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STABLE ALGORITHMS FOR SOLVING SYMMETRIC
AND SKEW-SYMMETRIC SYSTEMS*

JAMES R, BUNCH

Communicated by James M. Hill

Algorithms for decomposing symmetric and skew-symmetric matrices

in order to solve systems of linear equations will be discussed.

The algorithms are numerically stable, yet take advantage of the

symmetry or skew-symmetry to halve the work and storage.

1. Introduction

We shall consider solving n * n systems of linear equations when A
rp rp

is symmetric [A = A J or skew-symmetric [A = -A J - or Hermitian

[A = A J or skew-Hermitian [A = -A J . We shall, in general, only

discuss the case when A is real, pointing out any differences when A is

complex.

In practice, most symmetric systems are also positive definite, that

T
is, x Ax > 0 for all x # 0 . This is the easiest of the three cases to

solve and will be discussed in §3. If A is symmetric indefinite, that

T T
is, there exist x, y f 0 such that x Ax > 0 and y Ay < 0 , then this
is the hardest of the three cases and will be discussed in §lt. Skew-
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108 J ames R. Bunch

symmetric systems lie intermediate in difficulty between definite and

indefinite systems and will be discussed in §5.

If A is (real) symmetric, then all its eigenvalues are real. We

define the inertia of A to be the triple (IT, V, C) > where IT, V, C are

the number of positive, negative, and zero eigenvalues of A . If A is

nonsingular then C, = 0 ; if A is positive definite then IT = n ,

V = 0 , and C, = 0 . By Sylvester's Inertia Theorem [9], the inertia of a

symmetric matrix is preserved under (nonsingular) congruence transform-

ations, that is, A and B = CAu have the same inertia where C is non-

singular.

If A is (real) skew-symmetric, then all its eigenvalues are purely

imaginary. Hence, here we define the inertia of A to be the triple

(TT, v, Z,) , where IT, V, C, are the number of positive, negative, and zero

imaginary parts of the eigenvalues. But, since A is real, its nonzero

eigenvalues occur in complex conjugate pairs, that is, ±i\i. where u .
3 3

are positive. Hence the inertia of any real skew-symmetric matrix is

((w-C)/2, (n-£)/2, ?,) . If ^ is also nonsingular, its inertia is

(n/2, rc/2, 0) . This fixed inertia property makes skew-symmetric matrices

easier to decompose stably than symmetric indefinite matrices. If A is

skew-symmetric then B = CAu is skew-symmetric and has the same inertia

as A , where C is nonsingular.

2. Lagrange's method

The classical method [9] for calculating the inertia of a symmetric

matrix is Lagrange's method (1759): a (real) quadratic form

T n n
<p(x) = x Ax = Y, I a,-,-aVa:i- = f\.xT •••' X J '

i=l 3=1 %0 °

T
where A = A , is reduced to a diagonal form

n 2

k=l kk

by linear congruence transformations. Hence the inertia of A is the same

as the number of positive, negative, and zero ^j,'s •
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Let us look more closely at Lagrange's method. If a - t 0 , then

<p(x) = a

= a11
x 2 + 2

n n

— — x_,x
all l n

n n
y a • -x .x .

= a11 1 a.

n n

z s
i=2 j=2

a. . -
a .a .

x.x .

where

and

cp(x , ..., x) =
n n

i=2 j=2 id a u

X .X .

is a quadratic form in the n - 1 variables x2, ... , x . If

o
a?p - a _/a1. # 0 , we can continue as above to eliminate x .

Let us write this first part of Lagrange's method in matrix form. If

a±1 t 0 , let

* • -

i21 o
: o •.
'nl

where I. = aj1/
<2

11 '•> l e t 2
1 = ̂ ^ J l e t

o

0
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where d = a and

for 2 £ i , j 5 n . Then

A = L D L

and

, T , 2 r

ip (x) = x Ax = a z + cp I x

where

'"2

But A = LD L is exactly the matrix form of the first step of

symmetric Gaussian elimination performed on A , where the I .. are the

multipliers and A is the reduced matrix. Thus the first part of

Lagrange's method is just symmetric Gaussian elimination.

If a = 0 but a,, + 0 for some k > 1 , then let P be the

permutation matrix obtained by interchanging the feth and first row and

column of the identity matrix. Then P = r = P and

ep(x) = x Ax = x [KAP)x ,

where x = Px . Now [rAP] - a,, + 0 , so we may eliminate x = x, .

In matrix form, we obtain, as before,

L D L .

However, if the diagonal of A was null (or if at some stage during

the process the diagonal was null), we could not do this. If A = 0 , we

would be finished. Otherwise, there exists a * 0 with V + s , For

simplicity, assume a ? 0 (otherwise, interchange the rth and first
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variables and sth and second variables). In this case, Lagrange

suggested applying the transformation:

f 2 2l
This maps 2a xx into 2a „ u/ -jy and the coefficient of the

y y_ term is zero. Let

Then

1 1
R =

x =

Jn-2

, and y =

and

<p(x)= xTAa; = yT(RFAR)y

is a quadratic form in y with

hi = 2ai2 '

= -2a

and

12

= 0 .

