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Abstract

We prove that a finitely generated semigroup whose word problem is a one-counter language has a linear
growth function. This provides us with a very strong restriction on the structure of such a semigroup,
which, in particular, yields an elementary proof of a result of Herbst, that a group with a one-counter
word problem is virtually cyclic. We prove also that the word problem of a group is an intersection of
finitely many one-counter languages if and only if the group is virtually abelian.
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1. Introduction

There are several intriguing connections between group theory and formal language
theory. For example, we can consider groups G whose word problem lies in a
particular class F of languages. We take a finite group generating set X for G and let A
be the disjoint union of X and X−1; we then have a natural (monoid) homomorphism
ϕ from A∗ onto G (where A∗ represents the set of all finite words in the symbols A,
including the empty word ε). We define the word problem of G to be 1ϕ−1; that is, the
set of words in A∗ that represent (via ϕ) the identity in G.

It would appear that whether or not the word problem lies in the family F depends
on the choice of X , but it is well known that this is not the case if F is closed under
inverse homomorphism (see [9] for example).

Observe that considering words representing the identity is sufficient to decide
whether two words u and v in A∗ represent the same element of G, since this is the
case if and only if uV represents the identity (where V is the word obtained from
v by replacing each symbol by the corresponding inverse symbol and then reversing
the word). We can think of the word problem of the group as being the set of all words
uV such that u and v are words in A∗ representing the same element of G.
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An obvious question is the extent to which this generalizes to semigroups. In [3]
Duncan and Gilman take the following definition for the word problem of a semigroup
S. If A is a set of semigroup generators for S (so that each element of S can be
represented by a word in A+, the set of all nonempty words over A), then the word
problem of S with respect to A is

{u#vrev
∈ (A ∪ {#})+ | u, v ∈ A+, u =S v}.

Here # is a symbol not in A, vrev denotes the reversal of the word v, and u =S v means
that the words u and v represent the same element of S. If we want to stress that u and
v are identical as strings, we write u ≡ v.

Given this, we can talk about the word problem of a semigroup lying in a class
F of languages. As with groups, if F is closed under inverse homomorphism, then
membership of the word problem in F is independent of the choice of finite generating
set for the semigroup. The definition in [3] is a natural extension of the notion of the
word problem from groups to semigroups since the word problem of a group in the
group sense lies in F if and only if the word problem in the semigroup sense lies in F .

In this paper we will concentrate on semigroups whose word problem is a one-
counter language; the one-counter languages form an interesting class lying strictly
between the classes of regular and context-free languages. We define the one-counter
languages and mention some of their properties in Section 2.

In the group case the one-counter languages were shown in [8] to be particularly
significant in the following sense. If F is a class of languages that forms a ‘cone’
(that is, if F is closed under homomorphism, inverse homomorphism and intersection
with regular languages) and if F is contained in the class of context-free languages,
then the class of groups whose word problem lies in F coincides with the groups with
regular, one-counter or context-free word problem.

It is well known [1] and straightforward to prove that the groups with regular word
problems are precisely the finite groups. Duncan and Gilman comment in [3] that
this generalizes to semigroups and, for completeness, we include a proof of this fact
here (see Proposition 3.1). As far as context-free languages are concerned, there
is the lovely characterization by Muller and Schupp [12] to the effect that a group
has a context-free word problem if and only if it is virtually free (that is, if it has a
free subgroup of finite index). This is a deep result and uses, amongst other things,
Stallings’ characterization [15] of groups with more than one end. In addition, the
result in [12] that a context-free group is virtually free requires an extra hypothesis,
that of ‘accessibility’, and the need for this was only removed by another deep
result, namely that any finitely presented group is accessible (which was proved by
Dunwoody in [4]). As a result of all this, Muller and Schupp’s proof is both ingenious
in its ideas and also uses some deep results.

Given these results, in the group case this leaves the one-counter groups. Herbst [8]
showed that a group has a one-counter word problem if and only if it is virtually
cyclic. Not surprisingly, he uses the characterization by Muller and Schupp and so,
as it stands, a complete proof of his result also requires some complex group theoretic
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machinery. In our investigation of semigroups with a one-counter word problem, we
prove a result (see Theorem 4.2) that gives a very strong condition on the structure of
such a semigroup. One consequence is that we can deduce Herbst’s result from this
and hence give an elementary proof of his result (see Theorem 4.3).

