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AUTOMATING SYMMETRY-BREAKING CALCULATIONS

P. C. MATTHEWS

Abstract

The process of classifying possible symmetry-breaking bifurcations
requires a computation involving the subgroups and irreducible
representations of the original symmetry group. It is shown how
this calculation can be automated using a group theory package such
as GAP. This enables a number of new results to be obtained for
larger symmetry groups, where manual computation is impractical.
Examples of symmetric and alternating groups are given, and the
method is also applied to the spatial symmetry-breaking of periodic
patterns observed in experiments.

1. Introduction

This paper is concerned with symmetry-breaking bifurcations, in which a state with a high
degree of symmetry becomes unstable to a state with less symmetry. As an introductory
example, consider an object with symmetry (for example, spherical, cubic or square symme-
try) subjected to steadily increasing external pressure. As the pressure increases, the object
may retain its symmetry, or, at a critical value of the pressure, it may spontaneously buckle
into a different shape with less symmetry. More generally, symmetry-breaking bifurcations
occur in systems of ordinary or partial differential equations with a certain symmetry; there
is a solution of the equations with this full symmetry, but this state may become unstable
as a parameter is varied. Because of the symmetry, the linear stability problem has multiple
eigenvalues, with a multiplicity given by the dimension of one of the irreducible representa-
tions of the symmetry group. This means that the linear stability problem is degenerate, and
this degeneracy can be resolved only by considering the nonlinear terms in the equations,
which are themselves constrained by the symmetry. The general theory for such transitions
is set out in the key text on the subject by Golubitsky, Stewart and Schaeffer [11], building
on earlier work by Sattinger [22]; two more recent books incorporate newer theoretical
results and provide many examples and applications of the theory [4, 10].

A remarkable feature of such problems is that the possible symmetry-breaking trans-
itions can be determined purely from the symmetry of the problem, independently of the
underlying physical mechanisms involved, by the use of group and representation theory.
However, in order to determine which of the possible transitions lead(s) to a stable solution
in a particular application, it is necessary to return to the original equations and compute
the values of certain coefficients.

One application of considerable interest is the formation and stability of patterns. In
experiments on Rayleigh–Bénard convection, where a layer of fluid is heated from below,
and in the Faraday experiment, where a layer of fluid or granular material is subjected to
a vertical oscillation, the original Euclidean symmetry can be broken, leading to a regular
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Automating symmetry-breaking calculations

pattern of stripes, squares or hexagons [21, 3, 1]. These regular periodic patterns may
themselves become unstable, leading to secondary patterns that may retain periodicity on
a lengthscale longer than that of the original pattern [14, 24, 6, 7].

The aim of this paper is to show how the basic group-theoretic approach to classifying
possible symmetry-breaking bifurcations can be straightforwardly automated by using a
computational group theory package such as GAP [8]. Section 2 summarises the general
theory of the subject, and Section 3 describes the computational implementation. A number
of results are presented in tabular form in Section 4, and these are extended to the case of
oscillatory bifurcations in Section 5.

2. Problem formulation

This section introduces the language and notation of bifurcation with symmetry, and
summarises the key results; full details can be found in [11] or [4]. Suppose that G is a
compact Lie group, acting absolutely irreducibly on V = Rn. The representation is said
to be absolutely irreducible if the only matrices that commute with all elements of G are
multiples of the identity, and this implies that the representation is irreducible (that is, there
is no proper G-invariant subspace).

The system of n equations

f (x, λ) = 0, x ∈ Rn, λ ∈ R (1)

is said to be G-equivariant if

f (gx, λ) = gf (x, λ) for all g ∈ G, (2)

where the notation gx is used as an abbreviation for the action of g on x through the matrix
representation of g.

The symmetry of a point v in V is described by its isotropy subgroup, or stabiliser,
defined by

{g ∈ G : gv = v}.
A subgroup H ⊂ G is said to be an isotropy subgroup of G if there exists a point v ∈ V

with isotropy H . In the physics literature, isotropy subgroups are often referred to as little
groups. For any subgroup H ⊂ G, the fixed-point subspace of H is

Fix(H) = {v ∈ V : hv = v for all h ∈ H }. (3)

The irreducibility condition means that either Fix(G) = V or Fix(G) = 0. However, if
Fix(G) = V , then any subspace of V is G-invariant, which contradicts the irreducibility if
n > 1. Hence for n > 1, we must have Fix(G) = 0.

We now suppose that the system of equations (1) has a solution that undergoes a stationary
bifurcation at x = 0, λ = 0, so that

f (0, 0) = 0 and

∣∣∣∣
∂fi

∂xj

∣∣∣∣ (0, 0) = 0. (4)

The second condition, that the Jacobian matrix has zero determinant, means that the implicit
function theorem does not hold, and so (1) does not define a unique branch of solutions
x(λ) in the vicinity of λ = 0. The linearisation of f must be a scalar multiple c(λ) of the
identity (from absolute irreducibility) with c(0) = 0, and it is assumed that the transversality
condition c′(0) �= 0 holds.
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The type of the bifurcation depends on the choice of representation of G. For the trivial
representation, in which gx = x for all g and x, the equivariance condition (2) provides no
constraint, and generically the bifurcation is of saddle-node type, in which the leading terms
are, after a suitable rescaling, λ + x2 = 0. There is no loss of symmetry at the bifurcation.
For all other one-dimensional representations, gx = −x for some g, and so (2) forces f to
be an odd function of x, and the bifurcation is of pitchfork type, λx + ax3 = 0 to leading
order. The nonzero solutions have an isotropy subgroup generated by the elements of G

that act as +1.
For irreducible representations (irreps) of dimension n > 1, we must have Fix(G) = 0,

