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Abstract

A Laguerre plane is a geometry of points, lines and circles where three pairwise non-collinear points lie
on a unique circle, any line and circle meet uniquely and finally, given a circle C and a point Q not on it
for each point P on C there is a unique circle on Q and touching C at P. We generalise to a Laguerre
geometry where three pairwise non-collinear points lie on a constant number of circles. Examples and
conditions on the parameters of a Laguerre geometry are given.

A generalized quadrangle (GQ) is a point, line geometry in which for a non-incident point, line pair
(P. m) there exists a unique point on m collinear with P. In certain cases we construct a Laguerre
geometry from a GQ and conversely. Using Laguerre geometries we show that a GQ of order (s. s2)
satisfying Property (G) at a pair of points is equivalent to a configuration of ovoids in three-dimensional
projective space.

2000 Mathematics subject classification: primary 51E20. 51E12.

1. Laguerre planes

The study of Laguerre planes is motivated by the study of the quadratic cone in the
projective space PG(3, IF) over the field IF. The quadratic cone is formed by taking a
cone with point vertex over an irreducible quadric (conic) in a plane and with canonical
equation Xl + X\X2 — 0. Laguerre planes axiomatise the point, line and plane section
geometry of the quadratic cone.

A Laguerre plane S" = (&, -£?, If) is an incidence structure of points, lines and
circles, respectively, such that the following axioms are satisfied.
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(LI) Three pairwise non-collinear points are incident with a unique circle.

(L2) For any circle C, point P e C and point Q not collinear to P there is a unique
circle D incident with Q and touching C at P (that is, C and D are incident with
exactly one common point P).

(L3) A point is incident with a unique line and a line meets a circle in a unique point.

(L4) Every circle is incident with at least three points and there exists more than one
circle.

For more on Laguerre planes and the more general circle planes see [3,6].
Note that we will often refer to a circle or a line as the set of points with which it

is incident.
The touching axiom (L2) has an important consequence. If P is a point on a

circle C then any other two circles touching C at P must also touch each other at P,
or else Axiom (L2) is violated. Hence the circles on a fixed point P are partitioned
into sets which touch pairwise at P and partition the points of 5? not collinear with P.
Such a set of circles is called a pencil, and P is called the base point of the pencil.

Naturally, the quadratic cone in PG(3, F) gives an example of a Laguerre plane. In
addition, there are other sets of points in projective space that have properties similar
enough to those of a quadric in PG(3, F) that they may be used in the construction of
Laguerre planes and, as we shall see later, the more general Laguerre geometries.

An ovoid ([29], see [10]) & of a projective space of dimension two or greater is a
non-empty set of points satisfying the following conditions.

(1) No three points are collinear.
(2) The tangent lines (that is, lines meeting G in a single point) at a point Pet?

form a hyperplane.

Note that in two dimensions an ovoid is usually called an oval.
For an ovoid in three dimensions or greater, any hyperplane of the space that is not

tangent to the ovoid must intersect the ovoid in an ovoid of that hyperplane.
We can construct a Laguerre plane from an oval in the following manner. Form

a cone in three dimensions from a point vertex over an oval in a plane and then take
the non-vertex points, lines and plane sections not containing the vertex as the points,
lines and circles of the Laguerre plane.

In the oval cone models for Laguerre planes (which include the quadratic cone) we
have a local projective structure in the sense that, for any non-vertex point P on the
oval cone, PG(3, q)/P is a projective plane. Also, if we remove the tangent plane to
the oval cone at the point P then in the quotient space we have an affine plane. (Note
that in this context a tangent plane meets the oval cone in a single line.) This local or
internal structure is preserved by generalising to Laguerre planes.
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If y = (g», <j£, _S?) is a Laguerre plane then the derived plane at P e & is the
point-line geometry yP with

Points: points of y not collinear with P,
Lines: circles incident with P and lines of y not incident with P,
Incidence: inherited from y .

Since three pairwise non-collinear points define a unique circle in y , we have
that two points define a unique line in yP (whether they be collinear or non-collinear
in y). The touching axiom for y implies that the circles of y incident with P fall
into parallel classes as lines of yP. The lines of y not incident with P form a parallel
class of lines in yP. Note also that any circle of y not incident with P meets any
circle incident with P in at most two points (Axiom (LI) guarantees this for any two
distinct circles). Hence we have the following important and well-known theorem.

THEOREM \.\. Let y = (&>,<£, &) be a Laguerre plane and P e &. Then

(1) yP is an affine plane and we denote its projective completion yP, and
(2) if C is a circle of y not incident with P then in yP the points of yP incident

with C plus the point of yP that is the parallel class of yP corresponding to the lines
of y not incident with P.form an oval of yP.

Note that in all of the models for Laguerre planes mentioned the derived affine
plane is classical.

This relationship between Laguerre planes, affine planes and ovals allows many
interesting classification/characterisation results for Laguerre planes to be proved and
tells us much about the structure of Laguerre planes (for example, see [8]).

2. Finite Laguerre planes, ovoids and Laguerre geometries

We now focus our attention on finite Laguerre planes and investigate the links to
ovoids in finite projective spaces. This in turn will suggest a natural generalisation of
Laguerre planes.

If a finite Laguerre plane y has a line incident with a finite number n of points,
then it is straightforward to show that each line is incident with n points, there are
n + 1 lines, each circle has n + 1 points, there are n2 + n points in total and every
derived plane has order n. The number n is called the order of y .

THEOREM 2.1 ([29]). Let & be an ovoid of PG(n, q), q a prime power.

(1) \0\=q»-l + l.
(2) « = 2 or 3.
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Both parts of the above theorem can be proved by straightforward counting argu-
ments. Given the above theorem, we shall often employ the term oval to refer to a
two-dimensional ovoid and ovoid to refer to a three-dimensional ovoid.

It is known that if q is odd then the ovoids are always classical, that is an elliptic
quadric if n = 3 and an irreducible conic if n = 2 ([1,14,21]). In the case where q is
even there are non-classical examples of both ovoids and ovals (see [9,13]).

