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MULTIPLE SOLUTIONS FOR SOME NEUMANN PROBLEMS IN
EXTERIOR DOMAINS

TSING-SAN Hsu aND HUEI-LI LIN

In this paper, we show that if g(z) satisfies suitable conditions, then the Neumann
problem —Au+u = g(z)|u[’~2u in Q has at least two solutions of which one is positive
and the other changes sign.

1. INTRODUCTION

Throughout this article, let N = m + n, where m and n are nonnegative inte-
gers with m > 3. For £ = (z1,...,2n) = (Z1,--+, Tm) Tme1,---,ZN) € RY, et
Pz = (z1,...,2m) € R™ and Qz = (Zpy1,...,78) € R*. Consider the Neumann
boundary value problem

~Au+u=gq(z)|uf?u inQ
1
) @ =0 on 09,
On

where @ = (R™\(Q™)) x R*, Q™ is a smooth bounded domain in R™, 2 < p < 2*
= (2N)/(N - 2), n is the outward unit normal to 9Q and ¢(z) is a bounded continuous
function in 2. Moreover, g(z) satisfies the following hypotheses:

(g1) q(z) is a positive function in §, inf{g(z)|z € 2} > 0 and ¢(x) = ¢(y) for

any Pz = Py;
(g2) there exists a positive number g, such that IPlilm ¢(z) = goo and ¢(z)
T|{=>00

# ¢oo in §2.

If ¢ is bounded (n = 0 in our case), Esteban [5, 6] proved the existence of the
“ground state solution” of Equation (1) provided that g(z) = 1. In the case q is not a
constant function, Cao (3] and Hsu and Lin [9] proved the multiplicity of the solutions
of Equation (1). In this article, we assert that Equation (1) still has the same results of
Hsu and Lin [9] even if Q¢ is unbounded. First, we use the concentration-compactness
argument of Lions [11, 12, 13, 14] to obtain the “ground state solution”, and then
combine it with some ideas of Zhu [16] to show the existence of another solution which
changes sign.
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2. PRELIMINARIES

Associated with Equation (1), we consider the energy functionals a, b and J, for

u € HY(N)
a(u) = / (IVu|? + u?) dz;
Q
bw) = [ ala)lul d
J(u) = %a(u) - %b(u)
Define
a= inf J(u),
weM(Q)
where

M(Q) = {u € H'()\{0} | a(u) = b(u)}.

It is well known that there is a positive radially symmetric smooth solution w of Equation

(2)

-Au+u= P24 in R¥;
@) { goo |uf"u in

ue H (RY).
We also define
a®(u) = / (IVul]® + v?) dz;
]RN
b (u) = / oo |ufP dz;
RN
J(u) = 2a™(u) — ~b%(u);
= 50%(u 5 u);
a® = inf  J%(u),
ueM®(RN)

where

M*(RY) = {ue HY(R")I\{0} | a®(u) = b (u)}.
Recall the fact that
w(lz|)|z|V Y2 exp(|z]) = € > 0 as |z| = oo,

where € is some constant. (See Bahri and Li [1], Bahri and Lions 2], Gidas, Ni and
Nirenberg [7, 8] and Kwong [10].) In particular, we have

(i) there exists a constant Cp > 0 such that

w(z) € Coexp(~|z|) for all z € RY;
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(if) for any € > 0, there exists a constant C, > 0 such that
w(z) > C.exp(— (1 +¢€) |z|) for all z € RV.

We need the following definition and lemmas to prove the main theorems.

DEFINITION 1: For 8 € R, a sequence {ux} is a (PS)g-sequence in H(Q) for J if
J(ug) = B+ o(1) and J'(ux) = o(1) strongly in H!(§2) as k — oo.