as explained above. Applying (2) to x = 0 gives f (0, λ) = gf (0, λ) for all g ∈ G, so that
f (0, λ) ∈ Fix(G), and hence f (0, λ) = 0. Physically, this is the statement that a solution
with the full symmetry group G exists for all values of the parameter λ. The existence of
non-zero solutions in this case can be established using the equivariant branching lemma
[5, 25, 13, 11], which states that if, in addition to the conditions given above, there is an
isotropy subgroup H of G with Dim(Fix(H)) = 1, then a unique branch of solutions to (1)
with isotropy H exists, emanating from x = 0, λ = 0. This condition is sufficient but not
necessary, so applying the lemma in general finds some but not all of the solution branches
of (1). The notation D(H) will be used henceforth as an abbreviation for Dim(Fix(H)). If
D(H) > 1, there is no simple analogue of the equivariant branching lemma; however, if
D(H) = 2, then at least one solution exists in Fix(H), provided that the quadratic terms in
the equations are non-zero and satisfy certain non-degeneracy conditions [15, 16, 18].

In the case where n > 1, the type of bifurcation is constrained by the normalizer, N(H),
defined by

N(H) = {g ∈ G : g−1Hg = H }. (5)

Equivalently, this is the largest subgroup of G in which H is normal. The normalizer maps
Fix(H) to itself, since if y ∈ Fix(H), g ∈ N(H) and h ∈ H , then (g−1hg)y = y (since
g−1hg ∈ H ), so hgy = gy and hence gy ∈ Fix(H). Clearly, N(H) contains H , and if
N(H) = H then there is no symmetry within Fix(H), since all elements of H act as the
identity in Fix(H). But if N(H) �= H , then the symmetry group acting on Fix(H) is the
quotient group N(H)/H . If D(H) = 1, the only possibilities are either that N(H) = H ,
or that N(H)/H is isomorphic to the cyclic group Z2; in the latter case, the bifurcation
is of pitchfork type. If N(H) = H , then the bifurcation is generally transcritical, but in
some cases there may be additional constraints, for example due to ‘hidden’ symmetries
[10, 7]. A standard example is the group D5, where N(H) = H but the bifurcation is not
transcritical.

In order to apply the equivariant branching lemma and hence obtain solutions of (1), one
must find the isotropy subgroups H for which D(H) = 1. These are often referred to as
axial subgroups, since they correspond to axes of reflection for two-dimensional irreps, and
to axes of rotation for three-dimensional irreps (for the cube, for example, there are three
such axes, with isotropies Z4, Z3 and Z2). To compute D(H), it is not necessary to have
an explicit form of the matrix representation, since one can use the trace formula [11, 4]

D(H) = Dim(Fix(H)) = 1

|H |
∑

h∈H

χ(h), (6)

where χ(h) is the character of h (the trace of the matrix). Thus the computation of D(H)

requires only the character table of G.
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3. Computational algorithm

The algorithm for computing the isotropy subgroups of a given finite group G is outlined
in Table 1. This algorithm was implemented using the computational group theory package
GAP [8].

The first step is to define the group G, by specifying the generators of G. In most cases,
the most convenient way to do this is to write G as a subgroup of a permutation group, which
can always be done (this is Cayley’s theorem). For example, the group D4 of symmetries of a
square is expressed as a subgroup of S4 by labelling the four corners; the two reflections that
generate D4 are then the permutations (1, 2)(3, 4) and (1, 3). The next stage is to find the
lattice of subgroups of G, up to conjugacy. Two subgroups H and K are said to be conjugate
if there exists g ∈ G such that H = g−1Kg; for example, the subgroups generated by (1, 3)

and (2, 4) are conjugate, both corresponding to diagonal reflections of the square. If two
subgroups are conjugate, then the dimensions of their fixed-point subspaces are equal. Note
that two subgroups may be isomorphic but not conjugate; for example, D4 has three non-
conjugate subgroups that are isomorphic to Z2. For each subgroup H , it is useful to check
whether H is normal, and to find the normaliser of H .

The next stage is to find the character table of G. Note that in a high-level language such
as GAP, this is done in a single command (as is the construction of the subgroup lattice).
We now choose one of the irreps of G, and calculate D(H) for all non-conjugate subgroups
of G using the trace formula (6). In the GAP language, this is evaluated as a scalar product
of the restriction of the character to H with the trivial character of H . Having found the
dimensions corresponding to each subgroup, the isotropy subgroups can be found, using

Table 1: Computational algorithm for finding isotropy subgroups.

Specify the group G as a subgroup of a permutation group

Compute the lattice of non-conjugate subgroups of G

Compute the character table of G

For each irrep of G

For each subgroup H of G

Compute D(H) using trace formula

End for

For each subgroup H of G

If D(H) > 0 and D(K) < D(H) for all K immediately

above H in the lattice, then H is an isotropy subgroup

If D(H) > 0 and D(K) = 0 for all K immediately

above H in the lattice, then H is maximal

If H is an isotropy subgroup, find N(H)/H

End for

List isotropy subgroups H and D(H) for this irrep

End for
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the chain criterion (see, for example, [20]). This states that H is an isotropy subgroup of
G if and only if D(K) < D(H) for all K � H . Since K � H ⇒ D(K) � D(H), it is
only necessary to check whether D(K) < D(H) for all K immediately above H in the
subgroup lattice. Note that this chain criterion is valid only for finite groups; refinements
have been proposed to provide a criterion for infinite groups, such as SO(3) and O(3);
see [13, 17]. The group G is itself always an isotropy subgroup, with D(G) = 0 for all
non-trivial irreps. Any subgroup H � G with D(H) = 0 cannot be an isotropy subgroup,
by the chain criterion, so it is only necessary to find isotropy subgroups with D(H) � 1.
Having found an isotropy subgroup, it is useful to compute the quotient group N(H)/H ,
since this gives the symmetry acting on Fix(H), which influences the type of bifurcation.

