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IDENTIFICATION OF DISCRETE
CHOICE DYNAMIC PROGRAMMING
MODELS WITH NONPARAMETRIC

DISTRIBUTION OF UNOBSERVABLES

LE-YU CHEN
Academia Sinica

This paper presents semiparametric identification results for the Rust (1994) class
of discrete choice dynamic programming (DCDP) models. We develop sufficient
conditions for identification of the deep structural parameters for the case where
the per-period utility function ascribed to one choice in the model is parametric
but the distribution of unobserved state variables is nonparametric. The proposed
identification strategy does not rely on availability of the terminal period data and
can therefore be applied to infinite horizon structural dynamic models. Identifying
power comes from assuming that the agent’s per-period utilities admit continuous
choice-specific state variables that are observed with sufficient variation and satisfy
certain conditional independence assumptions on the joint time series of observ-
ables. These conditions allow us to formulate exclusion restrictions for identifying
the primitive structural functions of the model.

1. INTRODUCTION

Estimation of discrete choice dynamic programming (DCDP) models has be-
come increasingly important in empirical economic research and in practical
policy assessment. Excellent surveys of applications and estimation techniques
may be found in Eckstein and Wolpin (1989), Rust (1994), Miller (1997), Keane
and Wolpin (2009), and Aguirregabiria and Mira (2010). In this literature, how-
ever, underlying structural objects such as per-period utilities, transition laws of
state variables and the joint distribution of unobservables are usually paramet-
rically specified, thus necessarily risking over-restriction and exacerbating mis-
specification. Consequently, attention has turned to nonparametric specification.
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In turn, new issues have arisen such as the inherent difficulty of identifying DCDP
models nonparametrically, as emphasized by the influential work of Rust (1994,
pp. 3127–3130). Magnac and Thesmar (2002) extended Rust’s framework and in-
dicated how identification can be achieved under bespoke specification of the joint
distribution of unobservables and the functional forms of agents’ preferences.
However, the economic theory behind DCDP models is generally silent about
distribution of the unobservables. Therefore, serious concerns of robustness arise
and prompt interest in flexible specification of the distribution of unobservables.
The present paper addresses this issue and establishes identification results for
DCDP models of the Rust (1994) type allowing for a nonparametrically specified
distribution of the unobserved state variables.

As noted in Magnac and Thesmar (2002), the class of Rust’s DCDP models
remains unidentified even if the joint distribution of unobservables is known. To
secure identification, the researcher needs to further assume a functional form for
the per-period utility of one of the choices. Therefore, throughout this paper, our
identification analysis is semiparametric in the sense that one of the choicewise
per-period utility functions is known a priori. Using this assumption, we show
that the DCDP model with nonparametric unobservables can be identified under
the following two key conditions: (i) the agent’s per-period utilities admit contin-
uous choice-specific state variables zt that are observed with sufficient variation
and (ii) the joint time series of zt and the remaining observed state variables wt

satisfy an empirically testable conditional independence assumption. These con-
ditions enable us to form exclusion restrictions that provide identifying power
when information about distribution of the unobservables is not available. There-
fore, in this respect, we establish semiparametric identification of the dynamic
counterpart of the static discrete choice model in which preference shock distribu-
tions are nonparametric but systematic utility functions are restricted to a certain
function space.1

There is little literature addressing the problem of identifying structural dy-
namic discrete choice models with nonparametric unobservables. Our work is
related to the identification analysis of Heckman and Navarro (2007). Their paper
considers semiparametric identification of finite horizon dynamic optimal stop-
ping models. Their setup allows for richer time series dependence between non-
parametric unobservables. However, they assume that future values of some ob-
served continuous state variables appear in the agent’s current information set so
that they can use the identification-at-infinity strategy in a fashion similar to the
one entertained by Taber (2000). By contrast, we consider identification of the
DCDP models in which all choices can be recurrent and the agent’s information
set contains only current and past realized state variables. We follow Rust’s (1994)
conditional independence framework to model the evolution of the state variables.

We develop an identification strategy that is applicable to both finite and
infinite horizon DCDP models. Note that there is no terminal period for the
infinite horizon model. Admitting the terminal period induces nonstationarity
in the model so that one can gain extra identifying power by discriminating the
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model structure that varies across periods. For instance, Taber (2000), Heckman
and Navarro (2007), and Aguirregabiria (2010) exploited the static nature of the
agent’s terminal period choice problem so that they can identify the terminal
period structural parameters first and then solve the previous period problems
via backward induction. Lacking the terminal period data poses a challenge in
identification. This paper studies the use of exclusion restrictions to circumvent
such identification problems and develops positive results for semiparametrically
identifying all the deep structural parameters of Rust’s DCDP model with non-
parametric unobserved state variables.2

We now discuss other related literature in addition to the papers cited above.
For the DCDP model with known distribution of unobserved state variables, Hotz
and Miller (1993) established that structural value differences can be nonparamet-
rically identified using the conditional choice probabilities and distribution of the
unobservables. This insight has been exploited in Magnac and Thesmar’s (2002)
identification analysis and in the literature of the two-step estimation approach
to reduce the computational complexity that arises from solving the fixed-point
problem of the model. For two-step estimators of the DCDP model, see, e.g.,
Hotz and Miller (1993), Hotz, Miller, Sanders, and Smith (1994), Aguirregabiria
and Mira (2002), and Srisuma and Linton (2012).3 Srisuma (2015) derived condi-
tions for identification of parametrically specified per-period utilities by studying
the pseudo-decision problem that underlies the two-step estimation approach for
the DCDP model.

For the DCDP model with an unknown distribution of unobservables,
Aguirregabiria (2010) studied identification of counterfactual choice probabili-
ties for a finite horizon DCDP model assuming that the researcher observes a
continuous outcome variable. Norets and Tang (2014) considered an infinite hori-
zon DCDP model with discrete observed state variables. They showed that, when
the distribution of unobservables is unknown, the per-period utilities and coun-
terfactual choice probabilities are only set-identified even under parametric or
shape restrictions on the per-period utilities. In this paper, we derive sufficient
conditions for identification when continuous observed state variables are avail-
able. Our study is also related to a recent paper of Blevins (2014), who considered
structural dynamic models that admit both discrete and continuous choices. When
the joint distribution of shocks of the discrete choices is unknown, he adopted
the exclusion restriction strategy and provided identification results in the setting
where the agent’s discrete action is in fact binary. The present paper focuses on
the model where all choices are discrete and establishes identification for both bi-
nary and general multinomial choice settings with a nonparametric specification
of the unobservables.

The rest of the paper is organized as follows. In Section 2, we present the setup
and assumptions of the DCDP model. In Section 3, we discuss structural param-
eters of interest and characterize identification of the DCDP model. To motivate
our identification strategy, we study identification of the model with an unknown
distribution of unobservables in the simpler context where agents make binary
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choices in Section 4. In Section 5, we present identification results for the model
with an unknown distribution of unobservables in the general multinomial choice
setting. In Section 6, we discuss identification of extensions of the baseline model
and conclude the paper. Appendix A provides proofs for all the theoretical results
in the paper. Appendix B presents additional results on partial identification of the
structural DCDP value functions when the data exhibit insufficient support.

2. THE FRAMEWORK AND ASSUMPTIONS

Time is discrete and indexed by t ∈ {1,2, ...}. Consider an economic agent with in-
tertemporal utility that is additively separable over time. At each period, the agent
makes a decision over K mutually exclusive choices denoted as Choice k, k ∈ C ,
where C ≡ {1, ..., K }. Let (xt ,εt ) be the agent’s state variables at time t where the
econometrician only observes xt . The vector εt ≡ (εk,t )k∈C is unobserved, where
εk,t denotes the preference shock of Choice k.

At the beginning of each period t , (xt ,εt ) is revealed to the agent who then
chooses an action dt ∈ C and receives the instantaneous return ut (dt , xt ,εt ).
The next period state variables (xt+1,εt+1) remain uncertain to the agent. We
assume that the transition of state variables follows a controlled first-order
Markov process with transition probability density f (xt+1,εt+1|xt ,εt ,dt ). Fol-
lowing Magnac and Thesmar (2002), we assume that agents’ expectations are per-
fect in the sense that their beliefs about the evolution of the state variables coincide
with that density. To proceed, as in Rust (1994) and Magnac and Thesmar (2002,
pp. 802–804), we make the following assumptions on the agent’s preference and
on the laws of motion of the state variables.

[M1] (Additive Separability) For k ∈ C and for all t ,

ut (k, xt ,εt ) = u∗
k,t (xt )+ εk,t .

[M2] (Conditional Independence) For all t ,

f (xt+1,εt+1|xt ,εt ,dt ) = fε(εt+1) fx (xt+1|xt ,dt ).