LEMMA 2. Letf € R and let {ux} be a (PS)s-sequence in H'(Q) for J, then {u;}
is a bounded sequence in H'(Q2). Moreover,

a(ug) = b(ux) + o(1) = ;2:”—2-ﬂ +0(1)

and 8 2 0.
PRrooF: For n sufficiently large, we have
1, 1 1
81+ 1+ Valu) > J () = (' (we), we) = (5 = ) alew):

It follows that {ux} is bounded in H'(2). Since {u;} is a bounded sequence in H!(Q2),
then {(J'(ux), ux) = o(1) as k — oo. Thus,

B-+0(1) = J(w) = (5 = 7)a(w) +o(1) = (5 - )blue) + o),
that is, a(ug) = b(ug) + o(1) = (2p/p — 2)3 + o(1) and 8 2 0. 0

LEMMA 3.
(i) For each u € H(Q)\{0}, there exists an s, > 0 such that s,u € M(RQ);
(i) Let {ux} be a (PS)g-sequence in H(Q) for J with § > 0. Then there
is a sequence {sx} in R* such that {szux} C M(R2), sx = 1 + o(1) and
J(skug) = B+ o(1). In particular, the statement holds for J>.

PROOF: See Chen, Lee and Wang [4]. 0

LEMMA 4. There exists a ¢ > 0 such that ||ul| 1 (q) > ¢ > 0 for each u € M(Q).
PROOF: See Chen, Lee and Wang [4]. 0

LEMMA 5. Let u € M(Q) satisfy J(u) = nlb}(r}n J(v) = a. Then u is a nonzero
vE

solution of Equation (1).
PRrOOF: We define g(v) = a(v) — b(v) for v € H'(Q)\{0}. Note that (¢'(u),u)
= (2 - p)a(u) # 0. Since the minimum of J is achieved at u and is constrained on M(2),
by the Lagrange multiplier theorem, there exists a A € R such that J'(u) = Ag'(u) in
H'(Q). Then we have
0= (J'(u),u) = A{g'(u), u),

https://doi.org/10.1017/50004972700035395 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700035395

356 T-S. Hsu and H-L. Lin 4]

that is, A = 0. Hence, J'(u) = 0 and u is a nonzero solution of Equation (1) in  such
that J(u) = a. 0
Define u* = max{u,0} and v~ = max{-u,0}.
LEMMA 6. Letu be asolution of Equation (1) that changes sign. Then J(u) > 2a.
In particular, the result holds for J*.

PRroOOF: Since u is a solution of Equation (1) that changes sign, then u~ is nonneg-
ative and nonzero. Multiply Equation (1) by »~ and integrate to obtain

/VuVu’ +uu” = / g(z)|ufP~2uu",
Q Q
that is, u~ € M(f2) and J(u~) > a. Similarly, J(u*) > a. Hence,

Jw)=J@w) +J@u") 2 2a. 0

LEMMA 7. (Improved Decomposition Lemma) Let {ui} be a (PS)s-sequence in
HY(SY) for J. Then there are a subsequence {u}, an integer | > 0, sequences {z}}, in
RY, functions v € H*(Q) and w; # 0 in H'(R") for 1 < i < | such that

-Av+v = q)|vf?viny
—Awi+w; = goo|wilP ?w; in RY;
|Pzi| — oo for 1 € i<
Lig;

¥

|zi| — oo for 1
]
u = v+ Zw,-(- - z3) + o(1) strongly in H'(RV);

i=1
l
J(we) = J(v)+ ) J®(w;) + o(1).
i=1
In addition, ifu;y >0, thenv 20and w; 20 for1 <<l

PROOF: The proof can be obtained by using the arguments in Bahri and Lions [2]
or see Tzeng and Wang [15]. 0

3. EXISTENCE OF THE GROUND STATE SOLUTION

LEMMA 8. Ifa < a®, then a attains a minimiser v,, that is, there exists a ground
state solution v, of Equation (1).