Amongst isotropy subgroups, of particular interest are the maximal isotropy subgroups.
An isotropy subgroup H is said to be maximal if there is no isotropy subgroup K satisfying
H � K � G. Equivalently, H is maximal if D(H) > 0 and D(K) = 0 for all K

immediately above H in the subgroup lattice. Thus isotropy subgroups with D(H) = 1 are
always maximal, but those with D(H) > 1 may or may not be maximal. Having found the
isotropy subgroups for a given irrep, the computation is then repeated for the other irreps
of G.

There are a number of short cuts that can be taken to reduce the calculations required.
These may be useful when the calculation is being carried out by hand, but it turns out that
there is little to be gained from implementing these computationally, since the saving in
computational time is not significant. The most time-consuming part of the computation is
the construction of the subgroup lattice; applying the trace formula and the chain criterion
typically occupies less than one fifth of the computation time.

The first short cut is that it is really only necessary to consider faithful irreps (recall that
an irrep is faithful if only the identity element of g satisfies gv = v for all v ∈ V ). If the
irrep is not faithful, the calculation can be reduced to the case of a smaller group, which
is the quotient group G/N , where N is the normal subgroup of G containing the elements
corresponding to the identity matrix. A standard example (see [11]) is the two-dimensional
irrep of S4, in which a normal subgroup isomorphic to D2 acts as the identity and the quotient
group is isomorphic to S3. Faithful irreps can be identified from the character table from the
fact that all (non-identity) conjugacy classes have a character less than that of the identity.
For a faithful irrep of dimension n, it follows that the identity subgroup I is an isotropy
subgroup with D(I) = n, while for a non-faithful irrep, the above normal subgroup N is
an isotropy subgroup with D(N) = n.

The second short cut is that for faithful irreps, normal subgroups can never be isotropy
subgroups. This simple result does not appear to be given explicitly in the standard literature,
so it is formally stated and proved here.

lemma 1. Suppose that G acts irreducibly and faithfully on Rn, and that H is a proper
normal subgroup of G. Then D(H) = 0, and so H is not an isotropy subgroup of G.

Proof. If H is a normal subgroup of G, then the normaliser of H is N(H) = G, by
definition. Then, as shown in Section 2, G maps Fix(H) to itself, so the subspace Fix(H)

is G-invariant. Since the action of G is irreducible, this subspace must be either Rn or
0. Now if Fix(H) = Rn and H is not the identity subgroup, then there are non-identity
elements that act as the identity, so the action cannot be faithful. Hence if the action is
faithful, Fix(H) = {0}, and so D(H) = 0 and H is not an isotropy subgroup.
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Thirdly, it is in fact not necessary to evaluate D(H) for every group in the lattice. For
example, once a subgroup with D(H) = 0 has been identified, all the subgroups above H

in the lattice must have D(H) = 0. Once again, there is no point in incorporating this into
the computational algorithm.

A potentially useful extension of the calculation, beyond the scope of this paper, would
be to construct the equations (1) that are consistent with the equivariance condition (2). This
would permit automation of the explicit construction of solutions, which is of particular
interest in cases where D(H) is even, when solutions may or may not exist. This is a more
difficult calculation, since it requires explicit construction of a matrix representation of G,
which is non-unique, followed by the solution of a large number of equations, obtained
from (2), relating the coefficients of nonlinear terms in (1).

4. Results

In this section, results are presented in tabular form, giving the isotropy subgroups for
various finite groups of practical interest. Many of these results are new, although in some
cases the results are available in the literature [11, 19, 12, 2]. In each case below, reference
is made, where appropriate, to earlier work.

In some cases, general results can be obtained analytically. For the group Dn of symme-
tries of a regular n-gon, there are two-dimensional faithful irreps. If n is odd, there is one
isotropy subgroup isomorphic to Z2, while if n is even there are two, corresponding to the
one or two non-conjugate reflection symmetries [11].

Another example of an analytical result is available for the symmetric group Sn, where
the natural n-dimensional representation is reducible and composed of the trivial irrep and
an irrep of dimension n − 1. Here, the isotropy subgroups are of the form Sp × Sn−p for
p = 1 . . . [n/2], corresponding to a partition of n identical objects into two classes of
size p and n − p [10]. There is an analogous result for the alternating group An of even
permutations. For n � 4, there is a natural irrep of dimension n − 1, with [n/2] isotropy
subgroups that are the stabilisers of the same partition. The subgroups are generated by even
permutations of one subset and odd permutations of both subsets, so for p = 1 the axial
isotropy subgroup is An−1, and for p = 2 it is isomorphic to Sn−2 (since any permutation
of n − 2 objects can be written as an even permutation of n objects, by interchanging the
remaining two objects, or not, as required).

4.1. Symmetric, alternating and Platonic groups

In this section, results are presented in tabular form for some symmetric groups, alter-
nating groups and the symmetry groups of the Platonic solids.

The results are given in the form of extended character tables for each group G. The first
row of each table gives the number of elements in each conjugacy class, and the second
row gives the orders of the elements in that class. Each subsequent row corresponds to
a numbered irrep of G, marked with a symbol ‘F’ if the irrep is faithful, and gives the
character for each class. This is followed by lists of isotropy subgroups with D(H) = 1
and D(H) = 2. The subgroups are labelled according to isotropy; in some cases, this does
not completely define the subgroup, but to specify the group completely, by specifying its
generators, would make the tables unwieldy. Larger groups that cannot easily be labelled
are simply denoted Hn, where n = |H |. For isotropy subgroups with N(H) �= H , the size
of the quotient group N(H)/H is given in brackets after the subgroup. Thus, if a group
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with D(H) = 1 is followed by (2), the corresponding bifurcation must be a pitchfork. For
subgroups with D(H) = 2, the subgroup is followed by the symbol ‘M’ if the subgroup is
maximal (recall that all isotropy subgroups with D(H) = 1 are maximal).