We conclude the paper by proving in Theorem 5.2 that a group is virtually abelian of
free rank at most n if and only if its word problem is an intersection of n one-counter
languages. This is related to a recent result of Elder, Kambites and Ostheimer [5]
that a group is virtually abelian if and only if its word problem is recognized by a
G-automaton with G free abelian. However, neither of these two results is a direct
consequence of the other in any obvious way. In both cases, the proofs make use of a
deep result of Gromov, that a finitely generated group has polynomial growth function
if and only if it is virtually nilpotent [7]. Note, however, that our elementary proof of
Theorem 4.3 does not use Gromov’s result.

2. One-counter languages

In this section we summarize some properties of the one-counter languages that will
be relevant for this paper; our main source of information here is [2] and the reader is
referred there for further details.

It is well known that the context-free languages are accepted by pushdown
automata; however, there are some variations in convention when defining pushdown
automata (although these make no difference to the class of languages accepted). In
this paper, a pushdown automaton M will be a sextuple (Q, 6, 0, τ, s, A), where
Q, 6 and 0 are finite sets (Q is the set of ‘states’, 6 the ‘input symbols’ and 0 the
‘stack symbols’); there is a special ‘bottom of stack symbol’ ⊥ in 0. In addition,
the transition relation τ is a finite subset of Q × (6 ∪ {ε})× 0 × Q × 0∗, s ∈ Q and
A ⊆ Q, and we insist that

(q, a,⊥, r, γ ) ∈ τ ⇒ γ ∈ {⊥}0∗1 ,

(q, a, g, r, γ ) ∈ τ, g ∈ 01 ⇒ γ ∈ 0∗1 ,

where 01 = 0 − {⊥}. In other words, ⊥ appears on the bottom of the stack and
nowhere else. There are different notions of acceptance. One possibility is to accept
by accept state so that, if a computation is started with the machine in state s with
only ⊥ on the stack, then the input is accepted if it is possible to be in a state in A
at the end of the computation. Another possibility is to accept by empty stack (that
is, the stack must be empty once the input has been read). We can also insist on both
happening simultaneously (that is, a word is accepted if the machine is in an accept
state with an empty stack at the end of the computation). These are all equivalent in
the sense that, if a language is accepted by a machine with one notion of acceptance
and we choose a different notion, then there is a machine with the second notion of
acceptance accepting precisely the same language.

If there is no stack, so that we just have a quintuple (Q, 6, τ, s, A), then we have
a finite automaton, and finite automata accept the class of regular languages.
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Given this definition of a pushdown automaton, we define a one-counter automaton
to be a pushdown automaton (Q, 6, 0, τ, s, A) with |0| = 2. If 0 = {⊥, g} then,
at any stage, the stack of the machine contains ⊥gn for some n ≥ 0, and so is
effectively described by a single natural number n; hence the title ‘one-counter’. If,
in addition, the pushdown automaton is deterministic (that is, if, for any configuration
of the machine, there is at most one possible transition), then we say that we have
a deterministic one-counter automaton. We say that L is a one-counter language
if L = L(M) for some one-counter automaton M , and a deterministic one-counter
language if L = L(N ) for some deterministic one-counter automaton N . As with the
context-free languages, insisting on determinism does restrict the class of languages
accepted.

In general, the closure properties of a class of languages are very important;
this is particularly true when considering word problems of groups and semigroups.
The class of one-counter languages is closed under each of the following operations
(see [2]):
• union, concatenation, intersection with regular sets;
• Kleene star;
• gsm mappings, inverse gsm mappings.
(A gsm mapping is one defined by a finite state transducer.) As a homomorphism is a
special case of a gsm mapping, the class is closed under homomorphisms and inverse
homomorphisms. We will use these closure properties without further comment in
what follows.

The deterministic one-counter languages admit some of these closure properties (for
example, they are closed under inverse gsm mappings and intersection with regular
sets) but not all of them (for example, they are not closed under union).