Assumption [M1] is a standard assumption used in static random utility dis-
crete choice models. [M2] assumes that the unobservables εt are i.i.d. exogenous
random shocks, while future values of the observed states xt+1 can depend on the
current control variable dt and values of the observed states xt but they do not
directly depend on values of the current unobserved shock εt .

Let β ∈ [0,1) be the discount factor. Assume that choices at each period are
made to maximize the agent’s discounted expected lifetime utility. By [M1], [M2]
and perfect expectations, the value functions (vk,t )k∈C of this model can be char-
acterized by the following Bellman equations

vk,t (xt ,εt ) = u∗
k,t (xt )+ εk,t +βE

[
maxj∈C{v j,t+1(xt+1,εt+1)}|xt ,dt = k

]
.
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Therefore, for k ∈ C and for all t , there is a value v∗
k,t (xt ), which is a function of

xt only, such that the choicewise value functions vk,t (xt ,εt ) can be written as

vk,t (xt ,εt ) = v∗
k,t (xt )+ εk,t ,

where v∗
k,t (xt ) satisfies

v∗
k,t (xt ) = u∗

k,t (xt )+βE
[
maxj∈C{v∗

j,t+1(xt+1)+ εj,t+1}|xt ,dt = k
]
.

The observed time series of the agent’s choices is the sequence of optimal deci-
sions {δt } satisfying

δt = argmaxk∈C{vk,t (xt ,εt )}.
In this paper, we study stationary infinite horizon models so that there is no

terminal period to be exploited as a source of identification. We assume that the
time horizon is infinite and that the per-period utilities and transition probabilities
are time-invariant. The stationary Markovian structure of the model implies that
the agent faces the same decision problem in state (xs,εs) at period s and in state
(xt ,εt ) at period t , provided that (xs,εs) = (xt ,εt ). Hence we can suppress the
time index and, for the rest of this paper, we denote variables y and y′ as the cur-
rent and next period objects, respectively. Under this notation, we can formulate
the value and policy functions of the DCDP model as follows.

v∗
k (x) = u∗

k(x)+βE
[
maxj∈C{v∗

j (x ′)+ ε′
j }|x,d = k

]
for k ∈ C , (2.1)

δ = argmaxk∈C{v∗
k (x)+ εk}. (2.2)

Assume the following:

[M3] For k ∈ C, E(|εk |) < ∞. Furthermore, E(εK ) = 0.

Assumption [M3] imposes location normalization for the random shock of one
of the choices.4 We now describe the space of the agent’s preference functions.
Let � be the Bellman operator that maps a K -dimensional vector of functions
h = (hk)k∈C to another K -dimensional vector of functions (�k(h))k∈C where, for
k ∈ C ,

�k(h)(x) ≡ u∗
k(x)+βE

[
maxj∈C{hj (x ′)+ ε′

j }|x,d = k
]
. (2.3)

Let B be a Banach space of vectors of functions. Rust (1988) considered the case
of (u∗

k)k∈C ∈ B where B is the space of vectors of bounded functions. He es-
tablished that there is a unique vector of functions v∗ ≡ (v∗

k )k∈C that satisfies
v∗ = �(v∗). In this paper, we allow for unbounded instantaneous utilities. Note
that, for unbounded utilities u∗

k , the well-known Blackwell sufficient condition for
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contraction of � (see, e.g., Stokey and Lucas (1989, Theorem 3.3)) is not directly
applicable. To secure a unique solution to the system of Bellman equations (2.1),
we adopt the weighted sup norm approach of Lippman (1975) and Norets (2010)
as follows.

Let q be a positive integer and α(x) be a function such that 1 ≤ α(x) < ∞ for
all x . Assume that there is a positive real constant b such that for all x ,

max
k∈C

E(α(x ′)n|x,d = k) ≤ (α(x)+b)n for n ∈ {1, ...,q}. (2.4)

For any K -dimensional vector of functions h, we define the α-weighted sup norm
of h as

||h||α ≡ sup
x

maxk∈C |hk(x)|
α(x)q

. (2.5)

We impose the following restriction on the agent’s preference functions.

[M4] For some function α(x) and positive integer q, both (u∗
k)k∈C and (v∗

k )k∈C

are elements of B(α,q), where B(α,q) denotes the space of K -dimensional vec-
tors of functions bounded under the norm || · ||α .

Assumption [M4] allows for sup norm unbounded utilities but their growing
rate must be regulated relatively to α(x), which itself may take a large value at
the next period state but such an event should occur with small probability. The
following lemma establishes that the vector of functions (v∗

k )k∈C can be solved as
the unique fixed point of the Bellman operator � and thus is the unique solution
to the Bellman equations (2.1).

LEMMA 1. Given [M2], [M3] and [M4], the following statements hold: (i)
If h ∈ B(α,q), then �(h) ∈ B(α,q). (ii) There is a unique vector of functions
v∗ = (v∗

1 , ...,v∗
K ) ∈ B(α,q) satisfying v∗ = �(v∗).

To proceed, we require further assumptions on the joint distribution of (εk)k∈C .

[M5] The joint distribution of (εk)k∈C is absolutely continuous with respect to
Lebesgue measure and has a joint density that is everywhere positive on RK .

For any K -dimensional real vector c, let (ck − cj )j∈C\{k} denote the (K − 1)-
dimensional vector (ck − c1, ...,ck − cK ) with the term (ck − ck) excluded. Let
Gk denote the joint distribution of −(

εk − εj
)

j∈C\{k}. Assumption [M5] ensures
that the agent’s optimal decision is almost surely unique. Moreover, it implies that
for k ∈ C , the distribution Gk is also absolutely continuous and has a Lebesgue
density that is everywhere positive on RK−1. Given [M2] and (2.2), the condi-
tional choice probabilities of the DCDP model can be characterized as follows.
For k ∈ C ,

P(δ = k|x) = Gk

((
v∗

k (x)− v∗
j (x)

)
j∈C\{k}

)
. (2.6)
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3. PARAMETERS OF INTEREST AND IDENTIFICATION

We have a sample of individuals who follow the constituted DCDP model. The
data consist of observed state variables and optimal decisions for all individuals
and for at least two consecutive periods. Assuming random sampling, we can
suppress the individual index. The parameters of interest in the DCDP model are
(u∗

k(x),v∗
k (x),β,Gk, fx (x ′|x,d = k)) for k ∈ C .

Under perfect expectations and assumption [M2], the agent’s belief about the
transition of the observed states coincides with the density fx (x ′|x,d = k), which
therefore equals the density of x ′ conditional on x and δ = k. Hence it can be
nonparametrically identified using the data (δ, x, x ′). This fact has been used in
the DCDP literature with a nonparametric specification of the transition law of the
observed state variables (e.g., Magnac and Thesmar (2002), Bajari et al. (2009),
and Srisuma and Linton (2012)). Therefore, we can replace the agent’s control
variable d with the observed choice δ in the conditional expectation expressions
of (2.1), (2.3), and (2.4).

Given G K , we can deduce Gk for all k ∈ C\{K } since
(
εj − εk

)
j∈C\{k}

can be expressed as a known linear transformation of
(
εj − εK

)
j∈C\{K } (see

Thompson (1989) and Matzkin (1993)). For notational simplicity, let G denote
the joint distribution G K . Thus, it suffices to know G to determine Gk for all
k ∈ C\{K }.

Using conditions [M2] and [M3], we can further rewrite the systematic Bellman
equations (2.1) as

v∗
k (x) = u∗

k(x)+βE(v∗
K (x ′)|x,δ = k)

+βE
[
maxj∈C{�v∗

j (x ′)+�ε′
j }|x,δ = k

]
, (3.1)

where �v∗
j ≡ v∗

j − v∗
K and �εj ≡ εj − εK for j ∈ C . We refer to v∗

k as the
derived structural parameters because, given the primitive structural parameters
(u∗

k(x),β,G), they can be deduced as the unique solution to the equation system
(3.1). In line with the literature (e.g., Aguirregabiria and Mira (2002), Srisuma and
Linton (2012), Norets and Tang (2014), and Srisuma (2015)), we assume through-
out this paper that the researcher knows the discount factor β.5 Thus we focus
on identification of the remaining structural parameters G and (u∗

k(x),v∗
k (x))

for k ∈ C .

We now characterize identification for the DCDP model.

THEOREM 1. Given β, u∗
K and G, the remaining structural parameters

(u∗
1, ...,u∗

K−1) and (v∗
1 , ...,v∗

K ) are identified.

Magnac and Thesmar (2002, Proposition 2 (i)) characterize identification of
the finite horizon DCDP model. Theorem 1 extends their results to the infi-
nite horizon case allowing for unbounded per-period utilities. In Magnac and
Thesmar’s (2002) identification analysis, all the observed state variables x are
assumed to take only finite values. As noted by Manski (1988), a continuous
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distribution of unobservables cannot be nonparametrically identified with only
discrete-valued regressors. There is scope for further relaxing the assumption on
G if the model admits continuous observed state variables.