We have seen that a cone over an oval gives rise to a Laguerre plane, so now we will
investigate the geometry of a cone Jf over an ovoid (with point vertex V outside the
three-space of the ovoid). In particular, we willconsider the geometry of points, lines
and ovoidal hyperplane sections (that is, where the hyperplane does not contain V)
of <W. Firstly, there is a unique line on any non-vertex point. Secondly, any three
pairwise non-collinear points define a plane of PG(4, q) which intersects X in an oval
and is contained in q hyperplane sections of J f not containing V. This number is finite
as we are now working in a finite projective space. Finally, any ovoidal hyperplane
section has a unique tangent plane at every point. The hyperplanes about this tangent
plane, not containing V, give a set of q ovoidal hyperplane sections that meet pairwise
in a common point. That is, the tangent plane property of the ovoid means that the
geometry of JC satisfies the touching axiom as in Laguerre planes. This geometry
prompts the following generalisation of Laguerre planes where we modify only the
first axiom.

A Laguerre geometry y = (£P, &,&) is an incidence structure of points, lines
and circles, respectively, satisfying Axioms (L2)-(L4) of a Laguerre plane and also

(LI*) Three pairwise non-collinear points are incident with a constant (finite) number
s > 0 of circles.

We will say that y is finite if S? is a finite set (and hence so are ^ and JSf). If
a line of a finite Laguerre geometry y is incident with n points then all lines of y
are incident with n points. The parameter s is the number of circles of y on three
pairwise non-collinear points. We introduce a parameter t to denote the number of
lines of y , that is I = |J&?|. Given these parameters for y it is straightforward to
count that there are nl points in total, I points incident with a circle, n*s circles in
total, us circles incident with two given non-collinear points and n2s circles incident
with a given point.

As in the Laguerre plane case, Axiom (L2) of a Laguerre geometry means that
the circles on a fixed point P are partitioned into sets which touch pairwise at P and
partition the points of y not collinear with P. As for Laguerre planes, we will call
such a set of circles & pencil and the point P the base point of the pencil.

If a Laguerre geometry y has parameters n,s,£, then for the case s — 1 we have
exactly the Laguerre planes, which implies that £ = n + 1 and the geometry yP is
an affine plane. If, however, s > 1, what can we say about the concept analogous
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to that of the derived plane and what can we say about the relationship between the
parameters?

If we consider our motivating example of a cone with point vertex and base an
ovoid & of PG(3, q), then we have a Laguerre geometry y with parameters n = s =q
and I — \G\ = q2 + 1. For a point P of y , consider extending the concept of the
geometry yP as used for Laguerre planes. This geometry has points the points of 5?
not collinear with P. Lines are of two types, firstly circles of y incident with P and
secondly lines of y not incident with P. In this case the first type of line is incident
with q2 points of yP, while the second type of line is incident with q points of yf.
This is clearly an unsatisfactory definition, so in the definition that follows we omit
the second type of line.

If y = ( ^ , y , -£f) is a Laguerre geometry and P e &, define yp, the internal
structure of y at P, to be the incidence geometry with

Points: points of y not collinear with P,
Hyperplanes: circles of y incident with P, and
Incidence: inherited from y .

In the case of a Laguerre plane, y is a projective plane with an incident point-line
pair removed, by which we mean that all points on this line and lines through this
point are also removed. In the case of the Laguerre geometry y arising from a cone
with base an ovoid in PG(3, q), if P is a point of y then the circles on P come from
the hyperplanes of PG(4, q) on P but not on the vertex of the cone, while each point
of y not collinear with P spans a distinct line with P. Looking in the quotient space
PG(4, q)/ P, the geometry yp is the geometry of PG(3, q) with a point-plane pair
removed (corresponding in PG(4, q) to the line P V and the hyperplane meeting the
cone in P V). These examples prompt the following definition.

A Laguerre geometry y — (&, ^ , Sf) has classical internal structure at P e &
if yp is a projective space with a point-hyperplane pair removed.

We now return to the question of the relationship between the parameters n, s and I
of a Laguerre geometry y'. The first question is: do n and 5 determine (.? The
following example shows that this is not the case. Let @ be an ovoid of PG(3, q)
and let & c & be such that there is a unique tangent plane to & at each point. In
this context, by tangent plane at P e 6 we mean a plane incident with P and no
other point of @. If we form a cone in PG(4, q) with point vertex and base & then
the geometry of (non-vertex) points, lines and hyperplane sections of this cone, not
containing the vertex, is a Laguerre geometry with n = s = q and I = \ff\. The
unique tangent plane at every point of @ ensures that the touching axiom is still valid.
So in this construction we see that a given n, s may give rise to Laguerre geometries
with various values of I. More generally, this construction will work if we take the
cone over a set of points in PG(«, q), n > 3, such that no three are collinear and there
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is a unique tangent plane at each point.
The following theorem gives us a definite relationship between n, s and I.

THEOREM 2.2. Let y be a finite Laguerre geometry with parameters n, s, I.
Then n + 1 < I < ns + 1. Equality in the lower bound means s = 1, £ — n + 1 and 5?
is a Laguerre plane, which is equivalent to 5? having intersection sizes between two
circles being 0, 1, 2. In the case I = ns + 1 we have s + 1 |n3 — n, n > s and the
possible intersection sizes for two circles are 0, 1, s + 1. Further, in the t = ns + 1
case there exist disjoint circles if and only ifn > s.

PROOF. TO start, we recall that the total number of points is nt, the total number
of circles is tv's, the number of circles on a pair of non-collinear points is ns and the
number of circles on a given point is n2s.

Now let C be a fixed circle of y and P a fixed point of C. There are exactly n - 1
circles meeting C in exactly P and hence n2s — n circles distinct from C meeting C
in P and at least one other point. For any point Q e C \{P} there are ns — 1 circles
distinct from C meeting C in at least P and Q. Hence there are at most (ns - 1)(£ - 1)
circles meeting C in P and at least one other point. Hence n2s - n < (ns — \)(t — 1),
which is equivalent to £ > n + 1. From the count, it follows that we have equality if
and only if the possible intersection sizes between two circles are 0, 1,2. This is the
case if and only if s = 1 and, since t — n + 1. 5? is a Laguerre plane.

Let the set of circles distinct from C and meeting C in P and at least one other point
be {C,, C2 C,,:,_,,} and t, = \{C, n C) \{P\\. Then £ £ - " t, = (£ - \)(ns - 1)
and the average value of the r, is t = (t - l)(/;s — l ) / ( / r s — /;). If we count triples
(<2, R, C") such that P , Q, fl are distinct pairwise non-collinear points and C ^ C
and P,Q, R cCD C \ then we have X"=i~" f,(r, - 1) = (£ - 1)(£ - 2)(* - 1). So
now if we calculate £"=7"( f ' ~ ' ) 2 = W — ')(» - 0 ( " J + 1 - £)/n we obtain the
inequality £ < ns -f 1.