For the alternating group A4 (Table 2), which is also the symmetry group of rotations of
a tetrahedron, there is one faithful 3D irrep, with axial subgroups Z2 and Z3, corresponding
to the two possible rotation axes of the tetrahedron.

The group A5 is isomorphic to the rotation group of the icosahedron or dodecahedron
(see Table 3). The problem of bifurcation with icosahedral symmetry has recently been
investigated by Hoyle [12], who also computed the normal form equations for the bifurcation
in each irrep, and derived stability conditions for each axial branch of solutions. For the
3D irreps, there are axial subgroups Z2, Z3 and Z5, each corresponding to a rotation axis
of the icosahedron, and in the natural 4D irrep there are axial subgroups D3 ≡ S3 and A4,
in agreement with the general result for An given above. Note that in the 5D irrep, there is
a maximal isotropy subgroup D2 with D(H) = 2; it can be shown using the equations in
[12] and the methods of [15, 16, 18] that solutions with isotropy D2 exist, in addition to the
D3 and D5 solutions guaranteed by the equivariant branching lemma.

For the group A6 (Table 4), there are several cases where the equivariant branching lemma
indicates branching to solutions with isomorphic but non-conjugate isotropy subgroups. In
the natural 5D irrep, there are solutions with isotropy A5 and S4, and an 18-element group
generated by the permutations (1, 2, 3), (4, 5, 6) and (1, 2)(4, 5), as discussed above. In the
10D irrep, there are three maximal isotropy subgroups with D(H) = 2. Results have also
been obtained for A7 and A8 (of order 20 160), where there are up to 21 axial subgroups.

Table 2: Results for the group A4, the group of rotations of a tetrahedron (see the beginning
of Section 4.1 for notation).

1 3 4 4

1 2 3 3 D(H) = 1 D(H) = 2

1 1 1 1 1 A4

2 1 1 e2πi/3 e−2πi/3 D2

3 1 1 e−2πi/3 e2πi/3 D2

4F 3 −1 0 0 Z2 (2) Z3

Table 3: Results for the group A5, the group of rotations of an icosahedron; the symbols φ±
denote (1 ± √

5)/2.

1 15 20 12 12

1 2 3 5 5 D(H) = 1 D(H) = 2

1 1 1 1 1 1 A5

2F 3 −1 0 φ+ φ− Z2 (2) Z3 (2) Z5 (2)

3F 3 −1 0 φ− φ+ Z2 (2) Z3 (2) Z5 (2)

4F 4 0 1 −1 −1 D3 A4 Z2 (2) Z3 (2)

5F 5 1 −1 0 0 D3 D5 D2M (3)

107https://doi.org/10.1112/S1461157000001066 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001066


Automating symmetry-breaking calculations

Turning to the symmetric groups, Table 5 shows the case of S4, which has been discussed
in earlier work [11, 19]. This group is isomorphic to the group of rotation symmetries of
the cube (or octahedron), and also to the group of symmetries of the tetrahedron, including
reflections. The ‘natural’ irrep for the rotations of the cube is that labelled 4F, and the axial
subgroups correspond to rotations about the two-fold, three-fold and four-fold axes of the
cube. Irrep 5F is the ‘natural’ one for the tetrahedron, or for the permutation of four objects.
The isotropy subgroups D2 and D3 are analogous to the rotation axes found for A4, and the
subgroup Z2 with D(H) = 2 is generated by the reflection symmetry of the tetrahedron.

Table 4: Results for the group A6. The symbols φ± denote (1 ± √
5)/2.

1 45 40 40 90 72 72

1 2 3 3 4 5 5

1 1 1 1 1 1 1 1

2F 5 1 2 −1 −1 0 0

3F 5 1 −1 2 −1 0 0

4F 8 0 −1 −1 0 φ+ φ−
5F 8 0 −1 −1 0 φ− φ+
6F 9 1 0 0 1 −1 −1

7F 10 −2 1 1 0 0 0

D(H) = 1 D(H) = 2

1 A6

2F H18 (2) S4 A5 D2 (6) D3 A4 (2)

3F H18 (2) S4 A5 D2 (6) D3 A4 (2)

4F D3 D3 D4 D5 Z3 (6) Z3 (6) D2 (6) D2 (6) Z4 (2) Z5 (2)

5F D3 D3 D4 D5 Z3 (6) Z3 (6) D2 (6) D2 (6) Z4 (2) Z5 (2)

6F D5 S4 S4 H36 D3 D3 D4

7F D3 D3 A4 (2) A4 (2) Z4M (2) Z5M (2) Z3 × Z3M (4)

Table 5: Results for the symmetric group S4.

1 6 3 8 6

1 2 2 3 4 D(H) = 1 D(H) = 2

1 1 1 1 1 1 S4

2 1 −1 1 1 −1 A4 (2)

3 2 0 2 −1 0 D4 D2 (6)

4F 3 −1 −1 0 1 Z2 (2) Z3 (2) Z4 (2)

5F 3 1 −1 0 −1 D2 (2) D3 Z2 (2)
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For S5 (see Table 6), the natural permutation irrep is 4F, giving axial subgroups S4 and
S3 × S2 ≡ D6. Results have also been found for S6, S7 and S8.

