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MULTIPLE SOLUTIONS FOR SOME NEUMANN PROBLEMS IN
EXTERIOR DOMAINS

TSING-SAN HSU AND H U E I - L I LIN

In this paper, we show that if q(x) satisfies suitable conditions, then the Neumann
problem — Au+u = g(a:)|w|p~2u in fi has at least two solutions of which one is positive
and the other changes sign.

1. INTRODUCTION

Throughout this article, let N = m + n, where m and n are nonnegative inte-
gers with m ^ 3. For x = (xu...,xN) = (xu... ,xm,xm+1,... ,xN) e RN, let

Px = (xu...,xm) € E m and Qx = (xm+u...,xN) € Rn. Consider the Neumann
boundary value problem

{ Au + u = q(x)\u\p~2u in ft;
8u
«- = o on an,

where 0 = (Rm\(n5 r)) x Rn, Qm is a smooth bounded domain in Rm, 2 < p < 2'
= (2N)/(N — 2), r) is the outward unit normal to dQ, and q(x) is a bounded continuous
function in £1. Moreover, q{x) satisfies the following hypotheses:

(ql) q(x) is a positive function in ft, inf{q(x)\x 6 ft} > 0 and q(x) = q(y) for
any Px = Py;

(q2) there exists a positive number ?«, such that lim q(x) = q^ and q(x)
\Px\->oo

^ Qoo in n.
If f2c is bounded (n = 0 in our case), Esteban [5, 6] proved the existence of the

"ground state solution" of Equation (1) provided that q(x) = 1. In the case q is not a
constant function, Cao [3] and Hsu and Lin [9] proved the multiplicity of the solutions
of Equation (1). In this article, we assert that Equation (1) still has the same results of
Hsu and Lin [9] even if ftc is unbounded. First, we use the concentration-compactness
argument of Lions [11, 12, 13, 14] to obtain the "ground state solution", and then
combine it with some ideas of Zhu [16] to show the existence of another solution which
changes sign.
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2. PRELIMINARIES

Associated with Equation (1), we consider the energy functionals a, b and J, for

u e Hl(Q)

a(u) = f (|Vu|2 + u2) dx;
Jn

b(u)= [q(z)\u\"dx;
Jn

J(u) = io(u) - l-b{u).

Define

where

M(fi) = { u 6 H1(fl)\{0} | a(u) = 6(u)}.

It is well known that there is a positive radially symmetric smooth solution w of Equation

(2)

f- Au + u = qoo\u\p-2u inR";

[ u 6 Hl

We also define

a°°(u)=

(u) = ia(u)-V(u
a°° = inf J°°(tt),

6M»(R*')

where

Recall the fact that

w (\x\) j^|(^-i)/2 exp(|z|) -> c > 0 as |x| -> oo,

where c is some constant. (See Bahri and Li [1], Bahri and Lions [2], Gidas, Ni and

Nirenberg [7, 8] and Kwong [10].) In particular, we have

(i) there exists a constant Co > 0 such that

w{x) ^ C o exp(- |z | ) for all x G RN;
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(ii) for any e > 0, there exists a constant Ce > 0 such tha t

w(x) Z Ceexp{- (1 + e) \x\) for all x e RN.

We need the following definition and lemmas to prove the main theorems.

DEFINITION 1: For 0 e R, a sequence {uk} is a (PS)^-sequence in Hl(Q) for J if
J(uk) = 0 + o(l) and J'{uk) = o(l) strongly in H^Cl) as fc -»• oo.

LEMMA 2 . Let /? 6 R and iet {u*} be a (PS)p-sequence in H^Q) for J, then {uk}
is a bounded sequence in Hl (f2). Moreover,

a(uk) = b(uk) + o( Ql) =

P - 2

and ^ ^ 0.

P R O O F : For n sufficiently large, we have

J(uk) - l-{J'{uk),uk) = ( i - l-)a

It follows that {uk} is bounded in H1^). Since {ufc} is a bounded sequence in
then (J'(uk),uk) — o(l) as A; -^ oo. Thus,

0 + o(l) - J(«fc) = ( i - i )a (« t ) + o(l) = ( I - i)fc(«fc) + 0(1),

that is, a(uk) = b{uk) + o(l) = (2p/p - 2)0 + o(l) and 0 > 0. D

LEMMA 3 .

(i) For eaci u S Hl(Q)\{0}, there exists an su> 0 such that suu € M(fi);
(ii) Let {uk} be a (PS)ff-sequence in tf^fi) for J with 0 > 0. Then there

is a sequence {sk} in R+ such that {skuk} C M(f2), sk = 1 + o(l) and
J{skuk) = 0 + o(l). In particular, the statement holds for J°°.