However, when G is unknown, following the arguments of Magnac and
Thesmar (2002, Proposition 2 (ii)), we note that, for two distributions G and G̃,
the configurations

(
β,u∗

K ,G
)

and (β,u∗
K , G̃) are observationally equivalent since,

by Theorem 1, the implied vectors of the remaining structural parameters derived
from both configurations are compatible with the Bellman equations (3.1) and the
observed conditional choice probabilities. Such observational equivalence holds
regardless of continuity of x . Thus extra information on the modeling assumptions
has to be supplied in lieu of G to ensure identification. In the subsequent sections,
we will provide sufficient conditions for identification of G using restrictions on
utility primitives and continuous observables by which we can proceed to identify
the remaining structural parameters using the results of Theorem 1.

4. IDENTIFICATION WHEN G IS UNKNOWN IN THE BINARY CHOICE
SETTING

In this section, we analyze identification of the model with nonparametric unob-
servables within the binary choice context. This allows us to present the identify-
ing strategy with simplified notation.

Let C = {1,2}. Hence K = 2 and G is the distribution function of (ε1 − ε2). We
focus on the conditional choice probability equation

P
(
δ = 2

∣∣∣x)
= G

(
v∗

2(x)− v∗
1(x)

)
. (4.1)

When G is nonparametric, non-identification may arise due to composition be-
tween the unknown link function G and the unknown index function v∗

2 − v∗
1 in

equation (4.1). By (3.1),

v∗
2(x)− v∗

1(x) = u∗
2(x)+λ(x), (4.2)

where

λ(x) ≡ m(x)−u∗
1(x), (4.3)

m(x) ≡ β
[

E
(
v∗

2(x ′)
∣∣∣x,δ = 2

)
− E

(
v∗

2(x ′)
∣∣∣x,δ = 1

)]
+βE

[
maxj∈C

{
�v∗

j (x ′)+�ε′
j

}∣∣∣x,δ = 2
]

−βE
[
maxj∈C

{
�v∗

j (x ′)+�ε′
j

}∣∣∣x,δ = 1
]
. (4.4)

Note that m(x) represents the difference between the discounted expected future
values for making Choice 2 and for making Choice 1 at the current period. This
difference is zero if future state variables are (conditionally) independent of the
current action. In general, when G is unknown, m(x) is an unknown non-trivial
function of x .
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To overcome the identification problem, given β and u∗
2, the effects of v∗

2 − v∗
1

and G on the conditional choice probability can be disentangled if we can fix
λ(x) but simultaneously freely move u∗

2. In this case, we can trace out the dis-
tribution G by varying u∗

2, and thus G can be identified. Such a variation-free
condition does not hold if λ(x) and u∗

2(x) share the exact same set of observed
state variables. Therefore, to achieve identification, we propose imposing an ex-
clusion restriction to provide such a source of variation. Theorem 2 demonstrates
this identification strategy.

Decompose the vector x as x = (w, z) where the subvectors w and z have no
common component and are non-empty. Denote the support of x as �X = �W ×
�Z , where �W and �Z are the supports of w and z, respectively.

THEOREM 2. Let u∗
2(x) = u∗

2(w, z) be a known function. Assume also the fol-
lowing: (i) u∗

1(x) is a function of w only. (ii) (w′, z′) ⊥ z|w,δ. (iii) The τ -quantile
of ε1 −ε2 is zero for some known τ ∈ (0,1). (iv) For each w ∈ �W , the distribution
of u∗

2(w, z) conditional on w has a Lebesgue density that is everywhere positive
on the real line. Then both G and λ are identified.

Assumption (i) may be justified if there are choice-specific attributes. This as-
sumption does not preclude common attributes since the vector w is allowed to
appear in both u∗

1 and u∗
2. However, assumption (i) alone is not sufficient to yield

the required exclusion restriction since the choice-specific attributes may enter
both value functions via the information set that the agent uses to form their ex-
pected future values. Assumption (ii) is sufficient to remove such an effect by reg-
ulating the predictability of these attributes through a conditional independence
assumption. In fact, assumption (ii) essentially requires that, conditional on δ, w
serves as a sufficient statistic for predicting all observed state variables of the
next period. A sufficient condition to validate assumption (ii) is that the transition
density fw,z(w

′, z′|w, z,δ) satisfies

Assumption (ii*)

fw,z

(
w′, z′

∣∣∣w, z,δ
)

= fz

(
z′

∣∣∣w′,δ
)

fw
(
w′

∣∣∣w,δ
)
.

Assumption (ii*) implies that z′ ⊥ (w, z) |w′,δ and w′ ⊥ z|w,δ. Hence, the influ-
ence of the current state z on the next period states (w′, z′) can mainly be enacted
through the current choice δ. In other words, z is necessarily not a purely per-
sistent state variable and cannot directly affect the evolution of the time series
process of w. See Figure 1 for a graphical illustration of the transition of the ob-
servables under assumption (ii*).

We now discuss the remaining assumptions of Theorem 2 as follows. Because
the function λ is unknown and the condition u∗

2(x)+λ(x) ≥ ε1 − ε2 is invariant
with respect to an arbitrary constant added to both sides of the inequality, we can
only identify G up to a location normalization, which is imposed by assumption
(iii) of the theorem. Finally, assumption (iv) implies that z cannot be a proper
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FIGURE 1. Transition of the observables under assumption (ii*).

subvector of w and furthermore u∗
2(w, z) as a random variable should be con-

tinuous and have large support. The large support assumption is used to trace
out G over its entire domain. This assumption could be a good approximation to
the situation where u∗

2(w, z) exhibits a large range of variation in the data and
there is no natural prior bound on its variation. The large support condition is also
commonly imposed for identification of random utility discrete choice models
with nonparametric unobservables (e.g., Manski (1985), Horowitz (1992, 1993),
Matzkin (1992, 1993), Lewbel (2000, 2014), and de Jong and Woutersen (2011)).
We can relax this condition but the distribution G may only be partially identified.
See Section 4.1 for further details.

We further comment on our identification strategy. Under [M2] and assump-
tions (i) and (ii) of Theorem 2, λ(x) is some function λ(w) of w only. Hence,
given (4.1) and (4.2), we have

P(δ = 2|w, z) = G
(
u∗

2(w, z)+λ(w)
)
. (4.5)

Because u∗
2 is known and depends on the excluded variable z, equation (4.5) in-

dicates that we can fix the states w and vary the value of z so as to trace out the
distribution G. Therefore, assumptions (i) and (ii) are critical to form the exclu-
sion restriction for identification of G. We note that these two identifying condi-
tions are imposed on the shape of the structural primitive functions. Assumption
(i) imposes shape restrictions on the primitive utility u∗

1. This assumption alone
is not testable and may be part of the researcher’s belief in modeling a particu-
lar application.6 On the other hand, assumption (ii) is directly testable since its
restrictions are on the joint time series of the observed state variables.

The identification result of Theorem 2 can be achieved using only one excluded
variable z. Over-identification may thus arise if more than one exclusion restric-
tion is available. Note that Theorem 2 assumes that the per-period utility u∗

2 is
known a priori. This assumption can be further relaxed when the model admits
more than one excluded variable. Let z = (z1, ..., z J ) be a J -dimensional vector
of excluded variables. Suppose that u∗

2(x) is specified up to a J -dimensional vec-
tor of parameters θ . The next theorem establishes identification of θ when the
utility u∗

2 is specified as linear in parameters.
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THEOREM 3. Suppose assumptions (i) and (ii) of Theorem 2 hold and that
u∗

2(x) = θ ′h(w, z) where |θ1| = 1 and h(w, z) = (h1(w, z1), ...,h J (w, z J )) is a
J -dimensional vector of known functions. Let ∂hj (w, zj )/∂zj denote the par-
tial derivative of hj (w, zj ) with respect to zj . Assume that for all j ∈ {1, ..., J },
∂hj (w, zj )/∂zj is non-zero with probability 1. Then the vector θ is identified.

When θ , λ and G are unknown, the vector θ is identified up to a scale nor-
malization since the condition θ ′h(w, z)+λ(x) ≥ ε1 − ε2 for making Choice 2 is
invariant with respect to an arbitrary positive scalar used to multiply both sides of
the inequality. Theorem 3 normalizes the scale by imposing a unity value for the
magnitude of θ1. Using u∗

2(x) = θ ′h(w, z) in equation (4.5), we have

P
(
δ = 2

∣∣∣w, z
)

= G
(
θ ′h(w, z)+λ(w)

)
. (4.6)

Since both hj (w, zj ) and λ(w) of equation (4.6) depend on the variables w, the
excluded variables zj can thus be interpreted as the identifying “instrumental vari-
ables” in the sense that they can vary the observed object hj (w, zj ) (the “rank”
condition) but cannot affect the “unobserved” object λ(w) (the “exclusion” con-
dition).

