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ABSTRACT

Simple analytical lower and upper bounds are obtained for stop-loss premiums and
ruin probabilities of compound Poisson risks in case the mean, variance and range of
the claim size distribution are known. They are based on stop-loss extremal
distributions and improve the bounds derived earlier from dangerous extremal
distributions. The special bounds obtained in case the relative variance of the claim
size is unknown, but its maximal value is known, are related to other actuarial results.

KEYWORDS

analytical bounds, stop-loss, ruin probability, stochastic orderings, relative variance,
atomic distributions

1. INTRODUCTION

A main topic of risk theory under incomplete information is the construction of
divers bounds for risk quantities using stochastic orderings. This well-established
technic has an important impact on insurance practice. The present paper is devoted
to the problem of finding simple analytical lower and upper bounds for stop-loss
premiums and ruin probabilities of classical compound Poisson risks in case only
the mean, variance and range of the claim size distribution are known.

In this situation the distributions with minimal and maximal stop-loss premiums
of the claim size depend on the deductible and cannot be used to bound the stop-loss
premiums or ruin probabilities of the induced compound Poisson risks uniformly for
each deductible or initial reserve. However larger classes of claim size distributions
may be allowed for ordering comparisons, which lead to uniform lower and upper
bounds. For example Kaas and Goovaerts (1986) have derived distributions, which
are the best lower and upper bound with respect to the dangerousness ordering
criterion for any distribution with fixed mean, variance and range. In the present
paper we derive similar distributions, which are best with respect to the stop-loss
ordering criterion. They lead to uniformly better and even simpler analytical bounds
than the previous ones.

In Section 2 the stop-loss ordered extremal distributions are introduced and
compared with the dangerous extremal distributions. A main result states that the
stop-loss order maximum precedes in dangerousness the dangerous order maximum,
and that the dangerous order minimum precedes in dangerousness the stop-loss
order minimum. In Section 3 improved analytical bounds for stop-loss premiums

ASTIN BULLETIN, Vol. 26, No. 2, 1996, pp. 185-199

https://doi.org/10.2143/AST.26.2.563218 Published online by Cambridge University Press

https://doi.org/10.2143/AST.26.2.563218


186 WERNER HURLIMANN

and ruin probabilities of compound Poisson risks are constructed through discreti-
zation of the stop-loss ordered maximal distribution applying the technic of mass
dispersion. Then we comment on two special situations. In Section 4.1 the upper
bounds in case of small deductibles and initial reserves are shown to coincide with
the best upper bounds derived by Kaas (1991). A discussion of the obtained bounds
provided the relative variance of the claim size is unknown, but its maximal value is
known, is given in Section 4.2. One recovers the safest diatomic risk with fixed
mean and known range from Buhlmann et al. (1977), which can be regarded as a
positive answer to the following modified Schmitter problem. Given that the
individual claims have given mean and maximal variance, which claims distribution
maximizes the ruin probability for a given initial reserve? In case the deductible
equals the mean of the compound Poisson risk, the obtained stop-loss upper bound
is shown to be closely related to earlier investigations by Benktander (1977).
Finally, in Section 5 the substantial improvement in the new stop-loss bounds is
demonstrated numerically.

2. STOP-LOSS ORDERED EXTREMAL VERSUS DANGEROUS EXTREMAL DISTRIBUTIONS

Consider a risk X, representing claim sizes, from the set D = D(Ix;(i,a) of all
random variables with fixed mean /z, variance a2, and support contained in the
interval Ix = [0,b]. By relative variance we mean the square of the coefficient of
variation. The following notations are used for relative variances and a ratio thereof:

v = (<T//X)2 : relative variance of X
v0 — (b — /x)//z : maximal relative variance of risks with known mean /x and range

[0,b]
vr = v/vo : ratio of relative variances

To simplify the presentation and calculations, let us work in the standardized risk
scale defined by the transformation Z = (X — /x)//i, which is interpreted as relative
signed mean deviation. Then the support of Z is Iz = [ -1 , vo\.

Extremal random variables X", X1, having distributions F"(x), /*(*), with respect
to the usual stochastic dominance partial order relation <st have been given in
Goovaerts and Kaas (1986):

X" <st X <st X*, for all X € D,

& F<(x) < F(x) < F"(x), for all x G Ix.

In the transformed risk scale Zi — (X1 - (J.)/fi, Z" — (X" - fi)/fi, have distribu-
tions /^(z), F"(z) as described in Table 1.