We may now eliminate y . But, since (/rAff)12 = 0 , the coefficient

y is still -2a _ , and
2

of y in the new quadratic form in £/„, .

is, hence, nonzero. So, we may also eliminate t/2 . Thus the change of

variables above guarantees the elimination of two variables. Later in §

we shall relate this process to symmetric Gaussian elimination.
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3. Symmetric positive definite systems

r T
If A is symmetric and positive definite \x Ax > 0 for all

x ? 0 } , then a > 0 and the first part of Lagrange's method can be

T in—l)
done: A = L D L as in §2. Then the reduced matrix A is once

again symmetric positive definite; hence the first part of Lagrange's

T
method is applicable at each step. So A = LDL , where L is unit lower

triangular and D is diagonal with positive diagonal elements; this is

exactly symmetric Gaussian elimination. In order to solve Ax = b , we

T -1
solve Ly = b for y and then L x = D y for x .

Another well-known method for solving symmetric positive definite

systems is the Cholesky decomposition. Here A is decomposed as A = LL

where L is lower triangular. The two methods are related mathematically

by L = LD2 . The Cholesky decomposition is used in UNPACK [S] for

solving symmetric positive definite systems.

Each method requires -n multiplications, -n additions, and no
6 6

comparisons. Let B{n) be the largest element (in modulus) that occurs in

any reduced matrix during the decomposition process divided by the largest

element (in modulus) in the original matrix A . Then B(rc) = 1 for
symmetric Gaussian elimination and B{n) = — for Cholesky's method

Vmaxa..
33

[7 7] ( B(n) = 1 if max \a..\ = 1 ). Since B{n) measures the stability

of an algorithm £7 7], both symmetric Gaussian elimination and Cholesky's

method are very stable for symmetric positive definite systems.

4. Symmetric indefinite systems

The two well-known algorithms for decomposing symmetric indefinite

matrices are the tridiagonal method [7], [70] and the diagonal pivoting

method [2, 3], [5], [6], [7], [«].

The tridiagonal method uses stabilized elementary congruence

transformations to reduce a symmetric matrix A to a symmetric tridiagonal

matrix T :
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^ = P2 L2 ••• PnLnKPn • • • LlP2 '

where the P. are elementary permutation matrices and the L. are unit
3 3

lower triangular. At each step the largest element in the pivot column is

interchanged to the (2, l) position by symmetric permutation.

This requires ^n multiplications, -n additions, -n

comparisons, and B(n) 5 hn-2 [3, p. 5253.

(Then Gaussian elimination with partial pivoting is used to decompose

T further.)

The diagonal pivoting method reduces a symmetric matrix A by

stabilized congruence transformations to a symmetric block diagonal matrix

D with blocks of order 1 or 2 :

A = PM P M . . . P M n Dtf , P , . . . hEpjfp. ,
1 1 2 2 n-1 n-1 n-1 n-1 2 2 1 1 '

where the P- are elementary permutation matrices and the M. are unit
3 3

lower triangular matrices.

One step of the decomposition process looks as follows:

A =

C B

I 0

cs'
,-1 0 A

0

(n-k)

I S

= M,

where 5 is k x k , nonsingular, B is (n-k) x (n-k) , C is

(n-k) x k , and A^'^ = B - CS^cF , k = 1 or 2 .

Let us now look at Lagrange's method when the diagonal of A is null.

If

R = U

where U is of order 2 , then

n-2 '

IFAR =
iFsu

cu

iFcF

B
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If U is chosen so that ITSU = D is diagonal [ll = is only one

such choice) and the associated variables (that is, the first two

variables) are eliminated, then the resulting reduced matrix is

B - CUD~1UFCr .

But if we use S as a 2 x 2 pivot and performed block symmetric

Gaussian elimination, the reduced matrix is

A{n-2) = B - CS-1^ .

Since

CUD~1lfrcr = CS'^C1 ,

the reduced matrices are identical.

Thus there is no need to find (as Lagrange did) a matrix U which

diagonalizes 5 ; rather, we may reduce A by congruences to a symmetric

block diagonal form with blocks of order 1 or 2 . Any block of order 2

is of the form

2 0

Since its determinant is negative, it has one positive and one negative

eigenvalue.

In order to maintain stability, we must also employ 2 x 2 pivots

whenever the diagonal of 4 is small. This can be done while preserving

the property that the determinant of any 2 x 2 pivot block is negative

[5], [7], [8] (it is nonzero in the complex symmetric case).

The method requires -n multiplications, Un. additions, with more
6 6

i 2 2
than or the same number of -n but less than or the same number of n

2

comparisons and B(n) < (2.57)"" for a partial pivoting strategy or with

more than or the same number of — n but less than or the same number of

in comparisons and B{n) < 3nf{n) for a complete pivoting strategy where
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f(n) =

1̂

2 ]_

< l.Qn1*

[k=2

(Recall that Gaussian elimination requires -n multiplications, -$n

additions, with -n comparisons and B(n) 2 2 for partial pivoting or

with |n comparisons and B{n) < Vn f{n) for complete pivoting.)

