PROPERTIES (V) AND (u) ARE NOT THREE-SPACE PROPERTIES

by JESÚS M. F. CASTILLO and MANUEL GONZÁLEZ†

(Received 22 December 1992)

In his fundamental papers [7, 8], Pelczynski introduced properties (u), (V), and (V^*) as tools as study the structure of Banach spaces. Let X be a Banach space. It is said that X has property (u) if, for every weak Cauchy sequence (x_n) in X, there exists a weakly unconditionally Cauchy (wuC) series $\sum_{n} z_n$ in X such that the sequence $(x_n - \sum_{j=1}^{j=n} z_j)$ is weakly null. It is said that X has property (V) if, for every Banach space Z, every unconditionally converging operator from X into Z is weakly compact; equivalently, whenever K is a bounded subset of X* such that $\limsup_{n\to\infty} \{|f(x_n)|: f \in K\} = 0$ for every wuC series $\sum_{n} x_n$ in X, then K is relatively weakly compact. A Banach space X is said to have property (V^*) if whenever K is a bounded subset of X such that $\limsup_{n\to\infty} \{|f_n(x)|: x \in K\} = 0$ for every wuC series $\sum_{n} f_n$ in X*, then K is relatively weakly compact. Some well-known results which shall be needed later are contained in the following.

PROPOSITION 1 [7, Proposition 2, Proposition 6 and Corollary 5]. If X has property (u) and does not contain isomorphic copies of l_1 , then X has property (V). If X has property (V), then X* is weakly sequentially complete. If X has property (V^*) , then X is weakly sequentially complete.

A property P is said to be a *three-space property* if, whenever a closed subspace Y of a Banach space X, and the corresponding quotient space X/Y have P, then also X has P. In [5], it is shown that properties (V) (resp. (V^*)) satisfy a restricted version of the three-space property, namely, when X/Y (resp. Y) is reflexive.

In this note we show that the properties (u) and (V) are not three-space properties, which solves a problem of G. Godefroy and P. Saab [5]. Moreover, we shall show that a Banach lattice, or the space of Bourgain and Delbaen, or the dual spaces of the spaces X_p of Figiel, Ghoussoub and Johnson, cannot provide a counterexample to the three-space problem for property (V^*) .

Let us describe the space X_p , $1 \le p < \infty$, of [3, 4]. Denoting by \mathbb{N} the set of integers, by $\mathbb{N}^* = \mathbb{N} \cup \{\infty\}$, and c the space of converging sequences, we set $X = l_1(c)$, i.e. the space of doubly-indexed sequences $a = (a_{ij})$, $i \in \mathbb{N}$, $j \in \mathbb{N}^*$, such that $\lim_{j \to \infty} a_{ij} = a_{i\omega}$ and $||a||_X = \sum_{i=1}^{\infty} (\sup_{i} |a_{ij}|) < \infty$. Let $f^n \in X$ be given by

$$f_{ij}^{n} = \begin{cases} 1, & \text{if } i \le n \le j \\ 0, & \text{otherwise.} \end{cases}$$

The gauge $\|$ of the closed absolutely convex solid hull of the unit ball of X and the

† Supported in part by DGICYT grant PD91-0307 Spain.

Glasgow Math. J. 36 (1994) 297-299.

sequence (f^n) is a lattice norm on X. For $1 \le p < +\infty$, $||x||_p = |||x|^p||^{1/p}$ defines a new lattice norm on X, whose completion shall be denoted X_p . Let $T: X \to c_0$ be the operator defined by $T(a_{ij}) = (a_{i\omega})$, and let T_p be its continuous extension to X_p . The following result is in [3, Ex. 3.1].

PROPOSITION 2. For $1 , <math>X_p$ does not contain copies of l_1 and T_p is surjective.

LEMMA 3. $l_1(c_0)$ is a dense subspace of Ker T_p .

Proof. It is enough to note that given a sequence $u^n \in l_1(c)$ converging to a point $x \in \text{Ker } T_p$, the point $u^n \wedge x$ belongs to $\text{Ker } T_p \cap l_1(c_0)$. Since the spaces X_p are Banach lattices, $||u^n \wedge x - x||_p \leq ||u^n - x||_p$.

PROPOSITION 4. For $1 \le p \le +\infty$, Ker T_p has property (u).

