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STABLE ALGORITHMS FOR SOLVING SYMMETRIC
AND SKEW-SYMMETRIC SYSTEMS®

JamMes R, BuncH

Communicated by James M, Hill

Algorithms for decomposing symmetric and skew-symmetric matrices
in order to solve systems of linear equations will be discussed.
The algorithms are numerically stable, yet take advantage of the
symmetry or skew-symmetry to halve the work and storage.

1. Introduction
We shall consider solving »n X n systems of linear equations when 4

is symmetric LA = AT) or skew-symmetric LA = -AT) - or Hermitian

(A = ZT] or skew-Hermitian (A = -ZT] . We shall, in general, only

discuss the case when 4 is real, pointing out any differences when A is

complex.
In practice, most symmetric systems are also positive definite, that

is, xTAx >0 for all x # 0 . This is the easiest of the three cases to

solve and will be discussed in §3. If A is symmetric indefinite, that

. T
is, there exist x, y # 0 such that xTAx >0 and Yy Ay < 0 , then this

is the hardest of the three cases and will be discussed in §i. Skew-
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symmetric systems lie intermediate in difficulty between definite and

indefinite systems and will be discussed in §s5.

If A is (real) symmetric, then all its eigenvalues are real. We
define the inertia of A to be the triple (m, v, C) , where m, v, [ are
the number of positive, negative, and zero eigenvalues of 4 ., If A4 1is
nonsingular then € =0 ; 1if A is positive definite then W =n ,

V=0 ,and § =0 . By Sylvester's Inertia Theorem [9], the inertia of a

symmetric matrix is preserved under (nonsingular) congruence transform-

ations, that is, A4 and B = CACT have the same inertia where C 1is non-

singular.

If 4 is (real) skew-symmetric, then all its eigenvalues are purely
imaginary. Hence, here we define the Znertia of A to be the triple
(m, v, ¢) , where T, vV, T are the number of positive, negative, and zero
imaginary parts of the eigenvalues, But, since A4 1is real, its nonzero

eigenvalues occur in complex conjugate pairs, that is, iiuj where uj

are positive. Hence the inertia of any real skew-symmetric matrix is
((n—C)/Q, (n-t)/2, C] . If A 1is also nonsingular, its inertia is
(n/2, n/2, 0) . This fixed inertia property makes skew-symmetric matrices

easier to decompose stably than symmetric indefinite matrices. If A4 is

skew--symmetric then B = CACT is skew-symmetric and has the same inertia

as A , where ( is nonsingular,

2, Lagrange's method

The classical method [9] for calculating the inertia of a symmetric

matrix is Lagrange s method (1759): a (real) quadratic form

g % ) ( )
olx) = 27 Ax = Y oa,xx, =@, .o, ),
i1 j=1 17 1 d 1° > n

T .
where A = A" , is reduced to a diagonal form

?[: 2
d, z
Pl K~k

by linear congruence transformations. Hence the inertia of A is the same

as the number of positive, negative, and zero dk's
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Let us look more closely at Lagrange's method. If a.,, # 0 , then

11
2 n n
= ce. + . L,
ola) = ay,@) + 2a),m@, + 2ay mz, + L Y amE
1=2 g=2
a a n n
2 12 1n
=a  |xc+2 ="z +...+2—zzx |+ Y Y a .x.x.
ll[ 1 a, 172 a4 1n i=2 j=o 1d 1 J
2
a a, n n a8y 5
St L G R LT N
11 11 i=2 j=o | ¥J 11 J
2
=dz] + ¢(x2, , xn) ,
where
d) =apy >
a a
zl:xl+———a12x2+ lnxn N
11 11
and
n o n a; ;9 ;
oty voonm) = ¥ ¥ oo - Gz
1=2 g=2 11
is a quadratic form in the »n - 1 variables z,, ..., x . If
2 n
2 . -
Asp = al2/all # 0 , we can continue as above to eliminate Zy -

Let us write this first part of Lagrange's method in matrix form. If
ayq £ 0, let