The remaining symmetry groups for the Platonic solids are the groups S4 × Z2 for the
symmetry of the cube including reflections (Table 7), and A5 × Z2 for the symmetry of
the icosahedron with reflections (Table 8). The results are consistent with the earlier work
[19, 12] in each case. For S4 × Z2, the two faithful 3D irreps lead to axial subgroups D2,
D3 and D4. For A5 × Z2, in the faithful 5D irrep there are axial subgroups D2, D3 and
D5; as in the case of A5, there is a maximal two-dimensional isotropy subgroup D2. In this
case, however, it can be shown (using the equations given in [12]) that there is generically
no solution in this subspace.

Note that for a group G with a direct product structure G = K × Z2, the irreps can
be obtained from those for the group K; each irrep of K corresponds to two irreps ‘+’
and ‘−’ of G according to the action of the Z2 subgroup. For the ‘+’ irreps, which are not
faithful, the isotropy subgroups are simply the direct products of the isotropy subgroups
for K with Z2, but for the faithful ‘−’ irreps there is no simple relationship between the
isotropy subgroups of K and those of G.

Table 6: Results for the symmetric group S5.

1 10 15 20 20 30 24

1 2 2 3 6 4 5

1 1 1 1 1 1 1 1

2 1 −1 1 1 −1 −1 1

3F 4 −2 0 1 1 0 −1

4F 4 2 0 1 −1 0 −1

5F 5 −1 1 −1 −1 1 0

6F 5 1 1 −1 1 −1 0

7F 6 0 −2 0 0 0 1

D(H) = 1 D(H) = 2

1 S5

2 A5 (2)

3F Z4 (2) D3 (2) Z6 (2) A4 (2) Z2 (4) Z3 (4)

4F D6 S4 D2 (2) D3 (2)

5F D3 (2) D4 H20 Z2 (6) D2 (6) Z4 (2)

6F D4 D5 (2) D6 D2 (6) D2 (2)

7F Z4 (2) D2 (2) D3 (2) Z6 (2) Z2 (4) Z3 (4) Z5M (4)
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Table 7: Results for the group S4 × Z2 of symmetries of the cube including reflections.

1 1 6 6 8 8 3 3 6 6

1 2 2 2 3 6 2 2 4 4

1 1 1 1 1 1 1 1 1 1 1

2 1 1 −1 −1 1 1 1 1 −1 −1

3 1 −1 1 −1 1 −1 1 −1 1 −1

4 1 −1 −1 1 1 −1 1 −1 −1 1

5 2 2 0 0 −1 −1 2 2 0 0

6 2 −2 0 0 −1 1 2 −2 0 0

7F 3 −3 −1 1 0 0 −1 1 1 −1

8F 3 −3 1 −1 0 0 −1 1 −1 1

9 3 3 −1 −1 0 0 −1 −1 1 1

10 3 3 1 1 0 0 −1 −1 −1 −1

D(H) = 1 D(H) = 2

1 H48

2 H24 (2)

3 S4 (2)

4 S4 (2)

5 D4 × Z2 Z3
2 (6)

6 D4 (2) D4 (2) D2 (12)

7F D2 (2) D3 (2) D4 (2) Z2 (4) Z2 (8)

8F D2 (2) D3 (2) D4 (2) Z2 (4) Z2 (8)

9 D2 (2) Z6 (2) Z4 × Z2 (2)

10 Z3
2 (2) D6 D2 (2)
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Table 8: Results for the group A5 × Z2 of symmetries of the icosahedron,
including reflections.

1 1 20 20 15 15 12 12 12 12

1 2 3 6 2 2 5 10 5 10

1 1 1 1 1 1 1 1 1 1 1

2 1 −1 1 −1 1 −1 1 −1 1 −1

3 3 3 0 0 −1 −1 φ+ φ+ φ− φ−

4F 3 −3 0 0 −1 1 φ+ −φ+ φ− −φ−

5 3 3 0 0 −1 −1 φ− φ− φ+ φ+

6F 3 −3 0 0 −1 1 φ− −φ− φ+ −φ+

7 4 4 1 1 0 0 −1 −1 −1 −1

8F 4 −4 1 −1 0 0 −1 1 −1 1

9 5 5 −1 −1 1 1 0 0 0 0

10F 5 −5 −1 1 1 −1 0 0 0 0

D(H) = 1 D(H) = 2

1 A5 × Z2

2 A5 (2)

3 D2 (2) Z6 (2) Z10 (2)

4F D2 (2) D3 (2) D5 (2) Z2 (4)

5 D2 (2) Z6 (2) Z10 (2)

6F D2 (2) D3 (2) D5 (2) Z2 (4)

7 D6 A4 × Z2 D2 (2) Z6 (2)

8F D2 (2) D3 (2) D3 (2) A4 (2) Z2 (4) Z2 (4) Z3 (4)

9 D6 D10 Z3
2M (3)

10F D2 (2) D3 (2) D5 (2) Z2 (4) D2M (6)
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1 2 3

4

5

6

(a) (b) (c)

(d) (e) (f) (g)

Figure 1: Symmetry-breaking from D4 � Z3 × Z3.
(a) The basic state and labelling used to write the group as a subgroup of S6.

(b),(c) Schematic showing symmetry of axial solutions corresponding to irrep 6F with
isotropy D4 and D6.

(d)–(g) Axial solutions corresponding to irrep 8F with isotropy D2, Z4, D3 and Z6.

4.2. Instabilities of periodic patterns

An application of considerable current interest is the classification of instabilities of
regular, spatially periodic patterns that break the periodicity of the pattern but maintain
periodicity on some larger lengthscale. The resulting patterns are known as superlattice
patterns. The examples discussed here are motivated by recent observations of transitions
seen in the Faraday experiment [1, 14]. In this experiment, a layer of fluid or granular
material is subjected to a vertical vibration. The uniform state can become unstable to a
regular periodic pattern, which is often hexagonal. Also, by varying the parameters and
introducing two-frequency forcing, a variety of secondary instabilities can be induced,
leading to superlattice patterns. Since the underlying state in the Faraday experiment
is periodic, the general theory of bifurcation from a stationary state outlined in Section 2
is not directly applicable. However, an analogous approach can be followed, in which the
differential equations are replaced by maps describing the change in the state of the system
after one cycle (see, for example, [24]).