PROOF: See Chen, Lee and Wang [4]. D

LEMMA 4 . There exists a c> 0 such that ||u||wi(n) ^ c> 0 for each u 6 M(Q).

PROOF: See Chen, Lee and Wang [4]. D

LEMMA 5 . Let u e M(fi) satisfy J(u) = min J(v) — a. Then u is a nonzero

solution of Equation (1).

PROOF: We define g(v) = a(v) - b(v) for v € i/^fiAfO}. Note that (g'{u),u)
= (2 — p)a(u) ^ 0. Since the minimum of 7 is achieved at u and is constrained on M(f2),
by the Lagrange multiplier theorem, there exists a A e R such that J'(u) — \g'{u) in
Hl(Q). Then we have

0 = (j'(u),u) = X(g'(u),u),
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that is, A = 0. Hence, J'(u) = 0 and u is a nonzero solution of Equation (1) in fi such
that J{u) = a. Q

Define u+ — max{u,0} and u~~ = max{— u,0}.

LEMMA 6 . Let u be a solution of Equation (1) that changes sign. Then J(u) > 2a.
In particular, the result holds for J°°.

PROOF: Since u is a solution of Equation (1) that changes sign, then u~ is nonneg-
ative and nonzero. Multiply Equation (1) by u~ and integrate to obtain

/ VuVu~ + uu~ = I q(x)\u\p~2uu~,
Jo. Jn

that is, u~ € M(Q) and J(u~) ^ a. Similarly, J(u+) ^ a. Hence,

J{u) = J(u+) + J{u~) > 2a. n

LEMMA 7 . (Improved Decomposition Lemma) Let {uk} be a (PS)p-sequence in
Hl(£l) for J. Then there are a subsequence {uk}, an integer I ^ 0, sequences {xk}k

x
z.1 in

RN, functions v e Hl(n) and w{ / 0 in Hl(RN) forl^i^l such that

-Av + v = q(x)\v\"~2v in Q;

- A Wi + Wi — qoo\wi\p~2Wi in RN;

\Pxk\ —> oo for 1 ^ i ^ I;

|x£| —> oo for 1 < i < I;
i

l(RN)_ mi- - xl
k) + o(l) strongly in H1(RN);

J{uk) = J(v) •
t = i

In addition, ifuk ^ 0, then v ^ 0 aod Wj ^ 0 for 1 ^ i ^ /.

P R O O F : The proof can be obtained by using the arguments in Bahri and Lions [2]
or see Tzeng and Wang [15]. 0

3. EXISTENCE OF THE GROUND STATE SOLUTION

LEMMA 8 . If a < a°°, then a attains a minimiser v\, that is, there exists a ground

state solution V\ of Equation (1).

P R O O F : See Cao [3]. D

Let wk(x) = w(x + ek) |n, where ek = (A,0, . . . , 0 ) . Then we have the following

lemmas.
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LEMMA 9 . Let 0 be a domain in Km. If f : 0 -¥ R satisfies

/ / ( x ) exp(a |x | ) dx < oo for some a > 0,

then

I / / ( x ) exp(—a|x + eA|) dx I exp(aA;) = / / ( x ) exp(-CTXx) dx + o(l) as k -> oo,

or

f / f(x) exp(-cr|x - ek\) dx j exp(afc) = / f(x) exp(ua;1) dx + o(l) as k

PROOF: We know a\ek\ ^ a\x\ + a\x + e*|, then

/(x)exp(cr|z|)|.

• oo .

Since

-tr|x + ek\ + <r\ek\ = -a^f- + o(l) = -ax1 + o(l)

as A; -4 oo, the lemma follows from the Lebesgue dominated convergence theorem. D

LEMMA 1 0 . Assume that there are positive numbers S, RQ and C such that

(Q) q(x) ^ goo - C e x p ( - (2 + 5)\Px\) for \Px\ ^ RQ.

Then there exists a k0 G N such that for k ^ k0, we have

sup J(swk) < a°°.

PROOF: Take a &i € N such that the AT-ball B(-ek; 1) C ft for k JJ kx. Then we

have

s2 C sp f
J(swk) < — / [|Vtu|2 + w2} - c— / u;p(x + eA) dx

= - f [\Vw\2

2 • /R"

Therefore, there exists an st > 0 such that

J(swk) < 0 for s > Si and k ^ ki.

Since J is continuous in iT^fi) and

+ Wfcl < / |Viu|2 + w2 < oo for any A; e N,

2 •/R" P JB(-ek;\)

\2 + W2] - c— /" wp dx.
P -/B(0;1)
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there exists an s0 > 0 such that

J(swk) < a°° for s < s0 and any k 6 N.

Then we only need to prove

sup J(swk) < a°° for k sufficiently large.