It is noted that identification of θ in Theorem 3 requires continuous excluded
variables z but this result does not require a large support assumption on any of the
components hj (w, zj ) of the utility u∗

2(w, z). Once the vector of utility parameters
θ is identified, we can proceed to identify G by applying the results of Theorem 2.
Then, given

(
β,u∗

2,G
)

and by application of Theorem 1, the remaining structural
functions

(
u∗

1,v
∗
1 ,v∗

2

)
of this model are also identified.

4.1. Partial identification under limited support of the observables

Assumption (iv) of Theorem 2 imposes that u∗
2(w, z) should have a rich support.

Such a condition seems difficult to avoid for the purpose of point identification
of the DCDP structural parameters. When the data lack sufficient support, the
distribution G(t) may be only identified over those t values about which the ob-
servables are informative. Relaxing the large support assumption, we now derive
identification of G in the next theorem, which generalizes Theorem 2 of the paper.

THEOREM 4. Suppose that all assumptions of Theorem 2 hold, except that
assumption (iv) is replaced by the following assumption: (iv*) For each w ∈ �W ,
there is an open interval containing zero such that the distribution of u∗

2(x) +
λ(x) conditional on w has a Lebesgue density that is everywhere positive on this
interval. Then the function λ is identified. Moreover, let �12 denote the support of
v∗

2(x)− v∗
1(x). Then the function G(t) is identified at every t ∈ �12.

Assumption (iv*) imposes a much weaker support condition than assumption
(iv) of Theorem 2. In fact, assumption (iv) is sufficient for assumption (iv*) and
implies that �12 is the entire real line by which G(t) is identified at each t ∈ R.
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Using equation (4.5), we can deduce

P
(
δ = 2

∣∣∣u∗
2(w, z),w

)
= G

(
u∗

2(w, z)+λ(w)
)
. (4.7)

Consider the event that the expression P(δ = 2|u∗
2(w, z),w) takes a value in

an open interval having radius η and containing τ . Given assumption (iii) of
Theorem 2, assumption (iv*) is fulfilled provided that, conditional on w and for
all η > 0, the probability of this event is strictly positive. By continuity and mono-
tonicity of G, assumption (iv*) guarantees that, for each w ∈ �W , there is some
z ∈ �Z such that P(δ = 2|w, z) = τ . Hence given assumptions (i), (ii), and (iii) of
Theorem 2 and knowledge of u∗

2, assumption (iv*) is empirically verifiable even
though its statement concerns the unknown function λ.

When the support of v∗
2(x)−v∗

1(x) is not rich enough to cover the entire domain
of G, the distribution function G(t) may not be identified at every point in its
domain but it remains identified at each t in the support of the value difference.
Hence, lack of adequate support may limit the usefulness of the exclusion restric-
tions of this paper for nonparametrically point identifying the structural primitives
and the resulting counterfactuals. Nevertheless, partial identification of G still en-
ables us to separately bound the value functions v∗

1 and v∗
2 . See Appendix B of the

present paper for the derivation of these bounds. The partial identification results
still provide implicit restrictions on the set of observationally equivalent structural
primitives and hence remain useful for evaluating distributional assumptions for
modeling the unobservables.

4.2. An example : optimal replacement of production capital

To illustrate the use of our identification method, we consider the following sim-
ple version of the machine replacement decision model in the empirical DCDP
literature (e.g., Rust (1987), Kennet (1994), and Cho (2011)).

Consider a firm with multiple production assets (machines). At every period,
the firm manager has to decide whether an existing machine should be replaced
with a new one. Let Choice 1 be the decision of continuing to operate the old
machine and Choice 2 be that of replacement with a completely new one. Follow-
ing Rust (1987), we assume that the firm manager behaves as a cost minimizer
with instantaneous choicewise utilities

u1(x,ε1) = −c(y)+ ε1, (4.8)

u2(x,ε1) = z − p + ε2, (4.9)

where y is a vector of observed states capturing the operational history of the ma-
chine such as the cumulative usage of the machine and the experienced number of
shutdowns since the last replacement, z is the manager’s booked (estimated) ma-
chine net scrap value, p is the market price of a new machine, ε1 can be interpreted
as the unobserved cost of operating an old machine, and ε2 can account for both
the unobserved operating cost of a new machine and any discrepancy between z
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and the actual scrap value of the old machine. In this model, u∗
1(x) = −c(y) and

u∗
2(x) = z − p, where x = (w, z) and w = (y, p). The parameters of interest are

the maintenance cost function c(y) and the value functions v∗
1 and v∗

2 .
We verify key assumptions of Theorem 2 for this example. Assumption (i)

holds under specification (4.8) and requires that the maintenance cost should
not depend on the scrap value z. Assumption (ii) concerns the law of motion
of the observables. As discussed above, this assumption is imposed on the ob-
served state variables and hence is empirically testable. Since the price process
is generally serially correlated, its evolution may violate assumption (ii). On the
other hand, z may be a potential candidate for a valid excluded variable that sat-
isfies both assumptions (i) and (ii). We can justify assumption (ii) by verifying
assumption (ii*), which suffices for the required conditional independence condi-
tion. Assumption (ii*) may be plausible when the manager estimates the machine
scrap value based on its usage information y and the market price p plus some in-
dependent random noise reflecting the manager’s assessment of the current status
of the machine. Note that assumption (ii*) also precludes the case that the scrap
value z may directly affect the evolution of both the usage y and the price p.

We now discuss the other identifying assumptions. Assumption (iii) is a loca-
tion normalization condition, which holds if we specify that the median of ε1 −ε2
is zero. Assumption (iv) requires that z should exhibit large variation conditional
on (y, p). If all these conditions are fulfilled, we can identify the distribution of
ε1 − ε2 by applying Theorem 2. Then we identify the cost function c(y) and the
value functions v∗

1 and v∗
2 by using the identification results of Theorem 1. When

the large support condition of assumption (iv) does not hold, we can use assump-
tions (iv*) of Theorem 4 instead. Given (4.8), (4.9), assumption (ii) and the zero
median restriction, equation (4.5) becomes

P(δ = 2|y, p, z) = G
(
z − p +λ(y, p)

)
and assumption (iv*) thus holds provided that, conditional on (y, p), for all η > 0,
the set of z values (depending on η) for which P(δ = 2|y, p, z) takes a value in
an open interval having radius η and containing 0.5 occurs with positive prob-
ability. Clearly, this condition is empirically verifiable and may hold even if all
the observed state variables have bounded support. Then, by Theorem 4, we can
still partially identify the distribution of ε1 − ε2 by which we may also construct
bounds for the value functions v∗

1 and v∗
2 using the results developed in Appendix

B of the paper.
Finally, we conclude this example by commenting on the observability of

the variable z. In this example, z may be a proxy of the manager’s estimated
scrap value of the machine. Such a proxy may be observed in the firm’s financial
statements. We note that the excluded variable z is similar to the instrumental
variable used in the estimation of endogenous reduced form models. If such a
variable can be observed with sufficient variation, we may exploit its power to
identify the DCDP structural parameters under nonparametric specification of
the unobservables.
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5. IDENTIFICATION WHEN G IS UNKNOWN IN THE MULTINOMIAL
CHOICE SETTING

We now present our main identification results for the general multinomial
choice dynamic programming model with nonparametric unobservables. Let
C ≡ {1, ..., K } be the choice set for any K ≥ 2. We assume that both β and
u∗

K are known and we seek conditions under which G, the joint distribution of(
εj − εK

)
j∈C\{K }, is identified.

Using the analysis of Section 4, for j ∈ C\{K }, we write

v∗
K (x)− v∗

j (x) = u∗
K (x)+λj (x) (5.1)

where

λj (x) ≡ mj (x)−u∗
j (x), (5.2)

mj (x) ≡ β
[

E
(
v∗

K (x ′)
∣∣∣x,δ = K

)
− E

(
v∗

K (x ′)
∣∣∣x,δ = j

)]
+βE

[
maxk∈C

{
�v∗

k (x ′)+�ε′
k

}∣∣∣x,δ = K
]

−βE
[
maxk∈C

{
�v∗

k (x ′)+�ε′
k

}∣∣∣x,δ = j
]
. (5.3)

Decompose the vector x as x = (w, z), where z = (z1, ..., zK−1) such that w and
the subvectors zj , j ∈ C\{K } have no common component. Denote the support
of x as �X = �W ×�Z , where �W and �Z denote the supports of w and z, re-
spectively. Recall that G = G K and, for k ∈ C , Gk denotes the joint distribution
of

(
εj − εk

)
j∈C\{k}. The joint distribution of

(
εj

)
j∈C remains nonparametric, but

the following restriction is imposed for identification.