3. Word problems

As we mentioned in Section 1, Anisimov showed [1] that a group has a regular
word problem if and only if it is finite. It is mentioned in [3] that this generalizes to
semigroups; for completeness, we include a proof here.

PROPOSITION 3.1. A semigroup S has a regular word problem if and only if S is
finite.

PROOF. Let S be a semigroup with a finite generating set A.
Suppose that S is finite of order n. We construct a finite state automaton that consists

of the Cayley graph of S together with an additional start state, with arrows labelled
a from the start state to the vertex representing a for each a ∈ A. By choosing the
vertex representing s as the unique accepting state, we see that the set of words in A+

representing each element s of S is a regular language Ls . Then the word problem of
S is the union over s ∈ S of the regular languages Ls#L rev

s and is therefore regular.
Conversely suppose that the word problem W is regular. For each word u ∈ A+, let

σ(u) be the state of a deterministic finite state automaton recognizing W immediately
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after reading u in an accepting path for u#urev. Then, if u and v represent distinct
elements of S, we must have σ(u) 6= σ(v) since otherwise the automaton would accept
u#vrev. Since there are only finitely many possible σ(u), S must be finite. 2

The following result is well known for groups; see [10] for example. It is easily
generalized to semigroups.

PROPOSITION 3.2. Let F be a class of languages closed under inverse
homomorphisms and intersection with regular sets; then the class of semigroups whose
word problem lies in F is closed under taking finitely generated subsemigroups.

When H is a subgroup of finite index in a group G, then we call G a finite index
overgroup of H . The following result from [10] will be useful.

PROPOSITION 3.3. Let F be a class of languages closed under union with regular
sets and inverse gsm mappings; then the class of F -groups is closed under passing to
finite index overgroups.

In particular, Propositions 3.2 and 3.3 apply when F is the class of regular,
deterministic one-counter, one-counter, deterministic context-free or context-free
languages. It also applies if F is the family of languages obtained by taking finite
intersections of languages from any one of these classes (this yields nothing new in
the case of the regular languages, as they are closed under intersection, but does yield
new families of languages in the other four cases).

4. One-counter groups and semigroups

For a semigroup S with specified finite generating set A and n ∈N, let γS,A(n)
be the number of elements of S that are represented by words in A+ of length at
most n. Then γS,A is called the growth function of S with respect to A. Properties such
as whether the growth function is linear, polynomial of degree d , or exponential are
generally independent of the chosen finite generating set for S. (Note also that some
authors use the number of elements of S represented by words of length exactly n. If
we were using that convention, then, by linear growth, we would mean that this number
was uniformly bounded. So, for example, whichever convention we are using, a free
abelian group of rank one has linear growth, but one of rank two or more does not.)
Our first result about semigroups with a one-counter word problem is the following
proposition.

PROPOSITION 4.1. If a finitely generated semigroup S has word problem a one-
counter language, then S has a linear growth function.

PROOF. Let A be a finite set that generates S and let q be the number of states of a
one-counter automaton M accepting the word problem of S with respect to A. We
assume that M accepts by empty stack.

For each word w ∈ A+, choose a shortest computation path p(w) in M that accepts
w#wrev. Let |w| denote the length of w. We shall show that there is a constant K ,
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which does not depend on w, such that, immediately after reading the symbol # in
p(w), the stack height h(w) is at most K |w|. If we can show this then, for words w
of length at most n, there are only (K n + 1)q possibilities for the pair (h(w), t (w)),
where t (w) is the state of the machine immediately after reading the symbol # in p(w).
This pair cannot be the same for two words w1 and w2 that represent different group
elements, because if they were then there would be an accepting path for w1#wrev

2 .
Hence, given this, the growth function γS,A satisfies γS,A(n)≤ (K n + 1)q , and the
result follows.

We need to prove the claim that h(w)≤ K |w| for some K ≥ 0. We can assume,
without loss of generality, that all moves in M change the stack height by at most one.
Moves are either reading moves, when one input symbol is read, or else nonreading
moves. We will assume also that the stack height is not changed by reading moves.
(We can achieve this by breaking up a reading move that alters the stack into two
moves.)