For k ^ fci and s0 < s ^ s\, since

sup J°°(sw) = J°°{w) = aO0,

* + e0|2l - — fq(x)\w(x + ek)\"i P Jn

—
P i + e*)|P+ f (qoo - q(x))\w{x + ek)\

p]

+ - I / 9ooH fc)r /
P L/nmxR" i n

(i) Let B (0; 1) C Rn be the unit n-ball, then

/ \w(x + ek)\
2dx > f C*exp(-2(l + e)\x + ek\) dx

ynmxRn ynmxB(0;i)

^C^exp(-2(l+e)Jfc).

(ii) It is easy to see that the following inequality

V^a2 + fr2) > •da + Vl - t?26

holds for any o, 6 > 0 and 0 ^ § ^ 1. Take t? = 1, and since fim x R" is unbounded, then
for a small e > 0, we have

ix + ek)\
pdx ^ q^C^exp(-p\x + ek\)

VnmxRn

^ f qooC'expf-pdKPx + Pek)\)

dx

\) dx

(iii) It is similar to (ii) we have
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Since q satisfies the condition (Q), then by Lemma 9, there exists a k2 > fci such that for

k ^ k2

j (qoo-q(x))\w(x + ek)\
pdx

Jnn{\Pxfen

Jnni\Px\>R

By (i)-(iii) and 2 < p < 2*, choosing e > 0, such that 2 + 2e < p - £ and 2e < 6/2, we
can find a ko ̂  k2 such that for k ^ fco

f 1
'oo|u;(x + efc)| + / (qoo - q(x))\w(x + ek)\

Jn J
~jj |Vtu(x + cfc)|

2 + |w(x + e*)|a < 0.

Hence, we have
sup J(swk) < a°° for k ^ ko. _
s^O U

THEOREM 1 1 . Assume that q satisfies (gi), (q2) and the condition (Q), then
Equation (1) has a positive solution v\.

PROOF: By Lemma 3 (i), there exists an sk > 0 such that skwk € M(fi), that is,
& ̂  J(skwk). Applying Lemma 10, we have a < a°°. Thus, there exists a ground state
solution Vi of Equation (1). By the standard arguments and the maximum principle,
ui > 0 in f2. D

REMARK 1. ui(x) ^ Ciexp(—|x|) for |x| > Ri, where C\ and R\ are some positive
constants.

PROOF: See Cao [3]. D

4. EXISTENCE OF THE SECOND SOLUTION

In this section, q satisfies (qx), (q2) and the condition (Q)

(Q) q(x) Zqoo + Cexp(-6\Px\) for \Px\ ^ R^

where 6 < 1, C and RQ are some positive constants. Let h(u) be a functional in Hl(Ci)
defined by

h(u) = I o(ti)
0 for u = 0.
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Denote by

Mo = {u € Hl(Q) | h(u+) = h(u~) = 1};

where u+ = max{u,0} and u = max{—u,0}.

LEMMA 1 2 .

(i) Hu £ i/^fi) changes sign, then there are positive numbers s±(u) = s±

such that s+u+ ± s~u~ £ M(S7);

(ii) There exists a c ' > 0 such that H^H^i ^ d > 0 for each u £ TV.

PROOF: (i) Since u+ and u~ are nonzero, by Lemma 3 (i), it is easy to obtain the
result.

(ii) For each u £ TV, by Lemma 3 (i), there exist s±(u) = s* > 0 such that
s±u± £ M(Q). Then we have

1 6(u±) 3
(3) - < (s ) ~p = < - for each u € TV.

2 a(u:tj 2

By Lemma 4, we have

ll^^llff1 ^ c for some c > 0 and each u £ TV.

Thus, by (3), we have ||u±||wi ^ c/s* ^ c* > 0 for each u £ TV. D

Define
7 = inf J(u).

u€M0

By Lemma 12, 7 > 0.

LEMMA 13 . There exists a sequence {uk} C TV such that J(uk) = 7 + o(l) and
J'(uk) = o(l) strongly in H~l(n).

PROOF: It is similar to the proof of Zhu [16]. D

LEMMA 14. Let f and g are real-valued functions in Q. If g(x) > 0 in fi, then
we have the following inequalities.

(i) (f + 9)+>f+!

(iii) (/ - g)+ ^ /+;

LEMMA 15. Let {uk} C TV be a (PS)y-sequence in H^Q) for J satisfying

Then there exists a u2 £ Mo such that uk converges to v-i strongly in //'(fi). Moreover,
V2 is a higher energy solution of Equation (1) such that J(v2) = 7.
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PROOF: By the definition of the (PS)7-sequence in H1(Q) for J, it is easy to see
that {uk} is a bounded sequence in Hl(Sl) and satisfies

/[ ] [
n Jn

By Lemma 12 (ii), there exists a C > 0 such that

[[\Vui\2 + \u±f}= [q(x)\u±\>
n Jn

i

By the Decomposition Lemma 7, we have 7 = J(v2) + ^2 J°°(wi), where v2 is a solution
i=l

of Equation (1) in Q and to* is a solution of Equation (2) in RN. Since J°°(wi) ^ Q°°
for each i £ N and a < a°°, we have / ^ 1. Now we want to show that I = 0. On the
contrary, suppose 1=1.