Proof. It is clear that the norm $\| \|$ is an order continuous norm on $l_1(c_0)$. Hence if (x_n) is a downward directed sequence in $l_1(c_0)$ with $\inf(x_n) = 0$, then the sequence (x_n^p) is also directed downward with $\inf(x_n^p) = 0$, therefore $\lim \|x_n^p\| = 0$, and thus $\lim \|x_n\|_p = 0$.

This shows that $\| \|_p$ is an order continuous norm on $l_1(c_0)$. It follows from a result of Luxembourg (see [1, Theorem 12.10, p. 179]), that Ker T_p is then an order continuous Banach lattice and hence it has property (u).

REMARK. If (x^n) denotes a weakly Cauchy sequence of Ker T_p , the vectors $(y^k) \in$ Ker T_p defined by

$$y_{ij}^{n} = \begin{cases} x_{ij}, & \text{for } k = i, \\ 0, & \text{otherwise,} \end{cases}$$

where x_{ij} is the pointwise limit of the (i, j) coordinate of the x^n , form a w.u.C. sequence such that $(x^n - \sum_{k=1}^n y^k)$ is weakly null.

THEOREM 5. Properties (u) and (V) are not three-space properties.

Proof. It is clear that $X_p/\text{Ker } T_p = c_0$ has properties (u) and (V). From Propositions 1, 2, and 4 it follows that, for $1 , Ker <math>T_p$ has properties (u) and (V). It is also clear that X_p fails property (V) since T_p is unconditionally converging [4], but not weakly compact. Moreover, since X_p contains no subspace isomorphic to l_1 , it follows from Proposition 1 that X_p fails property (u).

Concerning the three-space problem for property (V^*) , we shall give another partial answer.

PROPOSITION 6. If X is a Banach lattice containing a closed subspace M such that both M and X/M have property (V^*) , then X has property (V^*) .

Proof. If Y and X/Y have property (V^*) then Y and X/Y are weakly sequentially complete. Since this is a three-space property, X is weakly sequentially complete. By [9, Theorem 4], X has property (V^*) .

PROPOSITION 7. Assume that X is a non-reflexive Banach space such that a subspace Y and the corresponding quotient X/Y have property (V^*) . Then X^* contains a subspace isomorphic to c_0 .

Proof. If X* contains no subspace isomorphic to c_0 , then $(X/Y)^* = Y^{\perp}$ will contain no subspace isomorphic to c_0 and thus X/Y will be reflexive since it has property (V^*) . It follows that Y^{\perp} is reflexive and thus $Y^* = X^*/Y^{\perp}$ contains no subspace isomorphic to c_0 . This in turn shows that Y is reflexive since Y is assumed to have property (V^*) . It follows that X itself is reflexive. This contradiction finishes the proof.

OBSERVATION. It follows from Propositions 6 and 7 that the spaces X_p^* and the space *BD* of Bourgain and Delbaen [2], which are natural candidates to verify the failure of the three-space property for (V^*) , cannot provide such a counterexample.

REFERENCES

1. D. Aliprantis and O. Burkinshaw, Positive operators (Academic Press, 1985).

2. J. Bourgain and F. Delbaen, A class of special L₂-spaces, Acta Math. 145 (1980), 155-176.

3. T. Figiel, N. Ghoussoub and W. B. Johnson, On the structure of non-weakly compact operators on Banach lattices, *Math. Ann.* **257** (1981), 317–334.

4. N. Ghoussoub and W. B. Johnson, Counterexamples to several problems on the factorization of bounded linear operators, *Proc. Amer. Math. Soc.* 92 (1984), 233-238.

5. G. Godefroy and P. Saab. Quelques espaces de Banach ayant les propriétés (V) ou (V^*) de Pelczynski, C.R.A.S. Paris 303 (1986), 503-506.

6. R. H. Lohman, A note on Banach spaces containing l_1 , Canad. Math. Bull. **19** (1976), 365–367.

7. A. Pelczynski, A connection between weakly unconditionally convergence and weak completeness of Banach spaces, *Bull. Acad. Polon. Sci.* 6 (1958), 251–253.

8. A. Pelczynski, Banach spaces on which every unconditionally converging operator is weakly compact, *Bull. Acad. Polon. Sci.* 10 (1962), 641–648.

9. E. Saab and P. Saab, On Pelczynski's properties (V) and (V^*) , *Pacific J. Math.* **125** (1986), 205–210.

Departamento de Matemáticas Universidad de Extremadura Avda de Elvas s/n 06071 Badajoz España

Departamento de Matemáticas Universidad de Cantabria Avda los Castros s/n 39071 Santander España