Consider first a spatially periodic pattern of squares, with translation symmetries
x → x + l and y → y + l, and suppose that the symmetry of the pattern is broken in
such a way that translation symmetries x → x + nl and y → y + nl, n ∈ N, are re-
tained. With this constraint, the symmetry of the initial state is that of a periodic array of
n × n squares, as shown in Figure 1(a) for n = 3. The symmetry group is generated by the
symmetries D4 of the square, together with the symmetries Z3 × Z3 of the translations.
Since the translations form a normal subgroup, the full symmetry group can be written
as the semidirect product G = D4 � Z3 × Z3. This group can conveniently be written
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as a subgroup of the permutation group S6, by labelling the three rows and three columns as
shown in Figure 1(a), and by writing down the permutation action of the group generators
on the rows and columns. The reflection about a vertical axis interchanges columns 1 and
3, but fixes column 2 and the three rows, and so is represented by the permutation (1, 3).
The reflection about the diagonal interchanges the rows and columns, corresponding to the
permutation (1, 4)(2, 5)(3, 6). The translation x → x + l permutes the columns according
to (1, 2, 3) (the translation y → y + l is not required to generate the group). The results of
the symmetry-breaking computation are shown in Table 9. Since the subgroup Z3 × Z3 is
normal, the character table of the quotient group D4 appears in the first five rows of the char-
acter table of G. These first five irreps correspond to instabilities of the square pattern that do
not break any translation symmetries. There are four faithful four-dimensional irreps. In two
of these, there are two axial subgroups, D4 and D6. Further examination of the generators of
these subgroups shows that in irrep 6F, the first pattern retains the square symmetry (1, 3),
(1, 4)(2, 5)(3, 6) but no translation symmetry (shown schematically in Figure 1(b)), while
the D6 solution possesses a translation symmetry (4, 5, 6) and two orthogonal reflection
symmetries (1, 3) and (4, 6) (see Figure 1(c)). In irrep 7F, the D4 solution is the same, but
the D6 solution involves diagonal translations and reflections. Thus the D6 subgroups in
Table 9 are not conjugate, but the D4 subgroups are conjugate. In these irreps there are no
normaliser symmetries, so we expect these patterns to arise at a transcritical bifurcation.
In the other four-dimensional irreps there are four competing patterns, with isotropies D2,
Z4, D3 and Z6. The solutions with D2 and Z4 symmetry have rectangular and π/2 rotation
symmetry, respectively, and no translation symmetry (see Figure 1(d), (e)). The patterns
with D3 and Z6 possess a translation symmetry combined with a π rotation symmetry and
a reflection symmetry respectively (Figure 1(f), (g)). The Z4 subgroups in irreps 8F and 9F
are conjugate, but the D2, Z6 and D3 subgroups are not; they are related through a π/4
rotation. In these cases, the bifurcations are all pitchforks. In fact, the isotropy subgroups
for D4 � Zn × Zn can be obtained analytically; the details of these calculations will be
given elsewhere.

Table 9: Results for the group D4 � Z3 × Z3 of symmetries of a 3 × 3 square lattice.

1 2 3 2 6 3 2 4 6 D(H) = 1

1 1 1 1 1 1 1 1 1 1 D4 � Z3 × Z3

2 1 −1 1 1 −1 1 1 −1 1 D2 � Z3 × Z3 (2)

3 1 1 1 1 1 1 −1 −1 −1 D2 � Z3 × Z3 (2)

4 1 −1 1 1 −1 1 −1 1 −1 Z4 � Z3 × Z3 (2)

5 2 0 2 −2 0 2 0 0 0 Z2 � Z3 × Z3 (2) Z2 � Z3 × Z3 (2)

6F 4 2 1 0 −1 −2 0 0 0 D4 D6

7F 4 0 −2 0 0 1 2 0 −1 D4 D6

8F 4 −2 1 0 1 −2 0 0 0 D2 (2) Z4 (2) D3 (2) Z6 (2)

9F 4 0 −2 0 0 1 −2 0 1 D2 (2) Z4 (2) D3 (2) Z6 (2)
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3
4

6
5

8
7

21

(a) (b)

Figure 2: Symmetry-breaking on hexagonal lattices.
(a) Circles indicate qualitatively the symmetry of the ‘SSS’ state of [1]. The pattern is

periodic on a larger hexagonal lattice, indicated by dashed lines. The numbered vertices
are used to embed the group in S8.

(b) For the superlattice patterns observed in [14], the pattern is periodic on a larger
hexagonal lattice containing seven hexagons (SL-I, dashed line) or twelve hexagons
(SL-II, dotted line) [24].

In the experiments of Arbell and Fineberg [1], square patterns are found in some pa-
rameter regimes, and these can become unstable to a pattern that appears to have square
symmetry with a threefold increase in the periodicity (states referred to as ‘2MS’, see [1,
Figure 2(b)]). The symmetry of these states is approximately as shown in Figure 1(b), so
that the instability corresponds to the 4D irrep 6F or 7F. There are axial solutions with D4
and D6 symmetry, but in the experiment it appears that only the D4 solution is stable.