(i) w\ is a changed sign solution of Equation (2): by Lemma 6, we have

7 ^ 2a°°, which is a contradiction,

(ii) u/i is a constant sign solution of Equation (2): we may assume u;i > 0. By
the Decomposition Lemma 7, there exists a sequence {x\} in RN such that
\xl

k\ -¥ 00, and

\\uk - «2 - uhC- - xjt) | |H, ( n ) = o(l) as k -*• 00.

By the Sobolev continuous embedding inequality, we obtain

i( 4)11^(0) °(!) as fc ̂  00.

Since w\ > 0, by Lemma 14, then

||(u* - «2)"| |L P ( n ) = o(l) as A; -+ 00.

Suppose v2 = 0, we obtain \\u^||jy(n) = o(l) as A: —• 00. Then

0<C^ fq(x)\u-k\" = o(l),
Jn

which is a contradiction. Hence, v2 ^ 0. So we have 7 = ^(^2) + Jc o(iyi) ^ a + Q°°,

which a contradiction.

By (i) and (ii), then / = 0. Thus, ||ujt - v2\\H
i(n) = o(l) as k -> 00 and ^(^2) = 7-

Similarly, by Lemma 14, we obtain that v2 is a changed sign solution of Equation (1) in

n. By Lemma 6, 2a < 7. D

Recall that Wk(x) = w{x + Ck) |n, where e* = (k, 0 , . . . , 0) and w is a positive ground
state solution of Equation (2) in RN. Then we have the following results.
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LEMMA 1 6 . There are k0 € N, real numbers t\ and t2 such that for k ^ k0

t\v\ — t^Wk € Mo and 7 ^ J{t\vi — t^Wk),

where 1/2 < t\,t'2 ^ 2.

PROOF: The proof is similar to Zhu [16] or see Cao [3]. D

LEMMA 1 7 . There exists a i c J e N such that for k ^ k^ ^ k0

7 ^ sup J(Uvi — t2wk) < a + a°°,

where vx is a gound state solution of Equation (1) in Q.

PROOF: Since v\ is a positive solution of Equation (1) in Q, and wk > 0 for each
k & N, we have

- t2wk) - ~a(tiVi) + -a(t2wk) - txt2 ( / V^Vwk + vxwk 1 b{txvi - t2wk)
2 2 \Jn ) V

J°°(t2w) - -6(ti«i - t2wk) + -b(tivi) + -b°°(t2wk)
P P P

We use the inequality

(Cl - c2)' > c\ + <* - K{c\-Xc2 +

for any c\, c2 > 0 and some positive constant K, then

sup J(tiVi — t2Wk) ^ sup J{t\Vi) + sup J°°{t2w) — -— / {q(x) — i

+ K'( f v[-lwk + wl^v^ + — f qoow
p

k.

The following estimates is similar to Lemma 10.
f f

(ii) By the Holder inequality,

r / f \ (p~1)/p ( F \ !/P
/ VV~ Wk ^ I / ff I I / 10? I
/ \ I 1 / \ I \ I

^ Mexp(-fc).

Applying Lemma 9, there exists a k\ ^ ko such that for k^ k\

I v\~lWk^C[j exp(—(p - l)|x|) exp(—|x + efc|) dx

^CJ'exp(-fc).
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Similarly, we also obtain

f
\q(x)-qoo\vfk<M"exp{-(p-e)k),

}

and there exists a /i2 ̂  k\ such that for k^ k^

f v%~\ ^C'exp(-fc).

(iii) Since q satisfies the condition (Q) and 0 < S < 1, by Lemma 9, there exists a
A;2 such that for k^ k3

f _(q(x)-qoo)wl>C"exP(-6k).
Jnn{[Px\>Ro)

By (i)-(iii) and 2 < p < 2*, for small t < 1 we can find a fej ̂  fc3 ̂  k0 such that for

K' t f ti~lwk + w^'vi) + - [ qoow> - -J- / (q(x) - 9oo)K dx < 0.
\Jn ) V JnnxR" 2PP Jn

Since J(^i) = supt^0 J(tvi) and J°°(K;) = supt^0 J°°(tw), we have for k ^ fcj

sup

THEOREM 1 8 . Assume that g satisfies (g^, (g2) and the condition (Q), then
Equation (1) has a positive solution vx and a solution n2 which changes sign.

PROOF: By Lemmas 13, 15 16 17 and Theorem 11. D
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