in M3 for each sequence: utterance-
level latent variables zu and frame-level latent variables
vu,t . Utterance-level latent variables may represent emo-
tion, topic, and speaking style as well as speakers, depend-
ing on the speech variation. The likelihood function of U
observation vectors (O � {ou}U

u=1) given the latent variable
sequences (Z � {zu}u and V � {vu,t}u,t) can be expressed
as follows:

p(O|Z, V, �) =
U∏

u=1

hzu

Tu∏
t=1

wzu ,vu,tN (ou,t |μzu ,vu,t
, �zu ,vu,t ),

(11)

where {hs }s , {ws ,k}s ,k , {μs ,k}s ,k , {�s ,k}s ,k(� �) are the
utterance-level mixture weight, frame-level mixture weight,
mean vector, and covariance matrix parameters, respec-
tively. s and k denote utterance-level and frame-level mix-
ture indexes, respectively. N denotes a normal
distribution.

Let us now consider the Bayesian treatment of thismulti-
scale mixture model. We assume a diagonal covariance
matrix for the Gaussian distributions as usual, where the
d–d diagonal element of the covariance matrix is expressed
as σdd , and use the following conjugate distributions as the
prior distributions of the model parameters:

p(�|�0) =

⎧⎪⎪⎨
⎪⎪⎩

h ∼ D(h0)

ws ∼ D(w0)

μs ,k ∼ N (μ0
k , (ξ 0)−1�s ,k)

(σs ,k,dd)
−1 ∼ G(η0, σ 0

k,dd)

⎫⎪⎪⎬
⎪⎪⎭ , (12)

where h0, w0, μ0
k , ξ 0, σ 0

k,dd , η0(� �0) are the hyperparame-
ters. D and G denote Dirichlet and Gamma distributions,
respectively. The generative process of M3 is shown in

Fig. 3. Graphical representation of multi-scale mixture model.

Fig. 3. Based on the generative model, we derive analyt-
ical solutions for Gibbs samplers of the multi-scale mix-
ture model based on the marginalized likelihood for the
complete data.

Gibbs sampler
Frame-level mixture component
The function form of the Gibbs sampler, which assigns
frame-level mixture component k at frame t probabilisti-
cally, is analytically obtained as follows:

p(vu,t = k′|O, V\t , Z\u, zu = s )

=
exp

(
gs ,k′(�̃s ,k′) − gs ,k′(�̃s ,k′\t)

)
∑

k exp
(

gs ,k(�̃s ,k) − gs ,k(�̃s ,k\t)
) . (13)

Here, O\t and V\t indicate sets that do not include the tth
frame elements. Z\u indicates a set that does not include the
uth utterance element. �̃s ,k\t is computed by the sufficient
statistics using O\t and V\t . gs ,k(·) is defined as follows:

gs ,k(�̃s ,k) � log �(w̃s ,k) − D

2
log ξ̃s ,k

+ D log �

(
η̃s ,k

2

)
− η̃s ,k

2

∑
d

log σ̃s ,k,dd ,

where h̃s , w̃s , μ̃s ,k , ξ̃s ,k , σ̃s ,k,dd and η̃s ,k(� �̃) are the hyper-
parameters of the posterior distributions for �, which are
obtained from the hyperparameters of the prior distribu-
tions (�0) and the sufficient statistics as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h̃s = h0
s + cs ,

w̃s ,k = w0
k + ns ,k ,

ξ̃s ,k = ξ 0 + ns ,k ,

μ̃s ,k = ξ 0μ0
k + ms ,k

ξ̃s ,k

,

η̃s ,k = η0 + ns ,k ,

σ̃s ,k,dd = σ 0
k,dd + rs ,k,dd + ξ 0(μ0

k,d)
2 − ξ̃s ,k(μ̃s ,k,d)

2.
(14)

cs is the count of utterances assigned to s and ns ,k is the
count of frames assigned to k in s . ms ,k and rs ,k,dd are first-
order and second-order sufficient statistics, respectively.

Utterance-level mixture component
As with the frame-level mixture component case, the Gibbs
sampler assigns utterance-level mixture s at utterance u by
using the following equation:

log p(zu = s |O, V, Z\u)

∝ log
�(

∑
k w̃s\u,k)

�(
∑

k w̃s ,k)
+

∑
k

gs ,k(�̃s ,k) − gs ,k(�̃s\u,k).

O\u and V\u indicate sets that do not include subsets of
the frame elements in u. �̃s\u,k is computed by the suffi-
cient statistics using O\u and V\u. Therefore, the posterior
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Algorithm 1 Gibbs sampling based multi-scale mixture
model.
1: Initialize �0

2: repeat
3: for u = shuffle (1 · · ·U ) do
4: for t = shuffle (1 · · · Tu) do
5: Sample vu,t by using equation (13)
6: end for
7: end for
8: for u = shuffle (1 · · ·U ) do
9: Sample zu by using equation (15)
10: end for
11: until some condition is met

probability can be obtained as follows:

p(zu = s ′|O, V, Z\u)

=
exp

(
log

�(
∑

k w̃s ′\u,k)

�(
∑

k w̃s ′ ,k)
+ ∑

k gs ′ ,k(�̃s ′ ,k) − gs ′ ,k(�̃s ′\u,k)

)
∑

s ,k exp

(
log

�(
∑

k w̃s\u,k)

�(
∑

k w̃s ,k)
+ gs ,k(�̃s ,k) − gs ,k(�̃s\u,k)

) .

(15)

These solutions for the multi-scale mixture model based
on Gibbs sampling jointly infer the latent variables by inter-
leaving frame-level and utterance-level samples.