If we have £ = ns + 1 then, by the above, any two circles that intersect in at
least two points intersect in exactly 7 + 1 = s + 1 points. In this case if, for a fixed
circle C, we count the triples (P. Q, C) with P ^ g and P, Q e C n C", then we
see that the number of circles, distinct from C, meeting C in at least two (and hence
exactly s + 1 points) is (ns + l)ns(ns - l ) / ( s 2 + s) . Since this is an integer, we
have s + \\n(n2s2 — 1) and hence s + 1|»3 - /;. Now the total number of circles
distinct from C not touching C is n}s — (.(n — 1) — 1 = nls — (ns + l)(n — 1) — 1
which is an upper bound for the number of circles meeting C in at least two points.
Hence n3s — (ns + l)(n - 1) - 1 > (ns + ])n(ns - l ) / (s + 1), which simplifies to
(n — s)(n — 1) > 0 and hence n > s. If we have equality then, by the count, there
are no circles disjoint to C and the possible intersection sizes between circles is 1
and s + 1. •
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COROLLARY 2.3. Let y = (&*, £?, tf) be a finite Laguerre geometry with para-
meters n, s, 1. If y has a classical internal structure at some point P then either

(1) s = l, t = n + \ and y arises from a projective plane with a point-line pair
removed; or
(2) s = n, I = n2 + 1 and yp arises from a projective 3-space with a point-plane

pair removed.

PROOF. Since y is classical, it follows that any two distinct circles of y on P
touch at P or intersect in a constant number of points. In the proof of Theorem 2.2,
this means that t,• = J for / = 1, . . . , n2s — ;; and so

- tf =

from which it follows that £ = ns + 1 and t — s. Hence the number of points of yp

must be nt — n = n2s. The projective space giving rise to y has order n and so
n2s = nk for some integer k. By Theorem 2.2, we also have that /; > s, so the only
possibilities are s = 1 and k — 2 or s — n and k = 3. •

3. Generalized quadrangles

Now we introduce a particular class of point-line geometries, the generalized quad-
rangles, and show their connection to Laguerre geometries. Generalized quadrangles
were introduced by Tits in [28].

A generalized quadrangle (GQ) y = (&, i f ) is an incidence geometry of points
and lines satisfying:

(GQ1) Two points are incident with at most one line.

(GQ2) For a non-incident point line pair (P, m) there is a unique point of m collinear
with P.

(GQ3) No point is collinear with all others.

The dual structure of a GQ (that is, swapping the labels of "points" and "lines") is
also a GQ. If a GQ has a line incident with a finite number of points then all lines are
incident with exactly this number of points, and dually for lines. A. finite GQ has an
order (s, t) for s, t finite such that there are s + 1 points incident with a line and t + 1
lines incident with a point. For a comprehensive introduction to finite GQs see [19].

Let y = ( ^ , i f ) be a GQ of order (s, r). Given two (not necessarily distinct)
points X, X' of y , we write X ~ X' and say that X and X' are collinear, provided
there is some line m incident with both X and X'. If X j= X' then the line m
is unique and we will often use (X, X') to denote the line m. For X e &, put
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X1 = {X' 6 9 : X ~ X'}. If A C 9, then we define A1 = n lX 1 : X € A} and

If s2 = t > 1 then by a result of Bose and Shrikhande ([4]) \{X, Y, Z}x | = s + \
for any triple {X, Y, Z) of pairwise non-collinear points (called a triad). Conse-
quently, |{X, Y, Z}x±\ < 5 + 1 and we say that {X, Y, Z) is 3-regular provided
|{X, Y, Z}±x\ = s + 1. The point X is 3-regular if and only if each triad {X, Y, Z] is
3-regular.

GQs are exactly the rank 2 polar spaces and so as examples we.have the non-
singular quadrics and Hermitian varieties in finite projective spaces that contain lines
but no higher dimensional subspaces.

The first non-classical construction of GQs comes from Tits (see [10]). Let G be
an ovoid in H = PG(n, q), n = 2,3, embedded in £ = PG(/; + \,q). Then the
following structure Tn(G) is a GQ of order {q, q"~]). Points are of three types: (i) the
points of L \ H\ (ii) the n-dimensional subspaces of £ meeting H in a tangent space
to G; and (iii) a formal point (oo). Lines are of two types: (a) lines of £, not in H,
meeting H in a point of G; and (b) the points of G. Incidence is natural plus (oo) is
incident with all lines of type (b).

Geometrically, we can see a link between this construction of Tits and Laguerre
geometries if we consider dualising the Tits construction in PG(« + \,q). The
important observation that makes this useful is that if (n, q) ^ (2, 2h) for some h > 1,
then under a duality of PG(n, q) the points of an ovoid ff of PG(«, q) are mapped to
a set of hyperplanes which are the set of tangent hyperplanes to an ovoid equivalent
to & (see a combination of [1,14,20-22]). So if 6 is an ovoid in H = PG(n, q),
n = 2, 3, embedded in T. — PG(n + 1, q), then dualising E we have that H is a point,
the points of 6 become hyperplanes on H that are in fact the hyperplanes obtained
by taking the span of H with the tangent planes to an ovoid equivalent to 6 in an
n-dimensional subspace not containing H. That is, the points of G become tangent
planes to a cone with an ovoid equivalent to G as a base, with lines the dual of the
tangent planes to G. Hence, if Jf is such a cone with vertex V, we may represent the
construction of Tits above by: a point of type (i) corresponds to an ovoidal hyperplane
section of Jff, a point of type (ii) corresponds to a point of X \ {V], (oo) corresponds
to V, a line of type (a) corresponds to an (n — l)-dimensional subspace contained in
a tangent plane to W, but not containing V and finally a line of type (b) corresponds
to a hyperplane tangent to Jff and hence corresponds to a line of J(f. Note that if
we take a (n - l)-dimensional subspace not containing V and contained in a tangent
plane to Jff, the hyperplanes on this subspace intersect Jf in a pencil of the Laguerre
geometry y constructed from Jff. In this way the above correspondence is actually
a correspondence between the geometry of Tn(G), removing the point (oo), and the
geometry of S".