Arbell and Fineberg also observed hexagonal states, and these can become unstable to a
state in which the hexagons cluster in groups of four (‘SSS’states, see [1, Figure 2(a)]). This
transition can be analysed by considering a hexagonal array set within a larger hexagonal
lattice, so that each large hexagon contains four small hexagons (Figure 2(a)). In this case,
the relevant symmetry group is D6 � Z2 × Z2, of order 48, generated by the hexagonal
symmetry and the two translations of the lattice. To write the group as a permutation group,
the eight distinct vertices of the hexagons are labelled as shown in Figure 2. The gen-
erators are then the reflections (1, 2)(3, 6)(4, 5)(7, 8) and (1, 3)(4, 6) and the translation
(1, 8)(2, 6)(3, 5)(4, 7). Investigating the structure of the group reveals that it is isomorphic
to the group of symmetries of the cube, S4 × Z2, the Z2 subgroup being generated by a
rotation through π about the centre of a hexagon. Hence the possible symmetry-breaking
instabilities are exactly analogous to those of the cube, and the axial subgroups can be read
off from Table 7. The pattern observed in [1] and sketched in Figure 2(a) has D2 symmetry
generated by the reflections (1, 3)(4, 6) and (1, 4)(2, 8)(3, 6)(5, 7). The product of these
reflections is a π rotation about the edge of a hexagon. This subgroup is axial in the three-
dimensional faithful irreps 7F and 8F in Table 7. (Note that the pattern does not have the
D2 symmetry of irreps 9 and 10, since in these irreps the π rotation about the centre of a
hexagon acts as the identity, so all the patterns have that symmetry.)
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In the Faraday experiments of Kudrolli, Pier and Gollub [14], two types of superlattice
patterns were observed. The first type (SL-I) is periodic on a skewed hexagonal lattice
containing seven hexagons, and the second (SL-II) is periodic on a lattice containing twelve
hexagons (Figure 2(b)). The SL-II patterns were studied using the group-theoretic approach
by Tse et al. [24]. In this case, the symmetry group can be embedded in S12 simply by
labelling the twelve hexagons and writing down the action of the two reflection symmetries
and a translation symmetry. The translations generate the group Z6 ×Z2, so the full spatial
symmetry group of the system is D6 �Z6 ×Z2, of order 144 (see [24]). The character table
is shown in Table 10 (note that the character table given in [24] contains minor typographical

Table 10: Character table for the group G = D6 � Z6 × Z2 of symmetries of a periodic
lattice of 12 hexagons, with axial subgroups for G in irreps 14F and 15F and axial subgroups
for G × Z2 in irrep 15F−.

1 6 18 24 8 3 9 16 12 12 6 18 2 6 3

1 2 2 6 3 2 2 3 12 6 6 4 3 4 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 −1 −1 1 −1 −1 1 1 1 1 −1 1 1 1

3 1 −1 −1 1 1 1 1 1 −1 −1 1 −1 1 −1 1

4 1 −1 1 −1 1 −1 −1 1 −1 −1 1 1 1 −1 1

5 2 0 0 −1 −1 2 2 −1 0 0 2 0 2 0 2

6 2 0 0 1 −1 −2 −2 −1 0 0 2 0 2 0 2

7 2 2 0 0 2 0 0 −1 −1 −1 −1 0 −1 2 2

8 2 −2 0 0 2 0 0 −1 1 1 −1 0 −1 −2 2

9 3 −1 −1 0 0 3 −1 0 1 −1 −1 1 3 1 −1

10 3 −1 1 0 0 −3 1 0 1 −1 −1 −1 3 1 −1

11 3 1 −1 0 0 −3 1 0 −1 1 −1 1 3 −1 −1

12 3 1 1 0 0 3 −1 0 −1 1 −1 −1 3 −1 −1

13 4 0 0 0 −2 0 0 1 0 0 −2 0 −2 0 4

14F 6 −2 0 0 0 0 0 0 −1 1 1 0 −3 2 −2

15F 6 2 0 0 0 0 0 0 1 −1 1 0 −3 −2 −2

14F D2 (2) D2 (2) Z6 (2) D3 (2) D3 D4 (2) Z4 × Z2 (2)

15F D3 D4 (2) Z3
2 (2) D6

15F− D3 (2) D3 (2) Z3
2 (2) Z3

2 (2) D6 (2) D6 (2) D4 × Z2 (2) D4 × Z2 (2)
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errors that do not affect the results). In fact, the group is isomorphic to S4 ×S3, although this
is by no means obvious and does not generalise to other superlattices. Note that there are
two faithful six-dimensional irreps. It is shown in [24] that the relevant irrep for the SL-II
pattern of [14] is 15F. The axial subgroups for the faithful irreps 14F and 15F are listed in
Table 10; there are four axial subgroups for irrep 15F.

An additional complication in this example is that the observed instability is subharmonic;
that is, it arises at a period-doubling bifurcation, with Floquet multiplier −1. It is explained
in [24] that this can be incorporated by including an additional Z2 symmetry to represent
the time translation, so that the group is now isomorphic to (D6 � Z6 × Z2) × Z2, of order
288. As discussed at the end of Section 4.1, each irrep of the original group then splits
into two irreps, ‘+’ and ‘−’, according to the action of the additional Z2 symmetry. The
irrep of interest is then the 15F− irrep, and the axial subgroups for this irrep are listed in
the last row of Table 10. Tse et al. [24] state that there are six axial isotropy subgroups for
this irrep, but do not explain how they did the calculation. Since there are 272 subgroups,
it is likely that the axial subgroups were found by inspection, rather than by following the
systematic algorithm outlined in Table 1. In fact, the computational algorithm reveals that
there are eight axial subgroups. The pair of subgroups isomorphic to D3 are omitted in
[24]; the solution corresponding to the SL-II pattern of [14] is identified in [24] as one
of the solutions with isotropy D4 × Z2. Most of the axial subgroups are ‘twisted’; that
is, they include spatiotemporal symmetries involving a spatial symmetry and a time shift.
However, one of the D3 solutions and one of the D6 solutions correspond to states with
purely spatial symmetries. These states have triangular symmetry about a vertex of one
of the original hexagons, and hexagonal symmetry about the centre of one of the original
hexagons, respectively.