PROOF: See Cao [3]. 0
Let wi(z) = w(z + ek) |o, where ex = (k,0,...,0). Then we have the following
lemmas.
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LEMMA 9. Let© be a domain in R™. If f : © — R satisfies
/ |_f(z) exp(o|z|) l dz < oo for some o > 0,
)
then

(/e f(z) exp(—olz + ex]) dz) exp(ck) = /ef(a:) exp(-0z1) dz + o(1) as k — oo,

or
(/e f(z)exp(—olz — ex|) dz) exp(ok) = /ef(:z) exp{oz,)dz + o(1) as k — oo.
PROOF: We know olex| € ol|z| + 0|z + €, then
If(z) exp(—o|z + exl) exp(a]ekl)’ < lf(:c) exp(o|z|) ‘
Since
—olz + e| + oleg| = —ULT’EET—) +0(1) = —oz; + o(1)
as k — oo, the lemma follows from the Lebesgue dominated convergence theorem. 1]
LEMMA 10. Assume that there are positive numbers 8, Ry and C such that
Q) q(z) 2 goo — Cexp(— (2 + 6)|Pz|) for |Pz| > Ry.

Then there exists a ko € N such that for k 2 ko, we have

o0

sup J(swy) < ™.
520

ProoF: Take a k; € N such that the N-ball B(—e;;1) C Q for k 2 k;. Then we

have
s? 2 2 sP
J(swyg) < —/ [IVw)? + w?] — c=— wP(z + e;) dz
2 RN P JB(-exil)
82 2 2 sP
== (IVw|* +w ] —c= wP dz.
2 Jrw P Jaey)

Therefore, there exists an 8, > 0 such that
J(sw) < 0for s > s; and k 2 k.

Since J is continuous in H!(f2) and

/[IVwk]2 +w}] < / |Vw|? + w? < oo for any k € N,
0 RV
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there exists an sy > 0 such that
J(swg) < a®™ for s < s and any k € N.
Then we only need to prove

sup J(swi) < a™ for k sufficiently large.

s0<s<s;

For k > k; and sp € s £ §;, since

sup J®(sw) = J®(w) = a®,
520

J(swg) = f;/{; “Vw(x + ek)|2 + Iw(x + ek)lzl - %/ﬂq(xﬂw(z + ek)lp

2
= J®(sw) — s [|Vw(z+ek)|2+ |w(:c+ek)|2]
2 QmxRr
P
+Z [/ Goo|w(z + €)|” + / (900 — g(2)) jw(z + ek)l”]
P L/amxRe o
2
<a® - % [|Vw (x+ek)|2+ |w(x+ek)|2]
2 Jamxrn
st
A [/ dolwa+ e+ [ (g~ a0 o + ek)|"]. '
P L/amxrn a
(i) Let B(0;1) C R" be the unit n-ball, then
/ |w(1:+ek)|2dz P / CZ?exp(-2(1 + )|z + e]) dz
amxR» amxB(0;1)

> Clexp(—2(1 + €)k).
(ii) It is easy to see that the following inequality
V(a2 +8) > da+V1-9%

holds for any a,b > 0 and 0 £ ¥ £ 1. Take 9 = 1, and since 2™ x R" is unbounded, then
for a small € > 0, we have

/ Goo|w(z + €x)|" dz < / 4oCh exp(—plz + ex]) dz
Qm xR» QmxRn

< / 4ooCh exp(—pﬁ[(P:c + Pek)[) dz
Q™ xR»
< Cyexp(—(p — €)k).

(iii) It is similar to (ii) we have

/ (90 — () |w(z + ek)lp dz < Mexp(—(p —e)k).
an{|Pzi<Ro}
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Since ¢ satisfies the condition (@), then by Lemma 9, there exists a k, > ki such that for
k>k

/ (90 — a(2)) |w(z + €x)|" dz
Qn{|Pz|>Ro}
< / C exp(—(2 + 8)| Pz|)C§ exp(—plz + ext|) dz
Qn{|Pz|> Ro}
< / Cyexp(—(2 + 0)|Pz]) exp(—pﬂ](Pz + Pek)l) dz
Qn{|Pz|2 Ro}

) . 4
<C exp(—- min {2 + E,p}k).
By (i)—(iii) and 2 < p < 2%, choosing € > 0, such that 2+ 2¢ < p— ¢ and 2¢ < 6/2, we
can find a kg > k, such that for k > kg

% [ / IR CEN / (900 — 9(@)) lw(z + eol"]

p
st 2 2
- = ]Vw(z+e;,)| +|w(z+ek)| < 0.
Q™ xR»

Hence, we have

sup J(sw) < a*™ for k 2 kq.