The above discussion raises the question: when does a Laguerre geometry give
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rise to a GQ? In the above connection, circles of the Laguerre geometry are points of
the GQ and the pencils of circles of the Laguerre geometry correspond to lines of the
GQ. So, given the uniqueness in Axiom (GQ2), a Laguerre geometry must at least
satisfy:

(GQ) Three pairwise touching circles are incident with a common point (of contact).

Given this Condition we can determine when a Laguerre geometry corresponds to
a GQ and conversely. For the following theorem we note that a centre of a triad is a
point collinear with all three points of the triad.

THEOREM3.1. Lety = (^", _£?, tf) be a finite Laguerre geometry with parameters
n,s,i satisfying Axiom GQ. Consider the incidence structure which has points of
three types: (i) points of 5?; (ii) circles of y-, and (Hi) a formal point (oo). The
lines are of two types: (a) lines of y-, and (b) pencils of circles. Incidence is that
inherited from y, plus (oo) is incident with all lines of type (a) and a point of y is
incident with all pencils for which it is the base point. This incidence structure is a
GQ, denoted GQ(^), if and only if y satisfies GQ and t = ns + 1, in which case
the GQ has order («, ns).

Conversely, let y = (&, _S?) be a generalized quadrangle of order (s, 1) with
point (oo) such that each triad of y with (oo) as a centre has exactly s + 1 centres
for some fixed s. Then the incidence structure

((oo)-1- \ {(oo)}, [m e X: (oo) is incident with m], {X1 n (oo)-1-: X e & \ (oo)-1-}),

where incidence is induced by that of y, is a Laguerre geometry with s = 1/1, n =s,
t — 7 + 1 and satisfying GQ.

PROOF. Given a Laguerre geometry satisfying GQ, the incidence structure given
has the property that given a non-incident line pair (P, m) there is at most one line
incident with P and concurrent with m. The only case in which this number is possibly
less than 1 is where P is a circle of y and m is a pencil of circles of y whose base
point is not contained in the circle P. Counting, we see that there are t{n — 1) circles
touching P and (nt — l)ns pencils whose base point is not on P. Since each circle
touching P is contained in t — 1 pencils whose base point is not on P, we have a GQ
exactly when l{n. - \)(l - 1) = (nl - i)ns, that is t = ns + 1. •

We can extract two cases of special interest from this theorem.

THEOREM 3.2. Let y be a Laguerre geometry with parameters n, s, i such that
i = ns + 1.

(1) If y satisfies GQ then s + 1 \n + 1 and hence ifs = \ then n is odd.
(2) Ifn = s then y satisfies GQ.
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PROOF. Since i — ns+\, the possible intersection numbers for circles are 0, 1,5+1.
Let C and C" be two circles of J? touching at the point P. Let Q be any point of
C \ {/>}, let R be the point of C collinear with Q and consider the circles touching C"
at Q. Each of these n — 1 circles meets C \ {P, R} in either 0,1 or 5 +1 points and each
point of C \ {P, R] is contained in a unique such circle. Hence a(s + 1) + b = ns — 1
where a, b are non-negative integers and a + b < n — 1.

If 5? satisfies GQ then b — 0 and we have s + 1 \ns — 1 or equivalently s + 1 \n + 1.
If n = 5 then <a(s + 1) + fc = 52 — 1 and a + b < 5 — 1, from which it follows that

7 satisfies GQ. •

REMARK. Note that the converse part of Theorem 3.1 also follows from [19, ???
1.7.1].

What we see from the above theorem is that a Laguerre geometry with n = s and
I = ns + 1 always gives rise to a GQ of order (s, s2). Conversely, every GQ of
order (5, J2) has the property that every triad has I + 1 centres ([4]) and so from every
point of such a GQ there arises a Laguerre geometry with parameters n = s — 5 and
t - t + 1.

There are many examples of GQs of order (5. s2), for instance the GQs Tj(0) for &
an ovoid of PG(3, q), as mentioned earlier, the dual of GQs arising from the flock of a
quadratic cone, as well as certain translation generalized quadrangles (a generalisation
of the 73{&) construction). See [26] for more details. So we have many constructions
of Laguerre geometries from these GQs and interestingly in most cases the Laguerre
geometry in question does not have classical internal structure at any point.

Finally, we mention that [7,17, 18] contain other connections between Laguerre
planes and generalized quadrangles. Of particular interest are [17,18] in which it is
shown (amongst other things) that a GQ of order (5, s) with a distinguished antiregular
point is equivalent to a Laguerre plane of odd order s.

4. Laguerre geometries with classical internal structure and GQs satisfying
Property (G)

In Theorem 3.2 we saw that a Laguerre geometry with parameters n = s and
I = s2 -+- 1 always gives rise to a GQ of order (s, s2) via the construction given in
Theorem 3.1 and conversely. In this section we investigate Laguerre geometries with
these parameters that also have classical internal structure at a point. It turns out that
this property has been well studied from the quadrangle point of view in the form of
Property (G), which we shall now introduce (see [16]). We note that much of the work
in this section is inspired by that in [27] and [5].
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Let S" = (&>, &) be a GQ of order (s, s2) with s £ \. Let Xu y, be distinct
collinear points. We say that the pair [X,, Yt} has Property (G), or that y has
Property (G) at {Xu Y,}, if every triad [Xu X2, X3} of points, with X, € {Xu X2, X3}1,
is 3-regular. The GQ y has Property (G) at the line m, or the line m has Property (G),
if each pair of distinct points incident with m has Property (G). If (X, m) is a flag then
we say that y has Property (G) at (X, m) or that (A", m) has Property (G), if every
pair {X, Y), X £ Y and Y incident with m has Property (G).

Suppose that y = {&, i?) is a GQ of order (s, s2) satisfying Property (G) at the
pair of points {X, Y}. We now review a construction of AG(3, s) from y , X and Y
due to Payne and Thas (see [25]).

We consider the following incidence structure yXY = (&XY, ^XY)'-

(i) &XY = XX\{X, Y}±x.
(ii) Elements of SfXy are of two types: (a) the sets {Y, Z, U}±±\{Y},wnh{Y, Z, U]

a triad with X e {Y, Z, t /} 1 , and (b) the sets [X, W}1 \ [X], with X ~W ^y.
(iii) Incidence is given by containment.

Then we have the following result.