Extremal distributions X~, X+ with respect to the dangerousness order relation
<D are constructed in Kaas and Goovaerts (1986), and have the property
X~ <D X <z> X+, for all X £ D. Their standardized distributions are displayed in
Table 2.
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TABLE 1
EXTREMAL DISTRIBUTIONS WITH RESPECT TO STOCHASTIC DOMINANCE
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Stop-loss ordered extremal distributions Xt, X*, with the property
X* <si X <si X* can be constructed following an idea expressed in Hurlimann
(1993/95). If nt(x), n*(x), 0 < x < b, are the minimal and maximal stop-loss
premiums when X varies over D, then these extremal distributions are defined
using the one-to-one correspondence between a distribution and its stop-loss trans-
form, namely as

F*(x) = 1 + {d/dx)n*{x), and

F(x) = 1 + (d/dx)n*(x),0 < x < b.

The extreme value functions 7T»(X), ir*(x) have been obtained in DeVylder and
Goovaerts (1982) (see also Goovaerts et al. (1984), p.316, Kaas et al. (1994), chap.
X.2). After a straightforward calculation, one gets the standardized distributions of
Table 3.

It may also be useful to know the expected values and variances of the dangerous
and stop-loss ordered extremal distributions.

TABLE 2
DANGEROUS EXTREMAL DISTRIBUTIONS
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v < z < vo

0
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TABLE 3
STOP-LOSS ORDERED EXTREMAL DISTRIBUTIONS

z

- 1

v <

z

<Z<~Vr

< Z < V

z<v0

0
vo/(l+vo)
1

F*{z)

< Z < vD vo/(vr + vo)
= vo 1

Lemma 2.1. The following expressions hold:

E[ZT] = E[Z,\ = E[T\ = E[Z+] = 0 (2.1)

Var[Z"] = v • (2 - vr) + 2v0 • (1 - vr) • 1/I{1 - vr} (2.2)

Var[Z»] = v • vr (2.3)

= v ( l - ^ - l i i {v ,} ) (2.4)

Var[Z+] = v (1 + ln{v (vr + v0) • (1+v)} - l«{vr • (v + z(a+)2) • (v + z(/?+)2)}).

(2.5)

Proof. The elementary calculations are left to the reader. The variances are best
obtained replacing Stieltjes integrals by Riemann integrals (e.g. Kaas et al. (1994),
Theorem 1.3.1.1):

E[Z2] = 1 - F(-l) + 2 • I""z(\ -F(z))dz.

Our aim is to show the following main result.

Theorem 2.1. The dangerous and stop-loss ordered extremal random variables
satisfy the following stochastic order relations between random variables with equal
mean:

X~ <D X* <si X <sl X* <D X+, for all X € D. (2.6)

Proof. These ordering relations are a consequence of the defining ordering inequal-
ities between X*, Xand X*, and the auxiliary results below, whose overall content is
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FIGURE 1 The ordering relation X* <D X+ (fi = 2, a2 = 1, b = 4)

intuitively immediate from the visualizations in Figures 1 and 2, and for which a
more rigorous proof is reported to the Appendix.

Lemma 2.2. The stop-loss ordered maximum satisfies the following properties:

Z" <st Z* <st Ze, or equivalents (2.7)

FIGURE 2 The ordering relation X" <D X, (n = 2, <j2 = 1, 6 = 4)
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F"(z) < F*{z) < F"{z), for all z € Iz = [-1, v0). (2.8)

F(-1)=JP(-1), F(vo-)=Ft(vo-). (2.9)

Lemma 2.3. The stop-loss ordered maximum is less dangerous than the dangerous
maximum, that is Z* <D Z+. More precisely one has

F(z)<F+(z), -\<z<z0)

F*(z)>F+(z), zo<z<vo, (2.10)

where the crossing point is determined by

zo=\\fi-\ V^/z(a+)-z(a+)/^ | • sgnjl -z(a+)2/v}, (2.11)

or in the original x-scale

x0 = (1 + zo)n = n + -a | a/{a+ - /x) - (a+ - fi)/a \ • sgnjl - (a+ - fif/a2}.

(2.12)

Lemma 2.4. The stop-loss ordered minimum is more dangerous than the dangerous
minimum, that is Z~ </> Z». More precisely one has

F-{z)<Ft(z), -l<z<0,

>Ft(z),0<z<vo. (2.13)

3. BOUNDS FOR STOP-LOSS PREMIUMS AND RUIN PROBABILITIES

An important issue in Practical Risk Theory is the construction of more or less
accurate bounds on stop-loss premiums and ruin probabilities for compound random
sums S = X\ + ... + XN, where the claim number N is fixed, say Poisson(A), and
the claim sizes Xt =lj X € D are independent and identically distributed, Xt inde-
pendent from N.