520 D

THEOREM 11. Assume that g satisfies (¢1), (g2) and the condition (Q), then

Equation (1) has a positive solution v,.

Proor: By Lemma 3 (i), there exists an s, > 0 such that syw; € M(Q), that is,
a < J(spwy). Applying Lemma 10, we have oo < a®. Thus, there exists a ground state
solution v; of Equation (1). By the standard arguments and the maximum principle,

vy > 0 in . 1]
REMARK 1. u(z) < G exp(—l:vl) for |z] = R,, where C, and R, are some positive
constants.

PROOF: See Cao [3]. 0

4. EXISTENCE OF THE SECOND SOLUTION

In this section, g satisfies (¢;), (¢2) and the condition (Q)

@ 4(z) 2 goo + C exp(—6|Pxz|) for |Pz| > Ry
where 8 < 1, C and R, are some positive constants. Let h(u) be a functional in H'(Q)
defined by
M for u # 0;
h(u) = { a(u)
0 for u=0.
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Denote by
M, = {ue HY(Q)| h(u™) = h(u") =1};
.N={ueH%m|Mmﬂ-4|<%}
where ut = max{u,0} and v~ = max{—xy,0}.

LEMMA 12.
(i) Ifu € H'(Q) changes sign, then there are positive numbers s*(u) = s*
such that stu* + s~ u~ € M(Q);
(i) There exists a ¢ > 0 such that ||u%||; > ¢ > 0 foreachu € N.

Proor: (i) Since u* and u~ are nonzero, by Lemma 3 (i), it is easy to obtain the
result.

(i) For each u € N, by Lemma 3 (i), there exist s*(u) = s* > 0 such that
sTut € M(Q). Then we have

© D<oy = A

2 " a(u?)

<gf0reachu€N.

By Lemma 4, we have
lls*u*|| g1 > c for some ¢ > 0 and each v € N.

Thus, by (3), we have |[u*||; > c¢/s* > ¢ > 0 for each u € V. 0
Define
v= g, S0
By Lemma 12, v > 0.
LEMMA 13. There exists a sequence {ux} C N such that J(ux) = v + o(1) and
J'(ux) = o(1) strongly in H™}(Q).
PROOF: It is similar to the proof of Zhu [16]. 0

LEMMA 14. Let f and g are real-valued functions in Q. If g(x) > 0 in §, then
we have the following inequalities.

i (f+a*=>f%

(i) (f+9)"<f7;
(i) (f-g9*r<f
(ivy (f-9)2f".

LEMMA 15. Let {ux} C N be a (PS),-sequence in H'(Q) for J satisfying
a<y<a+a®(<2a%).

Then there exists a v; € My such that uy converges to v, strongly in H'(Q). Moreover,
v, is a higher energy solution of Equation (1) such that J(vy) = 7.
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PROOF: By the definition of the (PS),-sequence in H'(Q) for J, it is easy to see
that {uy} is a bounded sequence in H'(f2) and satisfies

[0vutr+ 1) = [ a@hip +o0.
ol
By Lemma 12 (ii), there exists a C > 0 such that

C< / (IVa? + 2] = / Q@) kP + o(1).
Q 0

1
By the Decomposition Lemma 7, we have v = J(v;) + Y, J*®(w;), where v, is a solution
i=1

of Equation (1) in Q and w; is a solution of Equation (2) in RY. Since J®(w;) > o®
for each i € N and a < a*, we have | < 1. Now we want to show that [ = 0. On the
contrary, suppose [ = 1.

(i) w; is a changed sign solution of Equation (2): by Lemma 6, we have
v 2 2a®, which is a contradiction.

(ii) w, is a constant sign solution of Equation (2): we may assume w; > 0. By
the Decomposition Lemma 7, there exists a sequence {z}} in R" such that
|zi| = oo, and

lluk — va — wn(- — z,l:)“m(m =o(1) as k — oo.
By the Sobolev continuous embedding inequality, we obtain
lluk = v2 = wi(- - z'lc)“Lr(n) = 0(1) as k — oo.
Since w; > 0, by Lemma 14, then
|| (e — ”2)—”1;(9) =0(1) as k — oco.