Condition 1. For any K -dimensional real vector c and for any two indices
i, j ∈ C,

ci > cj if and only if Gi

((
ci − ck

)
k∈C\{i}

)
> Gj

((
cj − ck

)
k∈C\{j}

)
. (5.4)

Let z( j) denote the subvector of z excluding the variates zj . Let �Z( j) be the
support of z( j). Note that z(K−1) is an empty vector when K = 2. To simplify the
exposition, if K = 2, we adopt the interpretation that the pair (w, z(K−1)) reduces
to w and the statement (w, z(K−1)) ∈ �W ×�Z(K−1) means w ∈ �W .

The following theorem establishes identification of G and λj (x) for j ∈ C\{K }.
THEOREM 5. Suppose Condition 1 holds. Assume that the following also

hold: (i) u∗
1(x) is a function of w only. For j ∈ {2, ..., K }, u∗

j (x) ≡ u∗
j (w, zj−1)

is a function of (w, zj−1) only. The function u∗
K (w, zK−1) is known. (ii) (w′, z′) ⊥

z|w,δ. (iii) For all (w, z(K−1)) ∈ �W ×�Z(K−1) , the distribution of u∗
K (w, zK−1)

conditional on (w, z(K−1)) has a Lebesgue density that is everywhere positive
on the real line. (iv) There is a value c in �W such that the joint distribution of
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(u∗
j (x))j∈{2,...,K } conditional on w = c has a Lebesgue density that is everywhere

positive on RK−1. Then the functions G and λj , j ∈ C\{K } are identified.

Assumptions (i) and (ii) of Theorem 5 are analogous to those of Theorem 2.
Note that, in the setting with K choices, Theorem 5 requires at least K − 1 ex-
clusion restrictions, thus indicating the presence of a curse of dimensionality for
identification of the multinomial choice model with nonparametric unobservables.
This can also be seen from equation (2.6) expressing the conditional choice prob-
ability as a multivariate link function with K −1 indices. To identify the unknown
link function, we need to freely vary all these indices. Hence, the required num-
ber of identifying exclusion restrictions increases with the number of available
choices. Assumption (iii) of Theorem 5 is the multinomial counterpart of assump-
tion (iv) of Theorem 2 and can therefore be interpreted in a similar fashion. As-
sumption (iv) of Theorem 5 enables the K −1 indexing functions in equation (2.6)
to freely vary over a wide range such that, given these indices, we can trace out
the value of G at every point of its domain.

We now discuss the identifying power delivered by Condition 1. By equation
(2.6), Condition 1 essentially states that the agent’s systematic choicewise val-
ues rank order the conditional choice probabilities. For K = 2, this condition is
equivalent to assumption (iii) of Theorem 2 with the quantile τ specified to be
0.5. Hence, in the binary choice setting, Theorem 5 reduces to Theorem 2 with
the zero median restriction being imposed for location normalization of G. In the
multinomial choice context, Condition 1 allows for identification of the unknown
value differences v∗

K − v∗
j by comparing the relative order of the observed prob-

abilities of making choices K and j with that of the choice probabilities implied
by other structural parameter configurations.

Condition 1 restricts the class of joint distributions of
(
εj

)
j∈C but is still

quite flexible. Manski (1975) pioneered the use of such assumptions which were
also imposed later by Matzkin (1993) and Fox (2007) as identifying restrictions
in semiparametric multinomial choice models. Condition 1 is also studied as a
property of monotonicity in the literature on quantal response equilibrium (e.g.,
McKelvey and Palfrey (1995) and Goeree, Holt, and Palfrey (2005)). Goeree
et al. (2005, Proposition 5) and Fox (2007) indicated that a sufficient primitive
assumption for Condition 1 is that the joint density of

(
εj

)
j∈C possesses the in-

terchangeability property.7 Interchangeability holds for i.i.d. choicewise shocks,
thus including Rust’s (1994) dynamic multinomial logit specification as a spe-
cial case. Interchangeability also holds for non-independent random shocks (see,
e.g., Fox (2007)). Note that interchangeability is merely sufficient and that Con-
dition 1 can also hold for some non-interchangeable unobserved shocks (Goeree
et al. (2005)).

As in the binary choice case, we can relax the assumption that the utility u∗
K (x)

is known a priori if zK−1, the vector of Choice K -specific variables, may contain
more than one component. Let zK−1 = (z1,K−1, ..., z J,K−1) be a J -dimensional
vector of excluded variables. With u∗

K specified as linear in a vector of parameters
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θ , the next theorem establishes identification of θ , thus generalizing the identifi-
cation result of Theorem 3.

THEOREM 6. Suppose assumptions (i) and (ii) of Theorem 5 hold
and that u∗

K (x) = θ ′h(w, zK−1) where |θ1| = 1 and h(w, zK−1) =(
h1(w, z1,K−1), ...,h J (w, z J,K−1)

)
is a J -dimensional vector of known functions.

Let ∂hj (w, zj,K−1)/∂zj,K−1 denote the partial derivative of hj (w, zj,K−1) with
respect to zj,K−1. Assume that for all j ∈ {1, ..., J }, ∂hj (w, zj,K−1)/∂zj,K−1 is
non-zero with probability 1. Then the vector θ is identified.

We now consider relaxing the large support assumptions (iii) and (iv) of
Theorem 5. As in the binary choice case, we can also identify the distribution
G(t) for t in the range of the value differences. The following theorem establishes
this partial identification result for the multiple choice context.

THEOREM 7. Suppose Condition 1 and assumptions (i) and (ii) of Theorem
5 hold. Assume also the following: (iii*) For all (w, z(K−1)) ∈ �W ×�Z(K−1) and
for j ∈ C\{K }, there is an open interval containing zero such that the distribu-
tion of u∗

K (x)+λj (x) conditional on (w, z(K−1)) has a Lebesgue density that is
everywhere positive on this interval. Then the functions λj , j ∈ C\{K } are iden-
tified. Moreover, let �K denote the support of (v∗

K (x)− v∗
j (x))j∈C\{K }. Then the

function G(t) is identified at every t ∈ �K .

6. DISCUSSION AND CONCLUSION

This paper develops new identification results for the class of discrete choice
dynamic programming (DCDP) models within Rust’s (1994) framework. We
assume that the per-period utility of one of the choices is known but that the dis-
tribution of unobserved state variables, law of motion of observed state variables,
and per-period utilities of all the other choices are nonparametrically specified.

We derive sufficient conditions for identification of the deep structural param-
eters of the DCDP model with nonparametric unobserved state variables. Our
identification strategy does not rely on the use of terminal period data and hence
can be applied to infinite horizon structural dynamic models. We assume that the
agent’s per-period utilities admit continuous observed choice-specific state vari-
ables that satisfy certain conditional independence conditions on the joint time
series of observables. These conditions allow us to form exclusion restrictions to
secure identification when information about distribution of the unobservables is
not available.

We now discuss applications of our identification approach to extensions of the
baseline DCDP model. Though Assumption [M2] is common in the DCDP liter-
ature, it requires that the unobservables should be independent of the intra-period
observed states. We can relax this assumption to allow Gk(·|x), the joint distribu-
tion of

(
εj − εk

)
j∈C\{k} conditional on x , to vary across x . By strengthening Con-

dition 1 so that statement (5.4) holds with Gk(·|x) in place of Gk(·), the resulting
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DCDP model still admits the key identifying property that the agent’s systematic
choicewise values rank order the conditional choice probabilities. Hence, we can
utilize assumptions (i), (ii), and (iii) of Theorem 5 to identify the value differ-
ences (v∗

k (x)− v∗
j (x))j∈C\{k}. Provided that the excluded variables z also satisfy

the “special regressor” condition (see, e.g., Lewbel (2000, 2014) and Lewbel and
Tang (2015)) that

(
εj − εK

)
j∈C\{K } ⊥z|w, we can further trace out and thus iden-

tify Gk (·|x) = Gk (·|w) by varying the observed states z.
Our method can also be extended to DCDP models with persistent unobserved

heterogeneity. For such models, we can use the recent identification results of
Kasahara and Shimotsu (2009) and Hu and Shum (2012) to nonparametrically
identify the joint Markov transition law of the observed and the persistent un-
observed state variables and also the choice probabilities conditional on these
variables. With knowledge of these objects, we can then proceed to apply the
identification strategy of this paper to the model augmented with persistent unob-
served states.

We conclude the paper by remarking on the practical relevance of the identi-
fication results. In light of the identification analysis set forth in this paper, the
researcher is encouraged to collect and explore data on the identifying excluded
variables. Provided that such variables are observed with sufficient variation, the
identification results can be utilized to implement an estimation procedure by
which inference on structural primitives and the resulting counterfactual policy
functionals can be more robust against misspecification of the unobservables. The
present paper focuses on point identification of the DCDP structural parameters.
This requires that variation of the value differences induced by the excluded vari-
ables should be no smaller than that of the differences of the unobservables. Lack
of adequate variation may limit the usefulness of the excluded variables for the
purpose of point identification. Nevertheless, the exclusion restriction can still
yield identifying power that allows for set identification of the distribution of un-
observables. The partial identification results established in this paper are also
useful in their own right and can be further developed into a diagnostic device for
parametric specifications of the DCDP model.