THEOREM 4.1 (Payne and Thas, see [25]). The incidence structure S^XY is the
design of points and lines of the affine space AG(3, s). In particular, s is a prime
power q.

The planes of the affine space 5?XY — AG(3, q) are of two types:

(a) The sets {X, Z}x \ {Y}, with X f Z and Y e {X, Z}x, and
(b) each set which is the union of all elements of type (b) ofJ£XY containing a point

of some line m of type (a) of

This construction leads us to an equivalent formulation of Property (G) at a pair of
points (see [2]).

THEOREM 4.2. Let y = {&>, i f ) be a GQ of order (s, s2) and X, Y € &> with
X ~ Y. Then y satisfies Property (G) at {X,Y} if and only if the incidence
structure

Points: X1 \ {X, Y),
Planes: YL \ (X, Y),
Incidence: Collinearity in y,

is the point-plane incidence structure o/PG(3, s) with an incident point-plane pair
removed.

The classical GQ Q(5, q) of order (q, q2) satisfies Property (G) at every pair of
collinear points. If Q is an ovoid of PG(3, q) then the Tits GQ 7"3(f2) of order (q, q2)
(see [10]) satisfies Property (G) at a flag. A flock of a quadratic cone in PG(3, q) is a
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partition of the non-vertex points of the cone into plane sections (and so may be seen
as a partition of the points of the associated Laguerre plane into circles). In [24], Thas
showed that to a flock of a quadratic cone there corresponds a GQ of order (q2, q)
(which is often called a flock GQ in the literature) previously constructed via group
coset geometry methods by Kantor ([11]) in the q odd case; and Payne ([15]) in the q
even case. In [16], Payne showed that the dual of this GQ satisfies Property (G) at a
line, for both q odd and even. Note that (2(5, q) may also be thought of as a Tits GQ
and a dual flock GQ.

If we consider a GQ y of order (s, s2) with a point X, then by Theorem 3.1 we
can construct a Laguerre geometry yx from y and X. If Y is any other point of y
collinear with X (and hence also a point of yx) then the points and hyperplanes of the
internal structure of yx at Y are exactly the points and "planes" (see Theorem 4.1) of
the structure yXY. Using these connections we have the following result.

THEOREM 4.3. Let y = (&>,&) be a GQ of order (s, s2), let X e &> and let yx

be the Laguerre geometry corresponding to X (as in Theorem 3.1). Then y satisfies
Property (G) at a pair of distinct, collinear points {X, Y} if and only ifyx has classical
internal structure at the point Y.

Now suppose that y is a GQ of order (q, q2) satisfying Property (G) at the pair
of collinear points {X, Y}. Let yXY be the projective completion of yXY with plane
at infinity n^. In [27], Thas gives the following interpretation of the GQ y in yXY.
The q2 lines of type (b) of yXY are parallel, so they define a point oo of yXY. If we
now consider any Z e & with X -f- 1 j* Y and U the point of (X, Y) such that
Z ~ t / , t h e n r = {X, Z}1 \ {U} is a setof q2 points. Clearly each line of yxy on oo
meets V in exactly one point. Further, \iU\, U2, t/3 are points of y collinear in yXY

then it must be that Y e {Uu U2, U^}-11 and so Z ~ Y, a contradiction since X, Y, Z
is a triangle. It follows from this that f U {oo} is an ovoid of yXY with tangent
plane n^ at oo. We will denote this ovoid by Qz.

Thas also determined the intersections of these ovoids. Consider two distinct points
Z\, Z2 e & \ X1 with Z\, Z2 collinear with points Uu U2 on (X, Y), respectively,
with UUU2 £ X, Y. If Z, ~ Z2 and (/, = U2 then QZl n QZl - {oo}, since any
larger intersection yields a triangle in y.

If Z, ~ Z2 and Ux / U2 then Qz> D £lz, = {oo, /?} where R is the point of the line
(Zi, Z2> in X1. Further, the point of {Zu Z2) in YL corresponds, in yXY, to a plane
which is tangent at R to both QZl and QZr

If Z, f Z2 and U, = U2 then £2Zl n QZ2 = ({X, Z,, Z2}
L \ {{/,}) U {oo}, an

intersection of size q + 1.
For the last case, if Z, -f- Z2 and £/, ^ U2 then QZl n QZl = {X, Z,, Z2}x U {oo},

an intersection of size q + 2.
If m is a line of ^ such that m and {X, Y) are non-concurrent then let the set of
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ovoids of PG(3, q) — yXy corresponding to points of m \ (X1 U Y1) be denoted Sf.
The set 2? is a set of q — 1 ovoids of PG(3, q) meeting pairwise in exactly two fixed
points and sharing the tangent planes at those two fixed points. We will call such a
set 2? a transversal of ovoids. These two common points are called the base points of
the transversal and the two common tangent planes are called the base planes of the
transversal. In the Laguerre geometry yx the transversal of ovoids 2? corresponds
to the circles not incident with Y in a pencil and the base plane of & that is not TCX

corresponds to the circle in the pencil incident with Y.
In [2,5] the set of ovoids corresponding to a GQ of order (q, q2) satisfying Prop-

erty (G) at a pair of collinear points was studied and characterised under a certain
hypothesis. In particular, we have the following result.

THEOREM 4.4 ([2]). Let y beaGQ of order (q, q2), q odd, satisfying Property (G)
at a pair of points. Then y is the dual of a flock GQ.

Consequently, in the q odd case we know that a Laguerre geometry with classical
internal structure at a point arises from a dual flock GQ.

Since the q odd case is settled, we now turn our attention to the q even case. By
Theorem 4.3 and Theorem 3.1, we know that the set of ovoids of PG(3, q) associated
with a GQ y of order (q, q2) satisfying Property (G) at a pair {X,Y} may be used to
construct a Laguerre geometry with classical internal structure at a point. In fact, it
can be shown that this property characterises the set of ovoids. That is, if we take a
set of ovoids with a common point and common tangent plane at that point and can
construct a Laguerre geometry with classical internal structure at a point then we can
reconstruct a GQ with Property (G) at a pair of points. Further, since we insist that the
Laguerre geometry constructed from the set of ovoids has classical internal structure at
a point it turns out that the Axiom (L2) (the touching axiom) of the Laguerre geometry
is implied by Axioms (LI*), (L3), (L4) and the classical internal structure at a point.
This allows us to prove a stronger characterisation of the set of ovoids by omitting the
condition equivalent to Axiom (L2) of a Laguerre geometry. We now work towards
proving this stronger characterisation. In what follows a 4-cap of a projective space
is a set of four points no three of which are collinear.