Suppose v; = 0, we obtain |lug || r) = 0(1) as k — co. Then

0<C< /nq(a:)lu;l" = o(1),

which is a contradiction. Hence, v, # 0. So we have v = J(v) + J®(w;) 2 a + o,
which a contradiction.

By (i) and (ii), then ! = 0. Thus, |jux — V2|l () = o(1) as k — oo and J(v2) = 7.
Similarly, by Lemma 14, we obtain that v, is a changed sign solution of Equation (1) in
2. By Lemma 6, 2o < 7.

Recall that wi(z) = w(z +ex) |, where ex = (k,0,...,0) and w is a positive ground
state solution of Equation (2) in RY. Then we have the following results.
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LEMMA 16. There are kg € N, real numbers t} and t; such that for k > kg
tiv; — towy € My and v € J(t{v; — tywg),

where 1/2 < t},t5 < 2.
PROOF: The proof is similar to Zhu [16] or see Cao [3]. 0

LEMMA 17. There exists a k € N such that for k > k§ > ko

v< sup J(hv — bwe) < a+ a®,
1/2<t,2€2

where v, is a gound state solution of Equation (1) in .

PROOF: Since v, is a positive solution of Equation (1) in Q and wy > 0 for each
k € N, we have

J(tivy — tawy) = %a(tlvl) + —;—a(tgwk) —tita (/n Vu,Vw + vlwk) - %b(tlvl — towyg)
< J(tion) + J®(taw) — %b(tlvl — twe) + %b(tlvl) + %b‘”(tgwk)
We use the inequality
(a1 = )" > d+d - K& a+ad™),

for any ¢;, ¢c; > 0 and some positive constant K, then

1
sup  J(t,vy — tawy) < sup J(4,v1) + sup J®(taw) — o (9(z) - goo) i
1/2€t1,t2€2 t120 t220 2p Jq

- _ 2°
+K'(/nv‘1’ Lwi + w? lvl) +;/ JooWh.
™ xRr

The following estimates is similar to Lemma 10.
(1) / JooWh = / qoolw(a: + ek)lp dz < Cexp(—(p — e)k).
Qm xR Qm xR"
(i) By the Hélder inequality,

(r-1)/p 1/p
™ Vo)™ U
an{lzl< i} Qn{|z|<R1} an{|z|< R}

< M exp(-k).
Applying Lemma 9, there exists a k; 2 kg such that for k 2 k;

/ vl < C{/ exp(—(p — 1)|z|) exp(—|z + ex|) dz
an{|zl> R} an{|z|>2 R}

< CY exp(—k).
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Similarly, we also obtain
/ wh ™ty < M'exp(—(p - 1)k),
an{lz|< i}
/ _a(®) - qoo|uf < M" exp(—(p - €)k),
an{|Pzi<Ro}
and there exists a ko > k; such that for k > k;

/ wh vy < C'exp(—k).
Qn{iz|> A1}

(iti) Since ¢ satisfies the condition (Q) and 0 < & < 1, by Lemma 9, there exists a
ks > ko such that for k > k3

f __ (g(2) — goo)w} > C”" exp(—0k).

an{|Pe1>Te)

By (i)-(iii) and 2 < p < 2*, for small £ < 1 we can find a kj > k3 > ko such that for
k> kg

pd

_ _ 1
K’ (/ P wy + wh 1v1) + —/ GooWh — - (9(z) — goo)ufdz < 0.
(1} P Jamxgre pJa

Since J(v;) = sup;3¢ J(tv1) and J®(w) = sup,5q J®(tw), we have for k > k;

sup  J(tiny — tawy) < J(v) + J®(w) = a+ ™.
1/2€t; 12 <2 0

THEOREM 18. Assume that g satisfies (q,), (g2) and the condition (Q), then
Equation (1) has a positive solution v, and a solution v, which changes sign.

PROOF: By Lemmas 13, 15 16 17 and Theorem 11. 0
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