NOTES

1. See, e.g., Manski (1975, 1985), Klein and Spady (1993), Horowitz (1992, 1993), and Lewbel
(2000) for estimation of static discrete choice models assuming parametric systematic utilities and
nonparametric distribution of unobservables. Matzkin (1992, 1993) and Lewbel and Linton (2007)
consider nonparametric discrete choice models by further relaxing the parametric assumptions on the
systematic utility to conditions on the utility function space defined under certain shape restrictions.

2. We also note that exclusion restrictions motivated by the underlying economic contexts can be
useful for identification of agents’ payoffs in discrete choice models with strategic interaction (see,
e.g., Sanches, Silva-Junior, and Srisuma (2014) and Lewbel and Tang (2015)).

3. The two-step approach pioneered by Hotz and Miller (1993) is also widely used in the esti-
mation of dynamic Markov games. For related literature, see, e.g., Aguirregabiria and Mira (2007),
Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2007), Pesendorfer and Schmidt-
Dengler (2008), Bajari, Chernozhukov, Hong, and Nekipelov (2009), and Sanches, Silva-Junior, and
Srisuma (2013).
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4. As in static discrete choice models, the location of the marginal distribution of εk is not sep-
arately identified since only the difference matters for the agent’s choice behavior. Magnac and
Thesmar (2002, p. 803) assume that E(εk ) is zero for all k. Such an assumption is stronger than that
required.

5. Manski (1993) showed that one cannot distinguish between myopic (β = 0) and forward-looking
(β > 0) agents if information on agents’ utility primitives is not available.

6. Combined with assumption (ii) and knowledge of u∗
2, assumption (i) implies that P(δ = 2|w, z)

is monotone in z if and only if u∗
2(w, z) is also monotone in z. Hence, subject to validity of the other

identifying assumptions, we can form an empirically testable necessary (but not sufficient) condition
for assumption (i).

7. See Goeree et al. (2005, p. 359) and Fox (2007, p. 1006) for a formal definition of the inter-
changeable joint density.
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APPENDIX A. Proofs of the theoretical results

A.1. Proof of Lemma 1

Proof of Lemma 1. For part (i), let Mε ≡ E(maxj∈C |ε′
j |). By [M3], Mε < ∞. Given

[M2], we have∣∣∣E(maxj∈C{hj (x ′)+ ε′
j }|x,d = k)

∣∣∣ ≤ E
[
maxj∈C

∣∣∣hj (x ′)+ ε′
j

∣∣∣ |x,d = k
]

≤ E
[
maxj∈C |hj (x ′)||x,d = k

]
+ Mε

≤ ||h||α(α(x)+b)q + Mε.

Since (u∗
k )k∈C ∈ B(α,q), it follows that

∣∣u∗
k (x)

∣∣ ≤ ||u∗||αα(x)q . Therefore, for each k ∈ C
and for each x ,

|�k(h)(x)| ≤ ||u∗||αα(x)q +β
[||h||α(α(x)+b)q + Mε

]
.

Since α(x) ≥ 1, b > 0 and h ∈ B(α,q), it then follows that �(h) ∈ B(α,q).
For part (ii), by Denardo (1967), it suffices to establish that there is a positive integer J

such that the J -stage composition of �, denoted as � J , defined on B(α,q) is a contraction
mapping. We prove this by following closely the method of Lippman (1975). In particular,
we also establish that for any positive integer n and for f,g ∈ B(α,q),∣∣(�n

k f −�n
k g)(x)

∣∣ ≤ βn || f − g||α(α(x)+nb)q for k ∈ C. (A.1)

To verify (A.1), note that, for each k ∈ C ,

|(�k f −�k g)(x)| ≤ βE
[∣∣∣maxj∈C{ f j (x ′)+ ε′

j }−maxj∈C{gj (x ′)+ ε′
j }

∣∣∣ |x,d = k
]

≤ βE
[
maxj∈C

∣∣ f j (x ′)− gj (x ′)
∣∣ |x,d = k

]
(A.2)

≤ β|| f − g||α(α(x)+b)q , (A.3)
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where inequality (A.2) follows by using and interchanging f j and gj in the following
inequality

maxj∈C

{
f j (x ′)+ ε′

j

}
≤ maxj∈C

∣∣ f j (x ′)− gj (x ′)
∣∣+maxj∈C

{
gj (x ′)+ ε′

j

}
.

We have shown that (A.1) holds for the case of n = 1. The remaining inductive proof from
step n to step n+1 can now be completed by following the same arguments as those used in
Lippman (1975, Lemma 1, pp. 1228–1229). Therefore, (A.1) holds for any positive integer
n by induction. Because the bound in (A.1) holds for all k ∈ C , given that α(x) ≥ 1 and
b > 0, it follows that ||� J

k f −� J
k g||α ≤ β J || f − g||α(1+ Jb)q and thus we can choose J

sufficiently large such that β J (1+ Jb)q < 1. n

A.2. Proof of Theorem 1

We first give the following lemma, which will be invoked in the proofs of Theorem 1 and
other theoretical results of the paper. Let l(x) be a given scalar function. For k ∈ C , let �k
be the Bellman operator that maps a scalar function f to another scalar function �k( f )
where

�k( f )(x) ≡ l(x)+βE
[

f (x ′)|x,δ = k
]
. (A.4)

Let Bscalar (α,q) be the space of scalar functions f satisfying supx
[| f (x)|α(x)−q ]

< ∞,
where α(x) and q are the function and integer stated in assumption [M4], respectively.

LEMMA A.1. Assume that l(x) ∈ Bscalar (α,q). Then for k ∈ C, the following state-
ments hold: (i) if f ∈ Bscalar (α,q), then �k( f ) ∈ Bscalar (α,q). (ii) There is a unique
scalar function f ∗ ∈ Bscalar (α,q) satisfying f ∗ = �k( f ∗).

Proof. Lemma A.1 follows immediately by simplifying the proof of Lemma 1 given in
Appendix A.1. n

We will also require the next lemma for the proof of Theorem 1.

LEMMA A.2. Let h = (h1, ...,hK ) and h̃ = (̃h1, ..., h̃K ) be two K -dimensional real
vectors such that hK = h̃K and hj �= h̃ j for at least one j ∈ C\{K }. Then there is at least
one j ∈ C such that Gj ((hj −hk)k∈C\{j}) �= Gj ((̃hj − h̃k)k∈C\{j}).

Proof. Decompose the set C = {1, ..., K } as A ∪ B ∪ M where

A ≡ {
j : hj > h̃ j

}
, B ≡ {

j : hj < h̃ j
}
, M ≡ {

j : hj = h̃ j
}
.

By assumption, A ∪ B �= ∅. We first consider the case where B = ∅. Since Gj is strictly
increasing in all its arguments and given hK = h̃K , if B = ∅, Lemma A.2 follows by
noting that

G K

(
(hK −hk)k∈C\{K }

)
< G K

(
(̃hK − h̃k)k∈C\{K }

)
.

Note that the proof for the case of A = ∅ can be completed using similar arguments. We
now discuss the case where both A and B are non-empty. Since the cardinality of the set
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A is finite, we may use the proof of Lemma 8 of Matzkin (1991, pp. 1324–1325) to deduce
that there is a choice index a ∈ A such that

ha −hk ≥ h̃a − h̃k for k ∈ A\{a}. (A.5)

Since B �=∅, we have that for any choice index a′ ∈ A,

ha′ −hk > h̃a′ − h̃k for k ∈ B. (A.6)

Hence Lemma A.2 follows by putting together (A.5) and (A.6) to deduce that

Ga((ha −hk)k∈C\{a}) > Ga((̃ha − h̃k)k∈C\{a}). n

We now prove Theorem 1.

Proof of Theorem 1. Given G, we can deduce Gk for all k ∈ C\{K } since(
εj − εk

)
j∈C\{k} can be expressed as a known linear transformation of

(
εj − εK

)
j∈C\{K }.