Let w be a word with |w| = n. We shall refer to the initial part of p(w), up to and
including the reading move in which we read #, as the part in which we read w, and
to the remainder of p(w) as the part in which we read wrev. So, with this convention,
h(w) is the height of the stack in p(w) after reading w. If h(w) > q(n + 1), then,
when reading w in p(w), there must be at least one occasion where, between reading
two input symbols (or before reading the first symbol), the stack height increases by at
least q . Whilst this is happening, M must repeat states. In fact, we can find a subpath
of p(w) (which we shall refer to as a circuit) linking the repeated states in which the
stack height is increased by r for some r with 0< r ≤ q . Similarly, when reading wrev

in p(w), there must be a gap between reading input symbols (or after reading the final
symbol), and a circuit linking repeated states in this gap in which the stack height is
decreased by u for some u with 0< u ≤ q . If h(w) > q3(n + 1), then we can find gaps
between reading input symbols containing q2 disjoint circuits of this kind in p(w), in
which the stack height is increased by at most q when reading w, and decreased by at
most q when reading wrev. Amongst the q2 circuits in which the height is increased,
at least q of them must increase it by the same number r ≤ q . Similarly, amongst the
q2 circuits in which the height is decreased, at least q of them must decrease it by the
same number u ≤ q .

The idea is to remove u of the circuits that increase the stack height by r , and r of the
circuits that decrease the stack height by u, to produce a shorter path acceptingw#wrev,
thereby contradicting the minimality of p(w). For this to work, we have to make
sure that the stack cannot become empty at any stage between the removed increasing
circuits and the removed decreasing circuits, since this would alter the computation.

To do this, we assume that h(w) > q3(n + 2). We choose the gap in which we
remove the circuits while reading w to be the latest one in which the stack height
increases by at least q3 at some stage during the gap, and we remove the circuits as
late as possible during that gap. Similarly, we choose the gap in which we remove the
circuits while reading wrev to be the earliest one in which the stack height decreases
by at least q3 at some stage during the gap, and we remove the circuits as early as
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possible during that gap. Between the first of these gaps and the end of w, the stack
cannot empty, since otherwise there would certainly be an increase of q3 in a later
gap. Between the beginning of wrev and the place where the decreasing circuits were
removed, the stack height decreases by less than q3 during each gap, and hence by
less than q3(n + 1) altogether. Since we are only removing some of the circuits, it
could also decrease by some number less than q3 during the part of p(w) in which the
circuits are removed. But, since h(w) > q3(n + 2), the stack can never empty.

This contradiction proves that h(w)≤ q3(n + 2). Thus we have proved the claim,
and also the theorem. 2

Given Proposition 4.1, we can now prove a result that imposes a very tight
restriction on the structure of a semigroup with a one-counter word problem. For
the proof we use the idea of the ShortLex ordering <SL on words, which is defined as
follows (as in [6] for example). Suppose that X is a finite set with a linear order <X .
Then we say that α <SL β (where α, β ∈ X∗) if either:

(1) |α|< |β|; or
(2) α ≡ a1a2 · · · am , β ≡ b1b2 · · · bm , and there exists k with 1≤ k < m such that

a1 = b1, a2 = b2, . . . , ak−1 = bk−1, ak <X bk .

The ordering <SL is a well-ordering on X∗. We shall call the least representative
of a semigroup element under <SL the ShortLex normal form of that element. Note
that, if uvw is a word in ShortLex normal form, then so is v, because v′ <SL v with
v =S v

′ implies uv′w <SL uvw with uv′w =S uvw. In other words, all contiguous
subwords of a word in ShortLex normal form, including all of its prefixes and suffixes,
are themselves in ShortLex normal form.

THEOREM 4.2. If S is a finitely generated semigroup with linear growth then there
exist finitely many elements ai , bi , ci ∈ S ∪ {ε} such that every element of S is
represented by a word of the form ai bn

i ci for some i and some n ≥ 0.

