AN ANSWER TO A QUESTION OF KEGEL ON SUMS OF RINGS

A. V. KELAREV

ABSTRACT. We construct a ring R which is a sum of two subrings A and B such that the Levitzki radical of R does not contain any of the hyperannihilators of A and B. This answers an open question asked by Kegel in 1964.

Kegel [6] proved that a ring is nilpotent if it is a sum of two nilpotent subrings. Several related results on rings which are sums of their subrings were obtained by a number of authors. We shall mention only a few papers [1], [2], [3], [4], [5], [7], [8], [10], [11], [12]). The aim of this note is to answer another related question which still remains open.

Let *R* be a ring which is a sum of two subrings R_1 and R_2 . In 1964 Kegel asked whether at least one of the hyperannihilators $N(R_1)$ or $N(R_2)$ is contained in the Levitzki radical L(R) ([7, p. 105]). Recall that L(R) is the largest locally nilpotent ideal of *R*, and the *hyperannihilator* N(R) of *R* is equal to the union $\bigcup_{\alpha>1} N_{\alpha}(R)$, where

$$N_{1}(R) = \{ z \in R \mid zR = Rz = 0 \};$$

$$N_{\lambda}(R) = \bigcup_{\alpha < \lambda} N_{\alpha}(R) \text{ for limit ordinals } \lambda;$$

$$N_{\alpha+1}(R) / N_{\alpha}(R) = N_{1} \left(R / N_{\alpha}(R) \right) \text{ otherwise.}$$

THEOREM 1. There exists a ring $R = R_1 + R_2$ such that L(R) does not contain any of the rings $N(R_1)$ and $N(R_2)$.

PROOF. If *F* is a semigroup with ideal *J*, then we write F/J for $(F \cap J)/J$ to simplify the notation. We use a construction similar to the one introduced in [8]. Let $X = \{x_1, x_2, ...\}$, $Y = \{y_1, y_2, ...\}$, and let *F* be the free semigroup with the set of free generators $X \cup Y$. For $s \in F$, let $n_x(s)$ $(n_y(s))$ denote the number of letters of *s* belonging to *X* (respectively, *Y*). Let $|s| = n_x(s) + n_y(s)$. Put $h(s) = n_x(s) - n_y(s)$, $G = \{s \in F \mid h(s) > 0\}$, $E = \{s \in F \mid h(s) = 0\}$, $F_1 = G \cup E$, $F_2 = F \setminus G$. Let *J* be the ideal generated in *F* by the set

$$Z = \bigcup_{i=1}^{\infty} \{ x_i^2 F_1 \cup F_1 x_i^2 \cup y_i^2 F_2 \cup F_2 y_i^2 \}$$

Let \mathbb{R} be the ring of real numbers. Consider the contracted semigroup ring $\mathbb{R}(F/J)$. Then $\mathbb{R}(F/J) = \mathbb{R}(F_1/J) + \mathbb{R}(F_2/J)$.

Received by the editors July 23, 1996.

The author was supported by a grant of Australian Research Council.

AMS subject classification: Primary: 16N40; secondary: 16N60.

Key words and phrases: Nilpotent rings, locally nilpotent rings, nil rings.

©Canadian Mathematical Society 1998.

It is easily seen that $N_1(R_1)$ is the subring generated by all x_i^2 for $i \ge 1$, because $x_i^2 R_1 = R_1 x_i^2 = 0$ by the definition of Z. Take any $r \in R_1 \setminus N_1(R_1)$. There exists a letter x_j which does not occur in any of the terms of the element r. Then $x_j r \ne 0$. Thus $N_1(R_1/N_1(R_1)) = 0$. Therefore $N(R_1) = N_1(R_1)$. Similarly, $N(R_2)$ is the subring generated by all y_i^2 for $i \ge 1$.

Consider the ideal *K* generated in *R* by $x_1^2 \in N(R_1)$. Put $u = y_1y_2y_3x_1^2y_4y_5y_6$. Then $u \in K$ and $u^k \neq 0$ for any k > 1. Hence *K* is not nil. Therefore $N(R_1) \not\subseteq L(R)$. Similarly, $N(R_2) \not\subseteq L(R)$.

In conclusion we note that an example of a primitive ring which is a sum of two Wedderburn radical subrings was constructed in [9]. This answers negatively all questions asked in [11, Section 2.4] and seriously simplifies the proof of the main theorem of [8] which answered a long standing question considered by several authors.

REFERENCES

- 1. Yu. Bahturin and O. H. Kegel, *Lie algebras which are universal sums of abelian subalgebras*. Comm. Algebra 23(1995), 2975–2990.
- 2. K. I. Beidar and A. V. Mikhalev, Generalized polynomial identities and rings which are sums of two subrings. Algebra i Logika 34(1995)(1), 3–11.
- 3. L. A. Bokut', Embeddings in simple associative algebras. Algebra i Logika 15(1976), 117–142.
- **4.** M. Ferrero and E. R. Puczyłowski, *On rings which are sums of two subrings*. Arch. Math. **53**(1989), 4–10.
- I. N. Herstein and L. W. Small, Nil rings satisfying certain chain conditions. Canad. J. Math. 16(1964), 771–776.
- 6. O. H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe. Math. Ann. 149(1963), 258-260.
- 7. _____, On rings that are sums of two subrings. J. Algebra 1(1964), 103–109.
- A. V. Kelarev, A sum of two locally nilpotent rings may be not nil. Arch. Math. 60(1993), 431–435.
 A primitive ring which is a sum of two Wedderburn radical subrings. Proc. Amer. Math. Soc.,
- y. _____, A primitive ring which is a sum of two weaterburn ratical subrings. Floc. Allel. Math. Soc. to appear.
- 10. M. Kepczyk and E. R. Puczyłowski, *On radicals of rings which are sums of two subrings*. Arch. Math. 66(1996), 8–12.
- E. R. Puczyłowski, Some questions concerning radicals of associative rings. "Theory of Radicals", Szekszárd, 1991, Coll. Math. Soc. János Bolyai 61(1993), 209–227.
- 12. A. Salwa, Rings that are sums of two locally nilpotent subrings. Comm. Algebra 24(1996), 3921-3931.

Department of Mathematics University of Tasmania G.P.O. Box 252 C Hobart, Tasmania 7001 Australia e-mail: kelarev@hilbert.maths.utas.edu.au