For j ∈ C , let �v∗
j ≡ v∗

j − v∗
K . Given Gk for all k ∈ C , by (2.6) and Lemma A.2,

the vector of value differences �v∗ ≡ (�v∗
1 (x), ...,�v∗

K (x)) can be identified as the
unique vector h = (h1, ...,hK ) that simultaneously solves the equations hK = 0 and
P(δ = j |x) = Gj ((hj − hk)k∈C\{j}) for all j ∈ C . Under assumption [M2] and given
G and identification of �v∗, we can deduce the functions τk(x), k ∈ C , where

τk(x) ≡ E
[
maxj∈C{�v∗

j (x ′)+�ε′
j }|x,δ = k

]
, (A.7)

where �εj ≡ εj − εK . Using equation (3.1), we have

v∗
K (x) = lK (x)+βE(v∗

K (x ′)|x,δ = K ), (A.8)

where lK (x) ≡ u∗
K (x) + βτK (x). By [M4], we have that supx

[|u∗
K (x)|α(x)−q ]

< ∞.
By [M2], [M3] and [M4], using the proof of part (i) of Lemma 1, we see that both
supx

[|v∗
K (x)|α(x)−q ]

< ∞ and

supx

[∣∣∣E(maxj∈C{v∗
j (x ′)+ ε′

j }|x,δ = k)
∣∣∣α(x)−q

]
< ∞.

Thus by [M2], [M3] and the triangle inequality, we have that supx
[|τk(x)|α(x)−q ]

< ∞
for k ∈ C . Given β, u∗

K (x) and identification of τK (x), the function lK is identified and
satisfies supx

[|lK (x)|α(x)−q ]
< ∞. Hence by Lemma A.1, v∗

K (x) can be identified as the
unique fixed point of the Bellman equation (A.8). Since v∗

K and �v∗ are identified, the
remaining value functions v∗

j for j ∈ C\{K } can also be identified. Thus using (3.1), given

β and identification of τk , v∗
k and v∗

K , it follows that u∗
k for k ∈ C\{K } can be identified as

u∗
k (x) = v∗

k (x)−βτk(x)−βE(v∗
K (x ′)|x,δ = k). n

A.3. Proof of Theorem 2

Proof of Theorem 2. Under [M2] and assumption (ii), the function m(x) does not depend
on z. This together with assumption (i) implies that λ(x) = λ(w), which is a function of w
only. Hence the conditional choice probability equation (4.1) can be written as

P (δ = 2|w, z) = G
(
u∗

2(w, z)+λ(w)
)
. (A.9)

https://doi.org/10.1017/S0266466616000049 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000049


IDENTIFICATION OF DCDP MODELS 573

Let G and λ denote the true data generating functions. Consider another function λ̃(w)
and distribution G̃ that are compatible with the modeling assumptions. Let M (̃λ) denote
the event {w ∈ �W : λ̃(w) �= λ(w)}. We first establish the fact that, if P(M (̃λ)) > 0, then
P(S(G̃, λ̃)) > 0 as well where S(G̃, λ̃) denotes the event

S(G̃, λ̃) ≡
{
(w, z) ∈ �X : G(u∗

2(w, z)+λ(w)) �= G̃(u∗
2(w, z)+ λ̃(w))

}
.

This fact implies that, if the configurations (G,λ) and (G̃, λ̃) are observationally equiva-
lent, then λ = λ̃ with probability 1. Therefore the function λ is identified.

Suppose that P(M (̃λ)) > 0. By assumption (iii), G(0) = G̃(0) = τ . Thus, to show
P(S(G̃, λ̃)) > 0, it suffices to establish that the probability of the event A(G̃, λ̃)∪ B(G̃, λ̃)
is positive where

A(G̃, λ̃) ≡
{
(w, z) ∈ �X : u∗

2(w, z)+λ(w) ≥ 0 > u∗
2(w, z)+ λ̃(w)

}
,

B(G̃, λ̃) ≡
{
(w, z) ∈ �X : u∗

2(w, z)+λ(w) < 0 ≤ u∗
2(w, z)+ λ̃(w)

}
.

Note that assumption (iv) implies that, for each w ∈ M (̃λ),

P(λ(w) ≥ −u∗
2(w, z) > λ̃(w)|w)+ P(λ(w) < −u∗

2(w, z) ≤ λ̃(w)|w) > 0. (A.10)

Since P(M (̃λ)) > 0, it follows from inequality (A.10) that the probability of the set
A(̃u2, G̃) ∪ B(̃u2, G̃) is also positive. Hence by the arguments above, the function λ is
identified. Since u∗

2(w, z) is known and λ is identified, observational equivalence be-
tween G and G̃ implies that G(t) = G̃(t) for each t in the support of u∗

2(w, z) + λ(w).
By assumption (iv), that support is the entire real line and thus G(t) is identified at
each t ∈ R. n

A.4. Proof of Theorem 3

Proof of Theorem 3. Under [M2] and assumptions (i) and (ii) of Theorem 2, λ(x) = λ(w)
is a function of w only. Given u∗

2(x) = θ ′h(w, z), we have that

P
(
δ = 2|w, z

)
= G

(
θ ′h(w, z)+λ(w)

)
.

Since G is differentiable and ∂hk(w, zk)/∂zk is almost surely non-zero, we have that

∂ P(δ = 2|w, z)/∂zk

∂hk(w, zk)/∂zk
= θk g

(
θ ′h(w, z)+λ(w)

)
(A.11)

with probability 1, where g denotes the probability density function of ε1 − ε2.
Using the average derivative arguments, we have

θk = E

[(
∂ P(δ = 2|w, z)/∂zk

∂hk(w, zk)/∂zk

)(
∂h1(w, z1)/∂z1

∂ P(δ = 2|w, z)/∂z1

)]
sign(θ1) |θ1| .

By (A.11), the sign of θ1 is the same as that of E
[
(∂ P(δ = 2|w, z)/∂z1)/

(∂h1(w, z1)/∂z1)
]
. Given that |θ1| = 1, it therefore follows that θk is identified for

k ∈ {1, ..., J }. n
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A.5. Proof of Theorem 4

Proof of Theorem 4. The proof of this theorem is essentially the same as that of
Theorem 2. To avoid repetition, we retain all the notation defined in the proof of
Theorem 2. Note that by assumption (iv*), we have that for each w ∈ M (̃λ), either

P(0 ≤ u∗
2(w, z)+λ(w) < λ(w)− λ̃(w)|w) > 0

or

P(0 > u∗
2(w, z)+λ(w) ≥ λ(w)− λ̃(w)|w) > 0.

Therefore, inequality (A.10) also holds and, by the same arguments as those used in the
proof of Theorem 2, the function λ(x) = λ(w) is identified. By equation (4.2) and given
u∗

2, the function v∗
2 − v∗

1 is also identified. Using equation (4.1), we have

G(t) = P(δ = 2|v∗
2 (x)− v∗

1 (x) = t).

Therefore, G(t) is also identified at each t ∈ �12. n

A.6. Proof of Theorem 5

Proof of Theorem 5. Under [M2] and assumption (ii), it follows that, for all j ∈ C\{K },
mj (x) = mj (w), which is a function of w only. This together with assumption (i) implies
that λ1(x) = λ1(w), which is a function of w only, and for j ∈ {2, ..., K − 1}, λj (x) =
λj (w, zj−1), which is a function of (w, zj−1) only. Let

λ
(
w, z(K−1)

) ≡
(
λ1(w),λ2(w, z1), ...,λK−1(w, zK−2)

)
denote the vector of true data generating functions. Consider another vector of functions

λ̃(w, z(K−1)) ≡
(̃
λ1(w), λ̃2(w, z1), ..., λ̃K−1(w, zK−2)

)
such that P(M (̃λ)) > 0 where

M (̃λ) ≡
{
(w, z(K−1)) ∈ �W ×�Z(K−1)

: λ(w, z(K−1)) �= λ̃(w, z(K−1))
}
.

Using similar arguments to those given in the proof of Theorem 2, we will show that λ̃
and λ do not generate the same conditional choice probabilities. This fact implies that, if
λ̃ and λ are observationally equivalent, then λ = λ̃ with probability 1. Therefore the vector
of functions λ is identified.