PROOF. Let S be a semigroup with linear growth generated by a finite set A. Choose
a linear order on A and then consider the set N of ShortLex normal forms for S. Let
L ⊆ N denote the set of words w in N such that w is a prefix of infinitely many
v in N . If S is finite then the result is trivial, so we assume that S is infinite. It is
then straightforward to show by induction on k that L contains at least one word of
length k for all k ≥ 0, and so L is infinite. We form a graph 0 with vertex set L and
a directed edge from w to wa for each w ∈ L , a ∈ A such that wa is a word in L .
For convenience, we adjoin a ‘base-point’ as an extra vertex to the graph, with an edge
labelled a from the base-point to the vertex labelled a, for each a ∈ A for which a ∈ L .

Given any vertex, there is a unique path from the base-point to that vertex (since L
consists of ShortLex normal forms); thus any vertex has in-degree one, and the graph
is a tree rooted at the base-point. For n ≥ 0, let K (n) be the number of words in L
of length n, which is also equal to the number of vertices of 0 at distance n from the
base-point. Since 0 is a tree with no finite branches, K (n) is an increasing function
of n, but the linear growth of S implies that K (n) is bounded (in fact if |S| has at
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most Cn elements represented by words of length at most n, then K (n)≤ C for all
n), so there is a constant K with K (n)= K for all sufficiently large n. So, once we
are sufficiently far from the base-point, 0 consists of K disjoint paths. Hence 0 is a
union of K infinite paths starting at the base-point, which are labelled by infinite words
σ1, σ2, . . . , σK .

Let w1, w2, . . . , wK be (finite) prefixes of σ1, σ2, . . . , σK , respectively, such that
no wi is a prefix of another w j . We shall now define a sequence p1, p2, p3, . . . of
words such that each pi is equal to one of the words w j , and p1 p2 · · · pi is a prefix of
σ1 for all i ≥ 0. We start by setting p1 = w1. Then σ1 = p1α for some infinite word α.
But since suffixes of ShortLex normal form words are themselves in ShortLex normal
form, α must be equal to one of the words σ j , and hence α has a prefix p2 equal to one
of the w j . So σ1 = p1 p2β where β has a prefix p3 equal to some w j , and so on.

Continuing in this vein, we obtain a sequence {pi }
∞

1 of words from the set
{w1, . . . , wK }. Eventually we must have a repetition of one of the pi : say pi = p j
where i < j . Then pi+k = p j+k for all k ≥ 0, as any wm leads to a line that uniquely
determines its suffix. So σ1 consists of p1 · · · pi−1 followed by infinitely many
repetitions of y1 := pi · · · p j−1. Similarly, for each i , the infinite word σi is equal
to a prefix followed by infinitely many repetitions of some word yi . Let

B = {b j | b j is a cyclic permutation of yi for some 1≤ i ≤ K }.

Then all of the words in L are of the form ai bn
j where b j ∈ B and the ai are finitely

many prefixes of the graph.

Now, adjoin the vertex set M = N − L to 0, with edges from w to wa if and only
if wa ∈ M ; again we have a unique path to any given vertex. The resulting graph 0′

consists of 0 together with a number of branches of finite length adjoined to some of
the vertices of 0.

If we can prove that the lengths of these new branches are uniformly bounded, then
they will represent a finite set of elements ck , and then all elements of the semigroup
will be represented by words of the form ai bn

j ck , which will prove the theorem. (This is
not quite correct, because some of the new branches may start at vertices representing
proper prefixes of the words ai , but that is not a problem, because there are only finitely
many such prefixes.)

If the lengths of the branches are not uniformly bounded, then there exist arbitrarily
long branches. So there must exist a prefix u and some v ∈ B for which there exist
arbitrarily long words w such that, for some m (depending on w), uvmw ∈ N but
uvmw1 is not infinitely extensible, where w1 is the first symbol of w. In particular, w
does not have v as a prefix.

Suppose the number of semigroup elements of length at most n is at most Cn. As
|w| approaches infinity, so must m, so we can choose m and |w| sufficiently large that
m|w|> C(m|v| + |w|).
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The m|w| subwords of vmw of the form

viw(t) for 1≤ i ≤ m, 1≤ t ≤ |w|,

where w(t) denotes the prefix of w of length t , cannot all represent distinct elements,
and since they are all ShortLex geodesics, two of them must be equal as words,
viw(s)≡ v jw(t). Clearly i is not equal to j , as that would give w(s)≡ w(t) whence
s = t ; thus w has v as a prefix, which is a contradiction and completes the proof. 2

We do not know whether the converse of Theorem 4.2 is true, but the following
examples show that a finitely generated semigroup with linear growth need not have a
one-counter word problem—in fact its word problem need not even be decidable!