3.1. Stop-loss and ruin probability inequalities

Since the crossing condition between dangerously ordered random variables is a
sufficient condition for stop-loss order, all random variables in (2.6) are stop-loss
ordered with equal means. In particular the variances of Lemma 2.1 satisfy the
following inequalities

Var[JT] < Var[ jq < Var[Z] = a2 < Var[JT] < Var[X+]. (3.1)

Let S~, 51*, S*, S+ the compound random sums obtained when replacing Z b y X~,
Xt, X*, X+ in S. Following Kaas (1991) (see also Kaas et al. (1994), chap. XI), the
stop-loss ordering relations imply the following inequalities between stop-loss
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premiums and ultimate ruin probabilities:

n{S-;d) <Tr{St;d) <n(S;d) <ir(S*;d) <w(S+;d),

uniformly for all deductibles d > 0, all X € D, (3.2)

; u) < ̂ {ST;u) < *P(S+; u),

uniformly for all initial reserves u > 0, all X e D, (3.3)

where one uses the notations n(S; d) = E[(S — d)+], ip(S; u) = 1 — Pr(L < u),
L — max{S(t) - ct: t > 0} the maximal aggregate loss associated to the aggregate
claims up to time t: S(t) — X\ + ... + XN(t), N(t)t>0 the Poisson process with
intensity X, c = A/x(l + 6) the constant premium rate with security loading 6 > 0.

In particular (3.2), (3.3) imply that the previous theoretical, numerical and
analytical bounds based on the dangerous extremal risks X, X+ can be improved
by using instead the stop-loss extremal risks X*, X*. For practical reasons let us
restrict our attention to the evaluation of analytical bounds, which improve the
previous bounds by Steenackers and Goovaerts (1991).

3.2. Discrete approximations

To obtain analytical bounds, discrete approximations to the claim size distribution
are constructed. For F~(x), F^lx) one finds discrete approximations Xj, X^ in
Steenackers and Goovaerts (1991). Since F*(x) is already a diatomic distribution, it
remains to discuss the discretization of F*(x).

By means of mass dispersion over the interval [z(a*),z((3*)], let us construct the
following 4-atomic random variable Z*d = { — l,z(a*),z(/3*), vo}, which is necessa-
rily more dangerous than Z*, and thus also stop-loss larger (see e.g. Gerber (1979),
chap.7, Example 3.2). The probabilities of Z*d are defined by the following condi-
tions:

/ , ( - ! ) = F ( - l ) = v/(l + v) (3.4)

p(a*) +p(n = F(z(/T)) - F(z(a*)) (3.5)

J zdF{z) (3.6)

(3.7)

The condition (3.5) preserves the probability mass over [z(a*),z((3*)] while (3.6)
preserves the mean. The right-hand side in (3.6) equals

{l-F(z))dz, (3.8)

z(a-)
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where the first term is

I ( v _ l ) / ( v + l ) _ I ( v _ V r ) / ( V o + Vr) (3.9)

and the second one is

I[z-(v + z2)^;;=i(l-vr), (3.10)

where use has been made of the relations

v + z ( a * ) 2 = i ( v + l ) 2 , v + z( /3*)2=i(v0 + vr)
2. (3.11)

It remains to solve the linear system of equations

p(a*)+p((3*)=A, z{a*) • p{ct) + z(/T) • p{(?) = B, with (3.12)

A = vo/(vo + vr)-v/(v+l): fi=v/(l+v)-v/(vr + v0). (3.13)

A calculation shows that

p{a?) = [Az(J?) - B]/[z{n - z(a*)} = (v0 - v)/[(l + v0) • (1 + v)], (3.14)

p(/3*) = [B- Az(a*)}/[z((3*) - z(a*)} = (v0 - v)/[(l + v0) • (vr + v0)]. (3.15)

Since v < v0 the probabilities are always non-negative, as should be.

