
Why do disk galaxies present a common gas-phase metallicity gradient?

R. Chang, Shuhui Zhang, Shiyin Shen, Jun Yin and Jinliang Hou

Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, CAS, 80 Nandan Road, Shanghai, 200030, China email: crx@shao.ac.cn

CALIFA data show that isolated disk galaxies present a common gas-phase metallicity gradient, with a characteristic slope of $-0.1 dex/r_e$ between 0.3 and 2 disk effective radius r_e (Sanchez *et al.* 2014). Here we construct a simple model to investigate which processes regulate the formation and evolution.

Similar to our previous models (Chang *et al.* 2012), here we also adopt a Gaussian formula of the gas infall rate $f_{\rm in}(t) = \frac{A}{\sqrt{2\pi\sigma}\sigma} e^{-(t-t_{\rm p})^2/2\sigma^2}$, where the infall-peak time $t_{\rm p}$ is a free parameter, A is a normalized constant and we fixed $\sigma = 3Gyr$. We adopt the classical Schmidt star formation (SF) law as $\Psi = \nu \Sigma_{\rm gas}^n$.

Figure 1. Model results of the gas-phase metallicity versus the stellar mass surface density. Different lines correspond to different gas-infall peak-time t_p . The upper and lower panel show the results of SF law adopting the power index as n = 1.4 and n = 1, respectively. In each panel, the curves represent the results with $t_p = 0, 3, 5, 7, 9$ Gyr from top to bottom.

Fig.1 shows that, for given t_p , the SF law power index n is the main progenitor of radial gradients. Especially, when n = 1 is adopted, there is no radial gradient. Meantime, for given n, if t_p increases with radius, an significant gradient also appears. In other words, both the no-linear SF law and the disk inside-out formation scenario are main progenitors of metallicity gradients and further investigations are needed to explore their degeneracy.

References

Chang, R. X., Shen, S. Y., & Hou, J. L. 2012, *ApJL*, 753, L10 Sanchez, S. F., Rosales-Ortega, F. F., Iglesias-Paramo, J., *et al.* 2014, *A&A*, 563, 49