1
121 1 0
L=1: o ,
an 1
where ZJl = ajl/all 3 let 2, = le 3 let
'dl O
D. =
Yo A(m)J
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vhere dl =a;; and
(n-1)
.= AL . =a,. - a. .
(C)s =41 51 = %y 41%5/%
for 2<%, =n . Then
T

A = LlDlLl

and

T 2
olx) = 27 Ax = dzl +<p(a:2, vees acn) R

where

1
CX
N
8
—_
=~

ooy voes z) =

T
But 4 = LlDlLl is exactly the matrix form of the first step of

symmetric Gaussian elimination performed on A , where the Zjl are the

(n-1)

multipliers and A4 is the reduced matrix. Thus the first part of

Lagrange's method is just symmetric Gaussian elimination.

If a;; =0 but a, # 0 for some k >1 , then let P be the

permutation matrix obtained by interchanging the kth and first row and

column of the identity matrix. Then P = PT =P and
olx) = xzhx = 5T(PzAP)£ ,

vhere Z = Pr . Now (PTAP)ll = @ # 0, so we may eliminate 51 =z .

In matrix form, we obtain, as before,

T

;ﬂhp = LlDlLl .

However, if the diagonal of 4 was null (or if at some stage during
the process the diagonal was null), we could not do this. If 4 = 0 , We

would be finished. Otherwise, there exists ars #0 with r» #s . For

simplicity, assume al2 # 0 (otherwise, interchange the rth and first
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variables and sth and second variables), In this case, Lagrange

suggested applying the transformation:

Ty T Yy Uy s Ty T Yy T Yy s Ty Tz e Ty T Y,

2 2
i i - icient of th
This maps 2al2xlx2 into Qalz[yl y2] and the coefficient o e

Y9, term is zero. Let

1 1
R = L @)Ih_z ’
@, | %
x = E ,and y = |
xﬂj Y,
Then
xz = Ry
and

o(z) = a4z = y7 (FTaR)y = w(y)

is a quadratic form in y with

QghR)ll = 2q

12 °?

(RTAR) o

"
3

12

and

(RTAR)12 =0,

We may now eliminate yl . But, since (RTAR]12 = 0 , the coefficient

of 2 in the new quadratic form in 9 teey is still -2a and
Yo Yy ¥,

12 °

is, hence, nonzero. So, we may also eliminate y2 . Thus the change of

variables above guarantees the elimination of two variables. Later in §4

we shall relate this process to symmetric Gaussian elimination.
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3. Symmetric positive definite systems

If A 1is symmetric and positive definite (xTAx >0 for all

x £ 0 ), then a > 0 and the first part of Lagrange's method can be

11

done: 4 =1L.D LT as in §2. Then the reduced matrix A(n_l)

1Py is once

again symmetric positive definite; hence the first part of Lagrange's

method is applicable at each step. So 4 = LDLT , where L 1is unit lower
triangular and D is diagonal with positive diagonal elements; this is

exactly symmetric Gaussian elimination. In order to solve Ax = b , we
solve Ly =b for y and then the = D_ly for x .

Another well-known method for solving symmetric positive definite

systems is the Cholesky decomposition. Here A is decomposed as A4 = ZZT

where Z is lower triangular. The two methods are related mathematically

~ 1
by L = LDZ . The Cholesky decomposition is used in LINPACK [§] for

solving symmetric positive definite systems.

3

Each method requires én3 multiplications, %n additions, and no
comparisons. Let B(n) be the largest element (in modulus) that occurs in

any reduced matrix during the decomposition process divided by the largest

element (in modulus) in the original matrix 4 . Then B(n) =1 for
symmetric Gaussian elimination and B(n) = —L — for Cholesky's method
maxajj

11 = i ..
(1131 ( B(n) =1 if 2?2 |azg

of an algorithm [11], both symmetric Gaussian elimination and Cholesky's

| =1 ). Since B(n) measures the stability

method are very stable for symmetric positive definite systems.

4. Symmetric indefinite systems

The two well-known algorithms for decomposing symmetric indefinite
matrices are the tridiagonal method [1], [10] and the diagonal pivoting
method [2, 31, [51, (61, [7], (§].