3.3. The analytical bounds

A compound Poisson(A) risk S with discrete claim size support X = {0, x\, X2,x^},
and probabilities Po,P\,p2,Pi can be expressed as (e.g. Gerber (1979), chap.l,
Section 7, or Bowers et al. (1986), Theorem 11.2):

(3.16)

where the numbers of occurrences Nt of claim size x-, are independent Poisson with
parameter Xpi, i = 1,2, 3. From this representation one gets after some well-known
calculations the needed analytical formulas:

77(5"; d) = E[(S -d)+} = \/i-d

ni = 0

3
i/n,\} • (rf-£nI*I-)+, (3-17)

i = 1
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; u) = 1 - Pr(L <u) =

\pf/n{\pf/n2\pf/nj] • exp{z(l -Po)} • (_z)»i +»2 +
ni=0

3

with z=(w-^«,a;,-)+//x(l+6»). (3.18)
i = 1

It is important to observe that these infinite series representations are always finite
sums because summation occurs only for ]T\ _ {iitXi < d, u.

Table 4 provides a unified overview of the discrete approximations used to get
analytical bounds for compound Poisson risks. A numerical illustration, which
demonstrates the obtained substantial improvement is found in Section 5.

4. SPECIAL CASES

It is interesting and useful to relate our results to various other considerations made
so far in the actuarial literature. We illustrate with two examples.

4.1. The upper bounds for small deductibles and initial reserves

Suppose the deductible of a stop-loss contract is small such that
d < a* = j ( l + v)/x. Then the infinite series representation (3.17) shrinks to the
only term ri\ = «2 = «3 = 0, and therefore one has

ir{STd;d) =\fi- d+ exp{-A(l -/*>)} • d. (4.1)

In terms of the mean ns = \ji and the relative variance vs — (1 + v)A of a com-
pound Poisson(A) risk S with claim size X £ D, this can be rewritten as

n(St
d;d) = Xti-d + ap{-l/vs)}-d, d<X-{\ + v)^. (4.2)

From Kaas (1991), p. 141, one knows that the maximizing claim size distribution
over D is the diatomic risk with support {x\,X2} = {0, (1 + v)/x} and probabilities
p\=v/(l + v), P2 — 1/(1 + v). The corresponding (compound) Poisson risk
S = (1 + v)fiN, N Poisson(A), has the same stop-loss premiums
TT(S;d) = 7r(S^;d) provided d<\{\ + v)fi. A similar result holds for the ultimate
ruin probabilities. Therefore our analytical upper bounds obtained from the stop-loss
ordered maximal distribution coincides in the special case of small deductibles and
initial reserves with the optimal (=best upper) bounds.

4.2. The bounds by unknown relative variance

Suppose only the mean \i and the maximal relative variance v0 are known, but the
true relative variance v is unknown. Equivalently \i and the upper end point
b = (1 + vo)/z of the interval Ix are known. The true v satisfies the inequality
0 < v < v0. Choosing v = v0 in the formulas determining X*d, one gets
a* = P* = 5(1 + vo)/i, p(a*) =/?(/?*) = 0, and thus X*d is a diatomic risk with
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claim size

atoms

Xl

x2

x3

Po

Pi

Pi

Pi

3

-lJn{l-
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Mi + vo)-
jivoln{\ -
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VrVo/(l +

1 -Vr

Vr/(l+V0

Vr}(l
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Vo)
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TABLE
DISCRETE CLAIM

X,

2

- vr)/vr /i(l -
/i(l +
rf+ 1

. - vr)/vr u + 1

0

Vo/(1
1/(1-
1

SIZE j

• v , )

• v )

, or

+ vo

f vo)

;4
APPROXIMATIONS

4

a*

/i(l +V0)

v/(l+v)

)p(«')

vr/(vr + vo)

4

a+
/?+
Ml + V£

\A'(MAI
( v + 1 -
v/(v + (
1 - p o -
V^/(VO

Arctanj

,)

,)Arctan{v^(^1/^)/
•(*i//*))}
x i / / x - I)2) - p o
P\ ~P3

+ 1 - JC2//i)

= (v0 - v)/[(l + vo)(l + v)], p(f3*) = (vo " v
^{1 + [v - vr - (vr(l + v)(v, + vo))i]/(l + vr)}
/i{l + [v - vr + (vr(l + v)(vr + vo))']/(l + vr)}

vo)(vr + vo)\

support {0,b} and probabilities /?(0) = vo/(l + v0), /»(Z)) = 1/(1 + v0). Similarly
X* goes over to the same diatomic risk. In both cases one recovers the safest risk
with fixed mean /z and range [0,b = (1 4- vo)/x] (e.g. Buhlmann et al. (1977), Kaas
et al. (1994), Example III. 1.2). As a consequence, if \x and v0 are known, but v is
unknown, compound Poisson(A) stop-loss premiums should be calculated according
to the simple formula

no(d))
n(S*d; d) = fis- d+ exp{-l/v0,,} £ ( r f - nvo^s)/[(vOtS)