There are actually three cases here: real symmetric, complex

symmetric, and complex Hermitian. Both algorithms cover all three cases.

The diagonal pivoting algorithm with partial pivoting is used in UNPACK

IB, Chapter 5].

5. Skew systems

If A is a skew-symmetric [A = -A ) , then the diagonal of A is

null, and if n is odd then det A = 0 . Thus, if A is skew-symmetric

and nonsingular then n is even. The diagonal of A being null may seem

to pose a difficulty at first glance, but we shall see that this property

makes the skew-symmetric case easier than the symmetric indefinite case.

If A is skew-Hermitian [A = -A ] , then the diagonal of A is

purely imaginary but not necessarily null, for example,

i -1+2-TI

If n is odd then Re(det A) = 0 , and if n is even then Im(det A) = 0 .

If A is skew-Hermitian, then B = iA is Hermitian, and we can apply any

of the algorithms in §1+ to B . (In order to solve Ax = b , we solve

Bx = ib .)

Similarly, if A is (real or complex) skew-symmetric, then B = iA

is Hermitian, and we .could apply the algorithms in §U. However, if A is

veal skew-symmetric, we would prefer to stay in veal arithmetic. Is there

a stable decomposition of real skew-symmetric matrices which would allow us

to stay in real airthmetic? Such a decomposition should be based on

congruence transformations, since they preserve the inertia and guarantee

that each reduced matrix during the process remains skew-symmetric.
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Let us find such congruence transformations. Let

5 -/I
A =

C B

where S is k * k , C is {n-k) * k , B is (n-k) * {n-k) ; S and

B are skew-symmetric.

If S is nonsingular then

A =

I 0

CS
,-1

0 A
(n-k)

J -S

= M = M = W

where ^n ' = B + CS'^U is skew-symmetric, and U = W since

Thus we have performed a congruence transformation, and A and

Ts o I
/ T.\\ are congruent (and have the same inertia).

Note that S being k x k , skew-symmetric, and nonsingular implies

that k is even. Since the diagonal of A is null, k # 1 unless

C = 0 . Let fe = 2 and

5 =

0 -a
21

21

If a = 0 but a. £ 0 , interchange the jth and second row and

column. (if A is nonsingular, then n is even and k = 2 suffices at

each step.) On conclusion,

A =

where the P. are elementary permutation matrices (possibly P. = J ) ,
0 0

the M. are unit lower triangular matrices (possibly M. = J J, and 0 is

a skew-symmetric block diagonal matrix with blocks of order 1 (zero

blocks) or of order 2 (nonsingular blocks).
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This gives existence of the decomposition and requires -n

multiplications, jn additions, and |w comparisons; the decomposition• 3 l 2

•jw additions, and ^n

can be stored in the strictly upper (or lower) triangular part of A , plus

one n-vector to store the permutation information.

Stability of the decomposition can be obtained by either a partial or

complete pivoting strategy.

If |a21| = max {I^J, \
a
i2^ '

 then

(^-2>) S 3 m a x |ars| .

If lamll
 = m a x {I^-TIJ lavol} » tnen interchange the mth and second

row and column. If \a \ = max {|<z. |, \a. |} , then interchange the

first and second row and column and then the mth and second row and

column. This provides a partial pivoting strategy with

B{n) < (V3)n~2 < (1.T321)""2 at a cost of |n 2 comparisons.

A complete pivoting strategy brings the largest element in the reduced

matrix to the (2, l) position at each step. This yields B(n) < ̂ Jn f{n)

at a cost of — n comparisons.

One can similarly modify the tridiagonal method [/], [J0] yielding

A= (P2L2 ••• P n L

where the P. are elementary permutation matrices, the L. are unit lower
3 3

triangular matrices, and T is skew-symmetric and tridiagonal. Here

B{n) £ 3 and |w multiplications, -n additions, and -n

comparisons are required.

In conclusion, we see that skew-symmetric systems may be solved stably

using congruence transformations; they are intermediate in difficulty

between symmetric positive definite systems and symmetric indefinite

systems. The situation can be summarized in the table below.
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18 James R. Bunch

Matrix

Method

Pivot size

Number of
multiplications
or additions

Number of
comparisons

Bin)

partial

complete

partial

complete

Sym. Pos.
Def.

T
LDL1

1

0

1

Skew-Sym.
in even)

Sym. Indef.

Diagonal Pivoting

2

i*3

¥2 j

< U.7M-2

< \fc fin)

1 or 2

i 2 . 2
^n to n

iV*3 *° i«3

< (2.57)n"1

< 3nf(n)

Method

Pivot size

Number of
multiplications
or additions

Number of
comparisons

B(n

Tridiagonal method

1

in3

6

¥2

1

\»'

In2
2

Ik"'2

General

Gaussian
Elimination

1

1»3

\"2

i»3

- a " " 1

/(n) =
/c=2
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