For j ∈ C\{K }, define the events

Aj (̃λ) ≡
{
(w, z) ∈ �X : v∗

K j (w, z) > 0 > ṽ∗
K j (w, z) or v∗

K j (w, z) < 0 < ṽ∗
K j (w, z)

}
,

where v∗
K 1(w, z) ≡ u∗

K (w, zK−1) + λ1(w) and ṽ∗
K 1(w, z) ≡ u∗

K (w, zK−1) + λ̃1(w)

and, for j ∈ {2, ..., K − 1}, v∗
K j (w, z) ≡ u∗

K (w, zK−1) + λj (w, zj−1) and ṽ∗
K j (w, z) ≡

u∗
K (w, zK−1) + λ̃j (w, zj−1). By Condition 1 and equation (5.1), whenever the event

∪j∈C\{K } Aj (̃λ) occurs, the conditional choice probabilities induced by λ are ranked
differently from those induced by λ̃. Hence, for identification of λ, it suffices to show
that the condition P(M (̃λ)) > 0 implies P(∪j∈C\{K } Aj (̃λ)) > 0.
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Note that for each (w, z(K−1)) ∈ M (̃λ), there is some index j∗ ∈ C\{K } such that the
value of λj∗ differs from that of λ̃j∗ at the point (w, z(K−1)). By assumption (iii), if j∗ ∈
{2, ..., K −1}, then

P
(
λj∗(w, zj∗−1) > −u∗

K (w, zK−1) > λ̃j∗(w, zj∗−1)
∣∣w, z(K−1)

)+
P

(
λj∗(w, zj∗−1) < −u∗

K (w, zK−1) < λ̃j∗(w, zj∗−1)
∣∣w, z(K−1)

)
> 0. (A.12)

If j∗ = 1, we have

P
(
λ1(w) > −u∗

K (w, zK−1) > λ̃1(w)
∣∣w, z(K−1)

)+
P

(
λ1(w) < −u∗

K (w, zK−1) < λ̃1(w)
∣∣w, z(K−1)

)
> 0. (A.13)

Since

P
(∪j∈C\{K } Aj (̃λ)|w, z(K−1)

) ≥ max
j∈C\{K } P

(
Aj (̃λ)|w, z(K−1)

)
,

inequalities (A.12) and (A.13) imply that P(∪j∈C\{K } Aj (̃λ)|w, z(K−1)) > 0 for each
(w, z(K−1)) ∈ M (̃λ). Since P(M (̃λ)) > 0, P(∪j∈C\{K } Aj (̃λ)) is thus also positive. It then
follows that the functions λj , j ∈ C\{K }, are identified.

By (5.1), we have that, for j ∈ C\{1},
v∗

1 (x)− v∗
j (x) = λj (w, zj−1)−λ1(w) = mj (w)−λ1(w)−u∗

j (w, zj−1).

Therefore, by assumption (iv), the support of (v∗
1 (x) − v∗

j (x))j∈{2,...,K } conditional on

w = c is the entire RK−1. Given identification of all λj , we can hence identify G1(t) at

each t ∈ RK−1 since

G1(t) = P
(
δ = 1|w = c,

(
λj (w, zj−1)−λ1(w)

)
j∈C\{1} = t

)
.

Thus the distribution G = G K is also identified by noting that the vector
(
εj − εK

)
j∈C\{K }

can be expressed as a known linear transformation of
(
εj − ε1

)
j∈C\{1}. n

A.7. Proof of Theorem 6

Proof of Theorem 6. Under [M2] and assumptions (i) and (ii) of Theorem 5, for all
j ∈ C\{K }, mj (x) = mj (w), which is a function of w only. Moreover, λ1(x) = λ1(w),

which is a function of w only, and for all j ∈ C\{1}, λj (x) = λj (w, zj−1), which is a
function of (w, zj−1) only. Hence, by (5.1) and given u∗

K (x) = θ ′h(w, zK−1), we have

v∗
1 (x)− v∗

K (x) = −θ ′h(w, zK−1)−λ1(w)

and, for j ∈ {2, ..., K −1},
v∗

1 (x)− v∗
j (x) = λj (w, zj−1)−λ1(w).

Therefore, by (2.6),

P (δ = 1|w, z)

= G1
(
λ2(w, z1)−λ1(w), ...,λK−1(w, zK−2)−λ1(w),−θ ′h(w, zK−1)−λ1(w)

)
.
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Note that the variables
(
zj,K−1

)
j=1,...,J only appear in the last argument of G1 in the

equation above. The rest of the proof hence proceeds along the same lines as those for the
proof of Theorem 3. By the average derivative arguments, it is then straightforward to see
that

θk = E

[(
∂ P(δ = 1|w, z)/∂zk,K−1

∂hk(w, zk,K−1)/∂zk,K−1

)(
∂h1(w, z1,K−1)/∂z1,K−1

∂ P(δ = 1|w, z)/∂z1,K−1

)]
sign(θ1) |θ1| .

The sign of θ1 is the same as that of −E
[(

∂ P(δ = 1|w, z)/∂z1,K−1
)
/
(
∂h1(w, z1,K−1)/

∂z1,K−1
)]

. Given |θ1| = 1, it therefore follows that θk is identified for k ∈ {1, ..., J }. n

A.8. Proof of Theorem 7

Proof of Theorem 7. The proof of this theorem is essentially the same as that of
Theorem 5. To avoid repetition, we retain all the notation defined in the proof of
Theorem 5. We first establish identification of λ(w, z(K−1)) by showing that the condi-
tion P(M (̃λ)) > 0 implies that P(∪j∈C\{K } Aj (̃λ)) > 0.

Note that for each (w, z(K−1)) ∈ M (̃λ), there is some index j∗ ∈ C\{K } such that the
value of λj∗ differs from that of λ̃j∗ at the point (w, z(K−1)). By assumption (iii*), if
j∗ ∈ {2, ..., K −1}, then either

P
(
λj∗(w, zj∗−1)− λ̃j∗(w, zj∗−1) > u∗

K (w, zK−1)+λj∗(w, zj∗−1) > 0|w, z(K−1)

)
> 0

or

P
(
λj∗(w, zj∗−1)− λ̃j∗(w, zj∗−1) < u∗

K (w, zK−1)+λj∗(w, zj∗−1) < 0|w, z(K−1)

)
> 0.

If j∗ = 1, we have that either

P
(
λ1(w)− λ̃1(w) > u∗

K (w, zK−1)+λ1(w) > 0|w, z(K−1)

)
> 0

or

P
(
λ1(w)− λ̃1(w) < u∗

K (w, zK−1)+λ1(w) < 0|w, z(K−1)

)
> 0.

Therefore inequalities (A.12) and (A.13) also hold and, by the same arguments as those
used in the proof of Theorem 5, the vector of functions λ is identified. Given (5.1), the
vector of value differences (v∗

K (x) − v∗
j (x))j∈C\{K } is thus also identified. By (2.6), it

follows that the function G(t) = G K (t) is identified at every t ∈ �K . n

APPENDIX B. Derivation of the bounds of the structural
value functions when the value difference exhibits

insufficient variation

We consider the binary choice setup of Section 4.1. Recall that the set �12 is the support
of v∗

2 (x)− v∗
1 (x). The proof of Theorem 4 implies that v∗

2 (x)− v∗
1 (x) = u∗

2(x)+λ(x) is
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identified and the distribution G(t) is identified at each t ∈ �12. Assume that �12 is a
bounded and connected interval. Let [L ,U ] denote this interval. For k ∈ {1,2}, define

τk(x) ≡ E
[
max

{
v∗

1 (x ′)− v∗
2 (x ′)+ ε′

1 − ε′
2,0

}∣∣∣x,δ = k
]

= ck(x)+ ek(x)

where

ck(x) ≡ E
[
1{δ′ = 1}(v∗

1 (x ′)− v∗
2 (x ′))|x,δ = k

]
,

ek(x) ≡ E
[
1{δ′ = 1}(ε′

1 − ε′
2
) |x,δ = k

]
.

Note that the functions ck(x) are identified because the value difference is identified. The
functions ek are not point identified but their lower bounds can be derived. By assumption
[M2], we have

ek(x) = E
[
ϕ(x ′)|x,δ = k

]+κ

where

ϕ(x ′) ≡
∫ U

v∗
2 (x ′)−v∗

1 (x ′)
tdG(t), κ ≡

∫ ∞
U

tdG(t).

Since G is only identified on �12, the term κ is not identified but can be bounded below
by U (1− G(U )). Define l(x) ≡ u∗

2(x)+βτ2(x). It then follows that l(x) ≥ l(x) for each
x where

l(x) ≡ u∗
2(x)+β

[
ck(x)+ E

[
ϕ(x ′)|x,δ = k

]+U (1− G(U ))
]
.

By assumption [M4], we have that supx
[|u∗

2(x)|α(x)−q ]
< ∞. Note that

∣∣ϕ(x ′)
∣∣ ≤

E
(∣∣ε′

1

∣∣+ ∣∣ε′
2

∣∣). Hence, by [M3] with [M4] and using the proof of part (i) of Lemma 1,
we see that supx

[|l(x)|α(x)−q ]
< ∞. Hence, by Lemma A.1 of Appendix A.2, there is a

unique function v satisfying the Bellman equation

v(x) = l(x)+βE(v(x ′)|x,δ = 2). (B.1)

Given β, l(x) is identified and thus v can be identified by solving the functional equation
(B.1). By equation (3.1), we have

v∗
2 (x) = l(x)+βE(v∗

2 (x ′)|x,δ = 2).

Since l ≥ l and the function v∗
2 − v∗

1 is identified by u∗
2 + λ, separate identifiable lower

bounds can be obtained for the value functions v∗
1 and v∗

2 using the following inequalities:

v∗
1 ≥ v − (

u∗
2 +λ

)
,

v∗
2 ≥ v.
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