The tridiagonal method uses stabilized elementary congruence
transformations to reduce a symmetric matrix A to a symmetric tridiagonal

matrix T :
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T T
A =Py, ... PLTLP ... LF,,

where the ?j are elementary permutation matrices and the Lj are unit
lower triangular. At each step the largest element in the pivot column is

interchanged to the (2, 1) position by symmetric permutation.

2
This requires %n3 multiplications, %n3 additions, %n

n-2 3. p. 505].

comparisons, and B(n) =k

(Then Gaussian elimination with partial pivoting is used to decompose

T further.)

The diagonal pivoting method reduces a symmetric matrix A by
stabilized congruence transformations to a symmetric block diagonal matrix

D with blocks of order 1 or 2

A= P FMy . Pn-an—lng—an-l Mgperpl ’

where the F3 are elementary permutation matrices and the M3 are unit
lower triangular matrices.

One step of the decomposition process looks as follows:

s o oolls o Hr g1t
A= = .
c B est rllo ARl s

_;(M._/
=M _ M{

where S is k X k , nonsingular, B is (n-k) x (n-k) , C is
(n-k) x k , and A(n—k) =B . csicT , k=1 or 2.

Let us now look at Lagrange's method when the diagonal of A is null.
If

R=U®I ,,

where U 1is of order 2 , then

N sy | vfet ’

cu B
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If U is chosen so that UTSU = D 1is diagonal (U = [i ji] is only one

such choice) and the associated variables (that is, the first two

variables) are eliminated, then the resulting reduced matrix is

B - cup~ et

But if we use S§ as a 2 X 2 pivot and performed block symmetric

Gaussian elimination, the reduced matrix is

a2 s 5 o5t

Since

copYifet = cs7iT

the reduced matrices are identical.

Thus there is no need to find (as Lagrange did) a matrix U which
diagonalizes S ; rather, we may reduce A by congruences to a symmetric
block diagonal form with blocks of order 1 or 2 ., Any block of order 2

is of the form

Since its determinant is negative, it has one positive and one negative

eigenvalue.

In order to maintain stability, we must also employ 2 x 2 pivots
whenever the diagonal of A is small. This can be done while preserving
the property that the determinant of any 2 X 2 pivot block is negative

(51, [7], [8] (it is nonzero in the complex symmetric case).

3

The method requires én3 multiplications, %n additions, with more

than or the same number of %ne but less than or the same number of n2

comparisons and B{(n) < (2.57)n_l for a partial pivoting strategy or with

rore than or the same number of %5”3 but less than or the same number of

1n3 comparisons and B(n) < 3nf(n) for a complete pivoting strategy where
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1
2
) = [TT R ED o gt
k=2

(Recall that Gaussian elimination requires §n3 multiplications, %n
additions, with %ne comparisons and B(n) = 271-l for partial pivoting or

with %nB comparisons and B(n) < Vit f(n) for complete pivoting.)

There are actually three cases here: real symmetric, complex
symmetric, and complex Hermitian., Both algorithms cover all three cases.
The diagonal pivoting algorithm with partial pivoting is used in LINPACK
[&, Chapter 5].

5. Skew systems

If A 1is a skew-symmetric (A = —AT) , then the diagonal of A is
null, and if #n is odd then det 4 = 0 . Thus, if A 1is skew-symmetric
and nonsingular then #n 1is even. The diagonal of A being null may seem
to pose a difficulty at first glance, but we shall see that this property
makes the skew-symmetric case easier than the symmetric indefinite case.
17

If A 1is skew-Hermitian (A = , then the diagonal of 4 is

purely imaginary but not necessarily null, for example,

7 -1+27

BN
1l

1+27 4

If n is odd then Re(det A) = 0 , and if n is even then Im(det 4) = 0.
If A is skew-Hermitian, then B = 74 is Hermitian, and we can apply any
of the algorithms in §4 to B . (In order to solve Ax = b , we solve

Bx = ib .)