5. Oscillatory bifurcations

The preceding sections have been concerned entirely with the case of a stationary bi-
furcation, where a real eigenvalue passes through zero, leading to branches of stationary
solutions. We now consider the case of an oscillatory, or Hopf, bifurcation, where a complex
conjugate pair of eigenvalues crosses into the right half-plane and the bifurcating branches
are periodic orbits.

For the case of a Hopf bifurcation, it is necessary to consider symmetry-breaking from
the group G × S1, where S1 denotes the continuous time symmetry that is broken in the
Hopf bifurcation (see [9, 10, 11] for details of the general theory). The resulting solution
branches have spatiotemporal symmetries, involving combinations of elements of G with
time translations. More precisely, the spatiotemporal symmetry H contains a normal sub-
group K that is an isotropy subgroup of G, and H/K is a cyclic group representing the
time translations. This cyclic group H/K must be maximally abelian in N(K)/K . These
conditions are necessary for the Hopf bifurcation form of the equivariant branching lemma
to be valid [9]. For the dihedral group Dn, in the two-dimensional irreps, it is well known
that there are three solution branches [11]. The subgroups H (with spatial subgroup K in
brackets) are Zn (1), Z2 (1), Z2 (Z2) for n odd, and Zn (1), D2 (Z2), D2 (Z2) for n even.

Since the time translation symmetry is a cyclic group, a convenient algorithm for reducing
the case of the Hopf bifurcation to the case of the stationary bifurcation is to consider the
finite group G × Zm, for some choice of m. It is straightforward to see that the time shift
symmetry H/K must have an order that is equal the order of one of the elements of G,
so m can be chosen as the least common multiple of the orders of the elements of G.
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For example, m = 4 for D4, m = 12 for S4, and m = 30 for A5. In the cases when m is
large, an alternative approach is to consider the different possible values of m separately;
for example, for A5, the calculation is repeated for A5 × Z2, A5 × Z3 and A5 × Z5.

The results obtained using this algorithm are listed in Table 11. For each group, only the
faithful irreps are considered, and these are listed using the same labelling as in the tables in
Section 4 for the stationary bifurcation. For each solution, the full spatiotemporal symmetry
H is given, as well as the normal subgroup K representing the spatial part. In some cases
H = K , indicating that the symmetries of the periodic orbit are purely spatial.

In a few cases, the results in Table 11 had been obtained previously. Swift and Barany
[23] considered Hopf bifurcation with the symmetry of rotation of a tetrahedron (A4).
They found the four branches of periodic solutions shown in Table 11, and showed that the
normal form equations can exhibit chaotic behaviour. For the group S4, which is the group
of rotations of a cube, Ashwin and Podvigina [2] studied the Hopf bifurcation in irrep 4F;
their results are in agreement with Table 11. In irrep 5F, the axial solutions have isotropy
that is isomorphic to those for irrep 4F. This is because the characters for these two irreps
differ only in signs (Table 5), and these signs can be changed by a half shift in time. Thus,
although the spatiotemporal symmetry groups are isomorphic, the spatial subgroups are not.

Table 11: Axial solution branches for Hopf bifurcation. Labels for the irreps are as used
on earlier tables for the stationary bifurcation. The spatiotemporal symmetry for each axial
solution is given, with the spatial subgroup K in brackets.

Group Irrep Axial branches

A4 4F Z3 (1) Z3 (1) Z3 (Z3) D2 (Z2)

A5 2F Z3 (1) Z5 (1) D2 (Z2) D3 (Z3) D5 (Z5)

A5 3F Z3 (1) Z5 (1) D2 (Z2) D3 (Z3) D5 (Z5)

A5 4F Z3 (1) Z5 (1) Z5 (1) D2 (Z2) D3 (Z3) D3 (D3) A4 (A4)

A5 5F Z5 (1) Z5 (1) D2 (Z2) D3 (D3) D5 (D5) A4 (D2) A4 (D2)

S4 4F Z3 (1) Z4 (1) D2 (Z2) D3 (Z3) D4 (Z4)

S4 5F Z3 (1) Z4 (1) D2 (Z2) D3 (D3) D4 (D2)

S4 × Z2 7F Z3
2 (D2) Z6 (1) Z4 × Z2 (Z2) D6 (D3) D4 × Z2 (D4)

S4 × Z2 8F Z3
2 (D2) Z6 (1) Z4 × Z2 (Z2) D6 (D3) D4 × Z2 (D4)

A5 × Z2 4F Z3
2 (D2) D6 (D3) D10 (D5) Z6 (1) Z10 (1)

A5 × Z2 6F Z3
2 (D2) D6 (D3) D10 (D5) Z6 (1) Z10 (1)

A5 × Z2 8F Z3
2 (D2) D6 (D3) D6 (D3) A4 × Z2 (A4) Z6 (1) Z10 (1) Z10 (1)

A5 × Z2 10F Z3
2 (D2) D6 (D3) D10 (D5) A4 × Z2 (D2) A4 × Z2 (D2) Z10 (1) Z10 (1)
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For the Hopf bifurcation with the symmetry of the cube including reflections, there are
again five branches, and the two faithful irreps 7F and 8F of Table 7 give the same results. For
Hopf bifurcation with icosahedral symmetry, there are seven distinct branches of periodic
solutions in the four- and five-dimensional irreps. The calculation was also carried out
for the group D4 � Z3 × Z3 (Figure 1), corresponding to an oscillatory instability of a
regular square pattern. In this case, there are nine solution branches for each of the faithful
four-dimensional irreps of Table 9.

Acknowledgements. I am grateful to Peter Ashwin, John Cremona, the GAP group and the
referees for helpful advice and discussions.
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