Let (oo, Tioc) be an incident point-plane pair of PG(3, q). Then a Laguerre set 0 of
ovoids of PG(3, q) with respect to (oo, n^) is a set of ovoids each of which contains oo
and has tangent plane n^ such that if X, Y, Z are three distinct points of PG(3, g) \TTCC

with {oo, X, Y, Z] a 4-cap in PG(3, q), then:

(Al) if oo e {X, Y, Z) then \{Q e 0 : {X, Y, Z] c fi}| = q; and

(A2) if oo f!(X, Y, ZJthen |{S2 € 0 : {X, Y, Z) C Q}\ = q - 1.

Our aim is to show that we can construct a Laguerre geometry with classical internal
structure at a point from a Laguerre set.
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L E M M A 4 . 5 . | 0 | — q3(q — l) .

PROOF. There are (q2 + q)q2(q2 - q)(q2 - 3q + 2) ordered triples (X, Y, Z) of
points in PG(3, q) \ n^ such that oo e (X, Y, Z) = n and {oo, X, Y, Z\ is a 4-cap
in Ti. For an ovoid Q, with tangent plane oo at n^, there are (q2 + q)q(q — \){q- 2)
such ordered triples contained in Q.. Hence | 0 | = q3(q — 1). •

LEMMA 4.6. Let X e PG(3, q) \ n^. Then X is contained in q2(q - 1) elements

PROOF. Let n be a plane on the line m = (oo, X). There are {q2 — q)(q2 — 3q + 2)
triples (X, Y, Z) of points in n \ jr^ such that {oo, X, Y, Z] is a 4-cap. Thus there are
(q + \)(q2 — q)(q2 — 3q + 2) triples considering all planes on m. By (Al), there are
<?07 + l)(<j2-c5r)(<r-3g+2)quadruples(X, Y,Z, £2)with£2 6 ©containing X, Y, Z.
However, each element of 0 containing X also contains (q + 1 ){q — 1 ){q — 2) triples
(X, Y, Z) with oo e (X, Y, Z). Hence the number of elements of © containing X is
q\q ~ 1). •

LEMMA 4.7. Let X, Y e PG(3, q) \ nx be such that oo £ (X, Y). Then there are
exactly q2 — q elements of® containing X and Y.

PROOF. Any element of 0 containing X and Y meets n = (oo, X, Y) in an oval
and hence there are q — 2 triples (X, Y, Z), with Z e n, contained in such an ovoid.
In total there are q2 -3q + 2 triples (X, Y, Z) in n \ n^ such that {oo, X, Y, Z\ is a
4-cap. Hence there are q2 — q elements of 0 containing X and Y. •

LEMMA 4.8. Let X e PG{3, q)\nO0 and n be a plane such that X e n but oo 0 n.
Then there are exactly q — 1 elements of 0 containing X and with tangent plane n
at X.

PROOF. We count how many elements of 0 contain X with n not a tangent plane,
that is, meeting n in an oval. There are q2 — 1 choices for a point Y e n \ (n^ U {X})
and hence {q2 — q){q2 — 1) triples (X, Y, Q.) with Q € 0 and containing X and Y.
Now for each element of 0 containing X and with n not a tangent plane there are q
choices for Y and so the number of elements of 0 containing X and with n not tangent
is {q — \)(q2 — 1). Hence the number of elements of 0 containing X and with n a
tangent plane is q2(q — 1) — (q — \)(q2 - 1) — q — 1. •

LEMMA 4.9. Let X e PG(3, q) \ nx and n be a plane such that X € n but
oo ^ n. Then there are exactly (q — I)2 elements QofQ whose associated polarity
interchanges X and n and such that X £ J2.
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PROOF. If fi e 0 then we let _Ln denote the symplectic polarity defined by Q.
We count the number of cases where X <jL Q e 0 and X±n ^ n. There are
(q + \)(q — \){q — 2) ordered collinear triples (X, Y, Z) in n \ nx and q2 — q
elements of 0 on Y and Z (and hence not on X). For £2 e 0 not containing X
and with X±a ^ n there are q such ordered pairs {Y, Z). Hence the number of
fie© such that X £ Q and X1" ^ n is (q + ])(q - \)2{q - 2). By Lemma 4.8t

the number of Q. e 0 such that X g Q, XXa ^ n and n is a tangent plane
to Q is (<?2 - \){q — 1). Hence the number of X g Q for which X± n = n is
(<?3(tf - 1) -q\q -\))-(q + \)(q - 1)2(9 - 2) - (q - ])2(q + 1) = (q - I)2. D

LEMMA 4.10. Let X e PG(3, q)\nx andix be a plane such that X e n but oo ^ 77-.
77;ere are exactly q (q — 1) elements ofQ with associated polarity that interchanges X
and 71.

PROOF. This follows from the previous two lemmas. •

LEMMA 4.11. Let X e n^, X 7t oo, and let n be a plane distinct from nx such
that X, oo s n. There are exactly q2(q — 1) elements of® with associated polarity
interchanging X andn.

PROOF. There are q2(q — 1) ordered pairs of points in n \TT-C whose span contains X
and each such pair is contained in q2 — q elements of 0 by Lemma 4.7. Each such
element of 0 contains q such ordered pairs and so there are ql(q — I)2 elements of 0
whose polarity does not interchange X and jr. Hence there are q2(q — 1) elements
of 0 whose polarity does interchange X and n. •

In [5], an equivalence relation is constructed amongst the symplectic polarities that
interchange oo and nx. Two such polarities J., and J_2 are equivalent if and only if
l i o l i acts as the identity on some line m incident with oo and contained in nx.
The two polarities are said to be equivalent about m.

If <pi and 02 are inequivalent polarities then there exist skew lines m\, m2 with
oo e ni| <£. jr.*, and oo £ m2 C TTX such that <j>] o <j>2 fixes the points and planes
incident with ni, and m2, and wif = mf: = m2. The polarities are said to be
inequivalent about {m \, tn2).

We will also extend this equivalence relation to the elements of 0 and talk of ovoids
being equivalent (about a line) or inequivalent (about a pair of skew lines).