Similarly, if A is (real or complex) skew-symmetric, then B = Z4
is Hermitian, and we ,could apply the algorithms in §4. However, if A is
real skew-symmetric, we would prefer to stay in real arithmetic, Is there
a stable decomposition of real skew-symmetric matrices which would allow us
to stay in real airthmetic? Such a decomposition should be based on
congruence transformations, since they preserve the inertia and guarantee

that each reduced matrix during the process remains skew-symmetric.
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Let us find such congruence transformations. Let
s -t

¢ B

where S is k Xk, C is (n-k) xk , B is (n-k) x (n-k) ; S end

B are skew-symmetric.

If S 1is nonsingular then

I oI5 o [} gL

est rllo atmk)

0 I
M—(‘_/

= i

It

(n-k)

where A

sT = st

=B+ CS_lCT is skew-symmetric, and M = Mt since

Thus we have performed a congruence transformation, and A and

S 0
(n-k) are congruent (and have the same inertia).
4l ;

0
Note that S being k X k , skew-symmetric, and nonsingular implies
that k% is even. Since the diagonal of A4 is null, k # 1 wunless
C =0 . Let k=2 and

0 -a2l
S =
a21 0
If a =0 but a. # 0 , interchange the jth and second row and

21 J1
column. (If A is nonsingular, then 7 is even and k = 2 suffices at

each step.) On conclusion,

A= (P, ... Pn_an_l)D[Mfl_an_l S XS N

where the Pj are elementary permutation matrices [possibly Pﬁ =T ),
the Mﬁ are unit lower triangular matrices (possibly Mj =T ], and D is

a skew-symmetric block diagonal matrix with blocks of order 1 (zero

blocks) or of order 2 (nonsingular blocks).
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This gives existence of the decomposition and requires %nB

multiplications, €n3 additions, and %nz comparisons; the decomposition
can be stored in the strictly upper (or lower) triangular part of 4 , plus

one n-vector to store the permutation information.

Stability of the decomposition can be obtained by either a partial or

complete pivoting strategy.

it |a, | = max {la..|, |la..,|} , then
21 p<i<n 1! g2t
(n-2)
max ‘(A )’LJ < 3 max Iarsl
T,d r,s
If Iamll = 2222n {[aill’ Iai2l} , then interchange the mth and second
row and column. If Iam2| = max {laill’ |ai2|} , then interchange the

2<i=n
first and second row and column and then the mth and second row and

column. This provides a partial pivoting strategy with
B(n) = (Vg)n-Q < (1.7321);1‘2 at a cost of %nz comparisons.

A complete pivoting strategy brings the largest element in the reduced
matrix to the (2, 1) position at each step. This yields B(n) < Vu f(n)
at a cost of f?ns comparisons.

One can similarly modify the tridiagonal method [1], [10] yielding

T T
A= (EéLz e PnLn)T LP ... LP,| ,

where the EB are elementary permutation matrices, the Lj are unit lower

triangular matrices, and I is skew-symmetric and tridiagonal. Here

(2%
B(n) =3 2 and %n3 multiplications. %n3 additions, and %nz

comparisons are required.

In conclusion, we see that skew-symmetric systems may be solved stably
using congruence transformations; they are intermediate in difficulty
between symmetric positive definite systems and symmetric indefinite

systems. The situation canm be summarized in the table below.
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. Sym. Pos,| Skew-Sym.
Matrix Def. (n even) Sym. Indef. General
Method or? Diagonal Pivotin Gaussian
etho 80 OViNg  IElimination
Pivot size 1 2 1l or 2 1
Number of
multiplications én3 %n3 %n3 1,3
or additions
. 1.2 1. 2 2 1.2
Number of .?artla{_ o g " to ?—_ 5N
comparisons
1.3 1.3 1.3 1.3
complete Vil ik to R "
partial < (1.2 < (25| = 2
B(n)  |-emmmmm- 1 |- -
complete < Vn f(n) < 3nfin) < Vn f(n)
Method Tridiagonal method
Pivot size 1 1
Number of 3 3
multiplications 1y in
. 6 6
or additions
Number of 1.2 1.2
. =N =N
comparisons 2 2
B(n) < 32 < W8
1
n 2 1
k=2
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