2n • »!], with

no(d) = [d/vOtSfis]([x} : greatest integer less than x), (4.3)

where vOiS = (1 + vo)//x denotes the maximal relative variance of a compound
Poisson(A) risk with mean claim size /x and maximal relative variance v0 of the
claim size. Similarly the ultimate ruin probability should be calculated as

mo(u)()

;u) = 1 -(9/(1 +6) J2 exp{z/vo,,}(-2/vo,,)
m/m!,with

m=0

9)ns, mo{u) = [u/vOtSns]. (4.4)

In particular the latter formula can be viewed as a positive answer to the following
modified Schmitter problem (discussion papers on this topic are Brockett et al.
(1991) and Kaas (1991)). Given that the individual claims have mean fi and
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maximal variance vo/x
2, which claims distribution maximizes the ruin probability

for a given initial reserve w?
On the other side it is interesting to look at the special deductible d = fis, the

mean of a compound Poisson(A) risk. In this situation the safest stop-loss upper
bound (4.3) can be rewritten as

ir(S*d; fis) = fj,s • exp(-A0 + [A0]ln{A0})/[A0]!

« to • exp(-A0 + Aol«{Ao})/r(Ao + 1), Ao = l/vOji. (4.5)

This is the special stop-loss premium of a compound Poisson(Ao) risk with indivi-
dual claims of equal size tovo,s- It is approximately equal to the special stop-loss
premium of a Gamma(A<,, Xo/ to) distributed risk with mean y,s and variance vo^s.
Applying Stirling's approximation formula for the Gamma function

T(A0 + 1) * exp(-Ao + A 0 1«{A 0 } ) (2TTA^ • (1 + 1/12AO + . . . ) , (4.6)

one gets approximately

n{Srd; to) « ^ ( 2 T T A 0 ) ^ / ( 1 + 1/12AO + . . . ) < ^ ( W 2 T T ) * . (4.7)

The upper bound on the right-hand side is the special stop-loss premium of a
Normal (to, v,,,.,/^) distributed risk, to which n(S*d; to) converges when the relative
variance vos goes to zero. The latter property is known to be true asymptotically
(that is in large portfolios) for arbitrary compound Poisson risks (e.g. Daykin et al.
(1994), p.64). Note that the above investigation corresponds to the findings of
Benktander (1977), where as an important additional complement, the parameter

1/Ao = v,,,, = (1 + Vo)/A (4.8)

should be equal to the maximal relative variance of the considered compound
Poisson risk, given that the true relative variance is unknown.

5. NUMERICAL ILLUSTRATION

Though it would be possible to compute close numerical lower and upper bounds to
the considered risk quantities for all of the compound Poisson risks with claim sizes
X~, Xt, X*, X+, we restrict our numerical investigation to a comparison of the
corresponding analytical bounds as summarized in Table 4.

The same examples as in Steenackers and Goovaerts (1991) have been calculated.
The claim size distribution is assumed to be uniform (1,3) with range [0,3], hence
fi = 2, v = 1/12, v0 = 1/2, vr = 1/6, and the Poisson parameter A is 1, or 10. The
safety loading is 6 = 0.2. The results are found in Tables 5, 6, 7. The improvement
is very substantial for the new stop-loss bounds, but less spectacular for the ruin
probabilities. Concerning the previous bounds, small numerical inaccuracies for the
deductible d = 60 in Table 6, as well as in Table 7 have been located, probably due
to rounding errors.
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TABLE 5
BOUNDS FOR STOP-LOSS PREMIUMS WITH CLAIM-RANGE [0,3], MEAN 2, VARIANCE 1/3 AND

CLAIM NUMBER POISSON ( 1 )

d

2
4
6
8
10
12
14
16
18
20

exact value

8.277-10-1

2.68910"1

7.184-KT2

1.62710"2

3.25310"3

5.81510-4

9.346-10"5

1.36610"5

1.84010"6

2.302-10"7

bound Xd

89.3%
78.4%
67.2%
56.6%
46.0%
36.5%
28.5%
21.9%
16.5%
12.2%

bound Xt

93.8%
87.2%
77.6%
72.1%
63.0%
51.9%
44.6%
36.5%
28.4%
22.9%

bound X*d

107.3%
115.7%
122.7%
141.9%
164.3%
190.9%
220.2%
260.1%
322.0%
379.2%

bound Xd

113.9%
127.2%
138.1%
188.6%
237.8%
279.2%
388.5%
533.2%
670.0%
934.5%

APPENDIX

Proof of Lemma 2.2. (2.9) is immediate. Let us show (2.8) in two steps.