LEMMA 4.12. Amongst the symplectic polarities of PG(3, q) interchanging oo
and nx, two equivalent polarities are induced by the same number of elements of 0 .
Furthermore, the number of elements of 0 with induced polarity in a fixed class is a
multiple ofq2.
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PROOF. For some fixed symplectic polarity _L with oo-1- = 71 ,̂, define

a = number of elements of 0 inducing _L,

b — number of elements of 0 inducing a polarity distinct and equivalent to J_,

c = number of elements of 0 inducing a polarity inequivalent to ±.

Hence

(4.1) a + b+c = q\q- 1)

Now we count pairs (X, Q) where X e PG(3, q) \ n^, Q e 0 and if J_n is the
polarity defined by S2 then X1 — X1". This count is q*{q - ])q = q4(q - 1) by
Lemma 4.10.

On the other hand, if X1 — X±Q then, since X <g n^, either ± n = ± or _L and _Ln

are inequivalent. If ±Q=± then X1 = X±a for all X € PG(3, q) \ n^, adding
q3a to the count. If ± and ± n are inequivalent, then there are exactly q points X
(on a line containing oo) such that X1 = XLn, adding cq to the count. Hence
q*(q - 1) =q*a + cq, or

(4.2) q2a+c=q\q-\).

From (4.1) and (4.2) we have b = (q2 - \)a. Since a is determined by c, the number
of elements of 0 inducing a polarity inequivalent to ±, it follows that a is independent
of which polarity in the equivalence class of ± we use.

Also, the number of elements of 0 inducing a polarity in the class of _L is
a + b = q2a. O

REMARK. Counting pairs (X, Q), where Q e 0 , X 6 n^ \ {oo} and X1 = X±n,
yields the equation {q2 + q)a + qb + {q-\- \)c — (q2 + q)q2(q — 1). however this is not
independent of equations (4.1) and (4.2). and so cannot be used to extend Lemma 4.12.

We note that thus far we have used only Condition (Al) of our definition of 0 .

THEOREM 4.13. Let X e PG(3, q) \ n^ and n be a plane such that X 6 n and
oo & n. Then the q — 1 elements of 0 containing X and with tangent plane n
form a transversal, that is, intersect pairwise in {oo, X} and (hence) partition the
points o/PG(3, q) \ (JI^, UJZ U (OO, X)). Furthermore, the q — 1 ovoids are pairwise
inequivalent about the lines n D 7rx and (X, oo).

PROOF. We show that if Y € PG(3, q) \ (nx U n U (oo, X)), then there is exactly
one element of 0 containing X with tangent plane n that also contains Y.
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Let n' •= (oo, X, Y) and m — n D n'. First count the number of elements
of 0 containing X, Y with m a tangent. In total there are q(q — 1) elements of 0
containing X, Y and to have m not a tangent the ovoid must contain some point
Z € m \ (X Unas U (co, Y}). By (Al) this gives q(q — 2) ovoids with m not tangent
and hence q elements of 0 containing X, Y with m tangent.

The number of pairs (Z, £2), where Z e n \ feUm) and X. Y, Z e £2 e 0 and m
is not tangent to Q, is (<? — \)q(q - 2). By (A2), the number of pairs (Z, £2) with
Z € 7r \ (71-co U m) and X, Y, Z e £2 6 0 is (<r - q){q - 1). It thus follows that the
number of pairs (Z, Q) with Z e n \ (ytx, U m), X,Y,ZeC2e® and m a tangent
to £2 is g(g — 1). Hence the number of elements of £2 e 0 with X, Y e Q, m tangent
to Q and n not a tangent plane is q — 1, from which it follows that there is exactly
one element of 0 containing X and Y and with tangent plane n.

So the q — 1 elements of 0 containing X and with tangent plane n must partition
the points of PG(3, q) \ (n^ U n U (oo, X}) and hence form a transversal.

Let the transversal be {Qu £22 ^ 9 - i } - Since all ovoids in the transversal have
tangent plane n at X and tangent plane n^ at oo, it must be that either any two ovoids
in the transversal are inequivalent about the skew lines n D nx and (oo, X), or they
define the same polarity. We show that the latter possibility cannot occur. Consider a
plane n' such that oo e n' and X £ n'. Let P = TT' n n n 77-̂ . Then £2, n 7r' = fy
is an oval. Now consider any line m of n' such that P, 00 ^ m. The i? — 1 points of
m \ (JT U TTsc) are partitioned by the (?•,. In particular, since q — 1 is odd it must be
that m is tangent to at least one of the Cj and the point m n ^ ^ is the nucleus of this
oval. Hence the nuclei of the &i are the q — 1 distinct points of n1 n nx \ {00, P).
Hence the polarities of the £2, are pairwise distinct. •

COROLLARY 4.14. Each symplectic polarity o/PG(3, q) interchanging oo and nx

is induced by q elements ofQ. Further, each equivalence class of® contains exactly q}

elements.

PROOF. Let X e PG(3, q) \ nx and let n be a plane incident with X but not oo.
Then the elements of 0 with tangent plane n at X form a transversal and there is one
ovoid from each equivalence class. Considering all such X and n, we see that the
number of elements of 0 in a given equivalence class is q3q2/q2 = q3- Using the
equations in the proof of Lemma 4.12, we have that a + b — q* and hence a — q. D

We now have enough information to construct a Laguerre geometry from a Laguerre
set.

THEOREM 4.15. Let 0 be a Laguerre set of ovoids o/PG(3, q), q even, with respect
to the incident point-plane pair (oo, 77^). Let Sf be the incidence structure with points
of three types: (i) points ofPG(3, q) \ n^; (ii) equivalence classes of®; and (Hi) n^.
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The lines are of two types: (a) the lines o/PG(3, q) \ Tt^ incident with oo; and (b)
a formal line [oo]. The circles are of two types: (a) the elements of®; and (0) the
planes o/PG(3, q) not incident with oo. Incidence is natural, plus the line [oo] is
incident with all points of type (ii) and (Hi), while n^ is incident with all circles of
type (fi). Then y is a Laguerre geometry with parameters n = s = q, £ = q2 ± \
and with classical internal structure at the point TTX,.