Let Z be a subset of N− {0, 1}, and let SZ be the semigroup with zero defined by
the presentation

SZ := 〈a, b | a2
= a, bab = 0, abi a = aba ∀ i ∈ Z〉.

Then the elements of SZ are 0, a, bk (k > 0), abk (k > 0), bka (k > 0), abka (k > 0),
and these are all distinct except that elements abka with k ∈ Z are equal to aba.
Furthermore, each of these words (except for abka with k ∈ Z ) is the unique shortest
word for the semigroup element that it defines, so SZ has linear growth.

Now abka#aba is in the word problem of SZ if and only if k ∈ Z and, by
intersecting the word problem of SZ with the language defined by the regular
expression ab*a#aba, we see that this word problem is decidable if and only if Z
is recursive.

Theorem 4.2 enables us to provide an elementary proof of Herbst’s result. We note
that alternative elementary proofs that groups with linear growth are virtually cyclic
have been published previously; see for example [11] and [16].

THEOREM 4.3. A finitely generated group G has a one-counter word problem if and
only if G is virtually cyclic.

PROOF. It is straightforward to show that virtually cyclic groups have a one-counter
word problem. Conversely, suppose that G has a one-counter word problem. By
Theorem 4.2, there exist elements

a1, a2, . . . , an, b1, b2, . . . , bn, c1, c2, . . . , cn

in G (for some n) such that

G =
n⋃

i=1

⋃
r∈N

ai b
r
i ci .

(Our convention is that N contains 0.) Given this, then

G =
n⋃

i=1

(ai 〈bi 〉a
−1
i ) ai ci .

In other words, G is a union of finitely many cosets. By [13, Lemma 4.1], at least one
of the subgroups ai 〈bi 〉a

−1
i has finite index in G; so G is virtually cyclic as required. 2
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5. Intersections of one-counter languages

In this section we characterize those groups whose word problem is a finite
intersection of one-counter languages. It is convenient to prove first the following
result.

PROPOSITION 5.1. A finitely generated virtually abelian group of free abelian rank
n ≥ 1 has a word problem that is the intersection of n deterministic one-counter
languages.

PROOF. Suppose that the group G has a free abelian subgroup A isomorphic to Zn

of finite index. Take a natural group generating set X = {x1, x2, . . . , xn} for A, and
let L i be the language over X ∪ X−1 consisting of all words w such that the exponent
sum of xi in w is zero (that is, the number of occurrences of xi in w equals the number
of occurrences of x−1

i ). We see that L i is a deterministic one-counter language (we
keep track of the exponent sum of xi on the stack, indicating in the state whether the
current sum is positive or negative, and ignore the other inputs). The word problem of
A is the intersection of the L i , and so is the intersection of n deterministic one-counter
languages. By Proposition 3.3, the word problem of G is also the intersection of n
deterministic one-counter languages (as G is a finite overgroup of A). 2

Our characterization is then as follows.

THEOREM 5.2. The following are equivalent for a finitely generated group G.

(i) The word problem of G is the intersection of n one-counter languages for some
n ≥ 1.

(ii) The word problem of G is the intersection of n deterministic one-counter
languages for some n ≥ 1.

(iii) The group G is virtually abelian of free abelian rank at most n.

PROOF. The fact that (ii) implies (i) is clear, and (iii) implies (ii) by Proposition 5.1;
it remains to show that (i) implies (iii). The proof uses similar ideas to that of [10,
Theorem 12].