Step 1: F*(z) < F{z)
(a) - 1 < z < v:

(b) z > v :
(bl) v0 > (

v) = F{-\) < F(z)

< \{v0 - vr))

TABLE 6
BOUNDS FOR STOP-LOSS PREMIUMS WITH CLAIM-RANGE [0,3], MEAN 2, VARIANCE 1/3 AND

CLAIM NUMBER POISSON (10)

d

15
20
25
30
35
40
45
50
55
60

exact value

5.757
2.626
9.321-10"1

2.563-10"1

5.50710-2

9.383-10"3

1.289-10"3

1.449-10"4

1.355-KT5

1.06710"6

bound Xd

99.0%
95.6%
91.6%
81.8%
74.7%
61.0%
53.1%
40.0%
33.3%
23.3%

bound Xt

99.1%
96.7%
92.3%
85.7%
77.4%
68.1%
58.2%
48.4%
39.2%
31.2%

bound Xd

101.7%
105.4%
112.5%
123.6%
139.9%
162.6%
193.7%
236.1%
293.6%
371.8%

bound Xd

103.3%
110.1%
123.3%
145.3%
179.7%
232.3%
313.4%
439.0%
634.2%
945.9%
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TABLE 7
BOUNDS FOR RUIN PROBABILITIES WITH CLAIM-RANGE [0,3], MEAN 2, VARIANCE 1/3 AND

SAFETY MARGIN 2 0 %

197

u

1
2
3
4
5
6
7
8
9
10
20
30
40
50

bound Xd

0.747184
0.617238
0.523757
0.437362
0.366885
0.307327
0.257467
0.215718
0.180725
0.151413
0.025798
0.004396
0.000749
0.000130

bound X,

0.747184
0.625370
0.526666
0.441446
0.371088
0.311606
0.261752
0.219854
0.184666
0.155110
0.027111
0.004739
0.000828
0.000149

bound X*d

0.755158
0.663538
0.566954
0.492510
0.425256
0.367586
0.317711
0.274574
0.237313
0.205100
0.047693
0.011090
0.002579
0.000600

bound Xj

0.764982
0.682110
0.587361
0.517595
0.452560
0.395577
0.346172
0.302710
0.264791
0.231598
0.060689
0.015903
0.004167
0.001092

If \(v - 1) < v < z < j(v0 - vr) one checks that

F*(z) = z2/(v + z2) < F(z) = X-

If v < \ (v0 - vr) < z < v0 one has

•z/(v + z2)?)

(b2) v0 < (1 + V2)v/*(=» v > i(v0 - vr))
One concludes as in the second if-part of (bl)

Step 2: F*(z) < F»(z)
(a) - 1 <z< -vr:
( a l ) l / v 0 < i ( l - v ) / v ( = * i ( v - 1) < - v r ) I f - l < z < i ( v - 1) t h e n o n e h a s

If \{v — 1) < z < —vr <\{v0 — vr) one checks that

= 1(1 < v/(v + z2) = F«{z)

One concludes as in the first if-part of (al)
(b) -vr < z < v0 :

f(z) < F(vo-) = vo/(vr + v0) - F>{-vr)
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Proof of Lemma 2.3. From Lemma 2.2 and the expression for F*~(z) one has

**(z) < F*(z) < F"(z), for all z e [-1, v0)

F ( - l ) = F + ( - l ) , F ( v 0 - ) =

Since F"(z) is continuous and non-decreasing on [— l,v0), it follows from under-
graduate calculus that F*(z) takes any value between F^(— 1) and F*~(v0—). In
particular there exists z0 such that F*(z0) = FJ(z(a+)). By construction of F^(z),
one obtains

F(z)<F+(z), -\<z<zo,

F(z)>F+(z), zo<z<vo,

which shows that Z* <D Z + . The crossing point z0 is obtained by solving its
defining equation.

Proof of Lemma 2.4. This is immediately seen from the expressions for F~(z), F*{z)
given in Tables 2 and 3.

Note added in proof. After this paper has been submitted, the author has found the
stop-loss ordered extremal distributions of Table 3 in Stoyan (1973).
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