PROOF. Axioms (Al) and (A2) of a Laguerre set ensure that three non-collinear
points of S" of type (i) are incident with q common circles. Two non-collinear points of
type (i) and n^ are incident with q common circles of type Q3). If X, Y are two distinct
non-collinear points of type (i) then let it be any plane with X, Y 6 n and oo £ n and
let/3 = (A", Y)nn0o. For N e (n Dn^^P], choosing Z e {X, N)\{X, N} we have
q — 1 elements of 0 containing [X,.Y, Z) by (A2). Hence in total there are (q — I)2

elements of © whose intersection with n does not have nucleus N. Thus by Lemma 4.7
there are exactly q — 1 elements of© whose intersection with n does have nucleus N.
These ovoids are hence pairwise inequivalent. Fixing any one of these ovoids, we see
that for each such plane n the ovoid is inequivalent to q — 2 distinct elements of ©
that contain X, Y and hence is equivalent to at most q{q — \) — q(q — 2) = q. Since
there are q(q — 1) elements of© containing X, Y and q — 1 equivalence classes, this
means there are exactly q in each equivalence class. Hence in y the points X, Y and
a point of type (ii) are incident with exactly q circles. Hence s = q for y .

Theorem 4.13 demonstrates the touching axiom for y except in the case of touching
at a point of type (ii) or (iii), the touching axiom for the latter case being straight-
foward to prove. For the final case, first note that by Corollary 4.14 a fixed polarity
interchanging oo and n^ is induced by q elements of ©, say Q\,..., Qq. Without loss
of generality, suppose that X is an element of (Qx D £22) \ {oo}. Then £2i and Q2 have
the same tangent plane at X and so define inequivalent polarities by Theorem 4.13, a
contradiction. Hence Qu ...,Qq intersect pairwise in oo and as circles in y intersect
pairwise in the equivalence class of their polarity. Now we show that no other element
of 0 defining a polarity equivalent to that of Q\ intersects Q\ in exactly oo. For the
q3 — q elements of © equivalent to Q{ and defining a different polarity to that of fi,,
let / i , . . . , tqi_q be the intersection sizes of these ovoids with Qx \ {oo}. Then we have

E ^ V '' = Q2(<I2 ~ !) a n d Hfj\q ti(fi - 1) = q\q2 - l)(tf - 1) and the average value
of the tj is t = q. It follows by calculation that JX7?( f ; — 02 = 0 and hence r, = 7
for i = 1, 2 , . . . , q3 — q. So the only elements of 0 equivalent to ^2, that intersect Q,
in exactly oo are £22, . . . , fi?. Hence we have the touching axiom for y .

Finally, the internal structure of y at n^ is the points and hyperplanes of PG(3, q)
with (oo, TTOO) removed. D

Note that we also have the converse of this theorem. That is, given a Laguerre

https://doi.org/10.1017/S1446788700037964 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037964


[19] Laguerre geometries and GQs 353

geometry with parameters n — s = q, £ — q2 + \ and with classical internal structure
at a point, we can construct a GQ of order (q, q2) satisfying Property (G) at a pair of
points whose associated set of ovoids may be readily shown to be a Laguerre set.

Appendix: Elation Laguerre geometries

Following the theory of Laguerre planes we introduce the idea of an elation La-
guerre geometry which is a Laguerre geometry which admits a group acting regularly
on the circles, while fixing every line.

Steinke and Lowen [12,23] construct elation Laguerre planes and here we gener-
alise their approach for Laguerre geometries. First, however, we need to introduce the
idea of an O(n, m, g)-set (see [19]). In PG(2/z + m — \,q) an O(n, m, ^)-setisa set
of qm + \ (n — l)-dimensional subspaces

- \,q).

every three of which generate a PG (3ra—1, q) and such that each element PG(l) (n — 1, q)
of O(n, m, q) is contained in a PG(J)(/z +m — \,q) having no point in common with
a n y P G O ) ( « - l , ^ ) f o r 7 ^ i . An 0(1, 1, #)-set is an oval in PG(2, q), an 0 ( 1 , 2, q)-
set is an ovoid of PG(3. q) and more generally, examples of 0(n, n,q)-sels and
O(n, 2n, g)-sets, respectively, are ovals and ovoids over GF(q") "blown up" over the
GF(g) subfield. In [19] it is shown that a 0(n, m, q)-set gives rise to a translation
generalized quadrangle of order (q", qm) and conversely.

THEOREM 4.16. Let

PG(0)(/i -],q), PG(l)(/z -\,q),..., PG(<r)(n - 1, q)

be an 0(n,m, q)-set and let

PG(0)(n + m- \,q)*, PG(1)(/i + m - \,q)\ ..., PGl9"\n + m-\,q)*

be the corresponding dual subspaces in PG(2n + m — \,q).
Embed PG(2« + m — 1, q) in PG(2/7 +m,q) and consider the following incidence

structure S? of points, lines and circles. Points are the (n+m) -dimensional subspaces
ofPG(2n + m,q) meeting PG(2n + m- l,q) in a PG(n(n + m - 1, q)*; lines of\9
are the subspaces PG(l)(n + m — 1, q)*, i = 0, . . . , qm; and circles are the points of
PG(2n + m, q)\ PG(2n + m — \,q). Then with the natural incidence 5^ is an elation
Laguerre geometry with q" points incident with each line, s = q"'~" and I = qm + 1.

PROOF. Three non-collinear points of y are three (n + w)-dimensional subspaces
of PG(2/i + m, q) intersecting PG(2n + m — 1, q) in distinct elements of the dual
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of the O(n, m, <j)-set: Hence they intersect in an (m - n)-dimensional subspace of
PG(2n + m, q) that contains qm-n points of PG(2« + m,q)\ PG(2n + m - \,q)
and hence for S? we have 5 = q"'~" and it is straightforward to show that y is a
Laguerre geometry. The group of elations with axis PG(2n + m — \,q) (that is, the
translations of the affine space PG(2« + m, q) \ PG(2« + tn — 1, <?)) induce a group
of automorphisms on S? acting regularly on the circles, while fixing every line. •

Note that for this Laguerre geometry we have that I = ns + 1 (using the notation of
Section 2) and it can be shown that if we are not dealing with aO(n , / i , 2;')-set, then the
tangent spaces form a dual O(n, m, g)-set (see [19, Chapter 8] for details). It follows
that the Axiom GQ is satisfied in these cases. The corresponding GQ constructed,
as in Theorem 3.1, is the translation GQ constructed from the O(n,m,q)-set (see
[19]). By dualising in PG(2« + m, q) this property also allows a representation of the
Laguerre geometry using a cone with point vertex over an O(n, m, g)-set.
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