So suppose that G has a word problem that is the intersection of n one-counter
languages. The proof of Proposition 4.1 shows that the stack height of each of the n
one-counter automata after reading the symbol # in a minimal length accepting path
for w#wrev is bounded by a linear function of |w|. As in Proposition 4.1, words w1
and w2 representing distinct elements of G cannot lead to the same configuration in
each of the automata, since otherwise we could construct accepting paths for w1#wrev

2
in each automaton. It follows that the growth function of G is polynomial of degree
at most n; so, by [7], G is virtually nilpotent. By Theorem 5.3 below, G is virtually
abelian, and the result now follows, since a virtually abelian group of free abelian rank
n has growth function a polynomial of degree n. 2
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THEOREM 5.3. Let G be a finitely generated virtually nilpotent group, and suppose
that its word problem is an intersection of finitely many context-free languages. Then
G is virtually abelian.

PROOF. We showed in [10, Theorem 12] that a virtually nilpotent group that is not
virtually abelian contains a copy of the Heisenberg group

H = 〈A, B, C | [A, B] = C, [A, C] = [B, C] = 1〉,

where [x, y] denotes the commutator x−1 y−1xy. As we observed earlier, the property
of a word problem being an intersection of finitely many context-free languages is
inherited by subgroups and is independent of the generating set. So, in order to prove
the theorem, it is sufficient to show that the word problem W (H, X) of H on the
generating set X = {A, B, C} cannot be an intersection of context-free languages.
To do this, we shall show that the intersection WI of W (H, X) with the regular set
R := (A−1)∗(B−1)∗A∗B∗(C−1)∗ cannot be an intersection of context-free languages.
We observe that, for all n ≥ 0, A−n B−n An BnC−n2

∈WI , but A−n B−n An BnCm
6∈WI

when m 6= n2.
Suppose, for a contradiction, that WI = L1 ∩ · · · ∩ Lm , with each L i context-free,

where we may assume that each L i is a subset of R.
In a similar way to that used in [10, Theorem 12], we shall apply Parikh’s theorem

on bounded context-free languages [14] to the L i . Recall that, for n > 0, a subset L
of Nn is called linear if there exist c ∈Nn and a finite subset P = {p1, . . . , pk} of Nn

such that

L =

{
c +

k∑
t=1

αt pt

∣∣∣∣ αt ∈N
}
, (5.1)

where we may clearly assume that the pt are nonzero. Then Parikh’s theorem implies
that each L i is a union of finitely many sets L i1, . . . , L i ji such that, for each i, j ,

Ei j := {(a, b, c, d, e) | A−a B−b Ac BdC−e
∈ L i j }

is a linear subset of N5. So there are elements ci j , pi j1, . . . , pi jki j of N5 such that (5.1)
is satisfied with L = Ei j .

For elements v ∈N5, we denote the five components of v by v(1), v(2), v(3), v(4),
v(5). Let m be the maximum value of ci j (5) for any i, j , and let r be the maximum
value of pi jk(5)/pi jk(l) for any i, j, k, l with 1≤ l ≤ 4 and pi jk(l) 6= 0. Let us call the
vector pi jk simple if its first four components pi jk(l) (1≤ l ≤ 4) are all 0, and complex
otherwise. Then, if

(a, b, c, d, e)= ci j +

ki j∑
t=1

αt pi j t ∈ Ei j

and if each pi j t for which αt is nonzero is complex, then we have

e ≤ m + r(a + b + c + d).
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Now choose n with n2 > m + 4nr . Since A−n B−n An BnC−n2
∈WI , we have

A−n B−n An BnC−n2
∈ L i for 1≤ i ≤ m and hence, for each such i , there exists

a j with A−n B−n An BnC−n2
∈ L i j . To ease the notation, let us suppose that

A−n B−n An BnC−n2
∈ L i1 for all i and hence that (n, n, n, n, n2) ∈ Ei1. Since

n2 > m + 4nr , it follows from the discussion above that, for each i , the pi1t cannot
all be complex and hence there must be a simple pi1t , which we can take to be
pi11 = (0, 0, 0, 0, ei ) with ei > 0. (We are assuming that the pi jk are nonzero.)

But then (n, n, n, n, n2
+ tei ) ∈ Ei1 for all i and all t ∈N and hence, letting

e be the least common multiple of the ei , we have (n, n, n, n, n2
+ e) ∈ Ei1 for

all i , and hence A−n B−n An BnCn2
+e
∈WI . This is a contradiction, because

A−n B−n An BnCn2
+e is not equal to the identity element of H . 2
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