Algorithm 1 provides a sample code of the multi-scale
mixture model.

B) Experiments
We describe experimental results obtained with the multi-
scale mixture model for meeting data, recorded by NTT
Communication Science Laboratories to analyze and rec-
ognize meetings [79]. We used four of the sessions (3402
utterances) to construct a prior GMM in advance, and the
other two sessions as development (495 utterances spo-
ken by four speakers), and evaluation sets (560 utterances
spoken by four speakers), respectively. As an observation
vector, we usedMFCC features with log energy,�, and��

components. As a preliminary experiment, the numbers of
clusters were set at the correct answer. First, a prior GMM
(i.e., a universal backgroundmodel) was estimated by using
the four sessions consisting of 3402 utterances based on
the conventional ML–EM algorithm, and the values of the
GMM parameters were set as those of the hyperparameters
in M3 (w0, μ0

k , �0
k). Figure 4 shows the speaker clustering

performance of the multi-scale mixture (M3 Gibbs), the
MAP-based approach (M3 MAP–EM) and the conventional
BIC-based approach in terms of the frame-level error rate
of each method based on the diarization error rate defined
by NIST [80]. Speaker clustering experiments showed that
M3 Gibbs provided a significant improvement over the con-
ventional BIC and M3 MAP–EM-based approaches. The
main advantage of M3 Gibbs and M3 MAP–EM over BIC
is that they can precisely model speaker clusters based
on the GMM unlike the single Gaussian model used
in BIC. In addition, M3 Gibbs further improved on the

Fig. 4. Diarization error rate for NTT meeting data.

Table 4. Comparison of MCMC and VB for speaker clustering

Evaluation data Method ACP ASP K value

CSJ-1 MCMC 0.808 0.898 0.851
(# spkr10, # utt 50) VB 0.704 0.860 0.777

CSJ-2 MCMC 0.852 0.892 0.871
(# spkr10, # utt 100) VB 0.695 0.846 0.782

CSJ-3 MCMC 0.866 0.892 0.879
(# spkr10, # utt 200) VB 0.780 0.870 0.823

CSJ-4 MCMC 0.784 0.694 0.738
(# spkr10, # utt 2,491) VB 0.773 0.673 0.721

CSJ-5 MCMC 0.740 0.627 0.681
(# spkr10, # utt 2,321) VB 0.693 0.676 0.684

speaker clustering performance of M3 MAP–EM because
the Gibbs sampling algorithm can avoid local optimum
solutions unlike the MAP–EM algorithm. These superior
characteristics are derived from the Gibbs-based Bayesian
properties.

MCMC-based acoustic modeling for speaker clustering
was further investigated with respect to the difference in the
MCMC and VB estimation methods by [71]. Table 4 shows
speaker clustering results in terms of the average cluster
purity (ACP), average speaker purity (ASP), and geometric
mean of those values (K value) to the evaluation criteria in
the speaker clustering. We used the Corpus of Spontaneous
Japanese (CSJ) dataset [5] and investigated the speaker clus-
tering performance forMCMCandVB for various amounts
of data. Table 4 showed that theMCMC-basedmethod out-
performed the VBmethod by avoiding local optimum solu-
tions, especially when only few utterances could be used.
These results also supported the importance derived from
the Gibbs-based Bayesian properties.

V I . SUMMARY AND FUTURE
PERSPECT IVE

This paper introduced selected topics regarding Bayesian
applications to acoustic modeling in speech processing.
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As standard techniques, we first explained MAP- and
BIC-based approaches. We then focused on applications
of VB and MCMC, following the recent trend of Bayesian
applications to speech recognition emphasizing the advan-
tages of fully Bayesian approaches that explicitly obtain
posterior distributions of model parameters and struc-
tures based on these two methods. These approaches
are associated with the progress of Bayesian approaches
in the statistics and machine learning fields, and speech
recognition based on Bayesian approaches is likely to
advance further, thanks to the recent progress in these
fields.

One promising example of further progress is structure
learning by using Bayesian approaches. This paper intro-
duced a powerful advantage of Bayesianmodel selection for
the structure learning of standard acoustic models in Sec-
tions III and IV. Furthermore, the recent success of deep
learning for acoustic modeling [81] places more importance
on the structure learning of deep network topologies (e.g.,
number of layers and number of hidden states) in addi-
tion to the conventional HMM topologies. To deal with the
problem, advanced structure learning techniques based on
non-parametric Bayes [82] would be a powerful candidate.
These approaches have recently been actively studied in
themachine-learning field [83–85]. In conjunction with this
trend, various applications of non-parametric Bayes have
been proposed in speech processing [22, 23, 86], spoken lan-
guage processing [75, 76, 87], and music signal processing
[88–90].

Another important future work is how to involve
Bayesian approaches with discriminative approaches theo-
retically and practically, since discriminative training [39,
91], structured discriminative models [92], and deep dis-
criminative learning [81] have become standard approaches
in acoustic modeling. One promising approach for this
direction is the marginalization of model parameters and
margin variables to provide Bayesian interpretations with
discriminative methods [93]. However, applying [93] to
acoustic models requires some extensions to deal with
large-scale structured data problems [74]. This extension
enables the more robust regularization of discriminative
approaches, and allows structure learning by combining
Bayesian and discriminative criteria.

Finally, we believe that further progress based on
Bayesian approaches for acousticmodelswould improve the
success of speech processing applications including speech
recognition. To this end, we encourage people in a wide
range of research areas (e.g., speech processing, machine
learning, and statistics) to explore this exciting and inter-
disciplinary topic.
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