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FROM REAL TO COMPLEX SIGN PATTERN MATRICES

CAROLYN A. ESCHENBACH, FRANK J. HALL AND ZHONGSHAN LI

This paper extends some fundamental concepts of qualitative matrix analysis from
sign pattern classes of real matrices to sign pattern classes of complex matrices. A
complex sign pattern and its corresponding sign pattern class are defined in such
a way that they generalize the definitions of a (real) sign pattern and its corre-
sponding sign pattern class. A survey of several qualitative results on complex
sign patterns is presented. In particular, sign nonsingular complex patterns are in-
vestigated. The type of region in the complex plane representing the distribution
of the determinants of the matrices in the sign pattern class of a sign nonsingular
complex pattern is identified. Cyclically nonnegative complex patterns and com-
plex patterns that are signature similar to nonnegative patterns are characterized.
Extensions of sign stable and sign semistable patterns from the real to the com-
plex case are given. Results on ray patterns are also obtained. Finally, many open
questions are mentioned.

1. INTRODUCTION

Interest in qualitative matrix analysis was stimulated, in part, by the need to
analyse certain dynamical systems for which only qualitative information was available.
Such systems arise in economics, ecology, biology, chemistry, mechanics and energy
planning when only the directions of certain effects are known. Much interest has
recently been focused on qualitative matrix methods, since certain combinatorial results
can be obtained from them.

To date, qualitative matrix analysis involves the study of properties that a real
matrix may or may not have based strictly upon knowledge of the signs of the entries
of the matrix. A matrix whose entries are from the set {+, — ,0} is called a (real) sign
pattern matrix. Associated with each n-by-n sign pattern matrix A — (a<j) is a natural
class of real matrices, called the sign pattern class of A, defined by

Q(A)= {B e Mn(R) | sgnbij = a{j for all i and j} .

If P is a property referring to a real matrix, then the sign pattern matrix A is said to
require P if every matrix in the sign pattern class of A satisfies P, and A is said to allow
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P if some matrix in the sign pattern class satisfies P. In this paper, we do not attempt
to give an exhaustive set of references for real sign pattern matrices. However, we point
out that the recent book by Brualdi and Shader [3] includes extensive references.

Complex matrices arise naturally in theory as well as in many applications. For
example, linear dynamical systems with complex entries occur in quantum mechanics
[9]. Hence, it would be useful to investigate properties of complex matrices based upon
the signs of the real and imaginary parts of their entries. One goal of this paper is to
survey some fundamental properties of qualitative matrix analysis that can be extended
from sign pattern classes of real matrices to sign pattern classes of complex matrices.
For n-by-n sign pattern matrices A\ and A2, we define a complex sign pattern matrix

to be A = Ai + iA2, and the sign pattern class of A is denned by

Q(A) = {Bj_ + iB2 | BY € Q(A{) and B2 € Q(A2)} •

For brevity, we often use complex (or real) pattern or complex (or real) sign pattern to
mean a complex (or real) sign pattern matrix.

Given two angles a ^ /?, we define a sector in the complex plane to be the set of all
nonzero complex numbers whose arguments are in the interval from a to /?, where the
interval could be closed, and if a < f3, the interval could be closed, open, or half-open.
We denote the corresponding sector by [eia,ei0], (eia,eif}) or, [eia,eip) or (eia,ei0],
respectively. Whenever a — (3, the sector becomes a ray, denoted by eta. Note that
the ray eia is the set of all nonzero complex numbers whose arguments are equal to a,
while the sector [et0,e*27r] is the same as C\{0}. For any integer n, we associate the
r a y s e 2 n 7 r i , e^

n+1^\ e ( 4 " + i ) ( ^ / 2 ) « a n c i e ( 4 n + 3 ) ( , r / 2 ) i w i t h + _ j a n d _ ^ r e S p e c t i V e l y .

Clearly, each nonzero entry in a complex sign pattern is a sector that represents either
a quadrant or one of the rays +, - , i or - » . As usual, by a quadrant in the complex
plane, we mean an open quadrant that does not include the axes.

The definitions relating to the cycles and paths in an n-by-n complex pattern
A = (ciij) are analogous to the corresponding definitions in a real sign pattern. In
particular, we define a path of length k from i\ to ik+i to be a formal product of the
form 7 = a i ^ a ^ i j • • •aifc«fc+1 • Similarly, we define a simple cycle of length k (fc-cycle)
to be a formal product of the form 7 = aiji2ai2i3. . •aifct1 > where the indices 11,12, • • • ,ik
are distinct. By ap (7) we mean the actual product of the entries in 7 , where the
multiplication is carried out in the usual way. For example, if 7 = [e*ai, e'^l)[eia2,e1^2],

then ap(7) = [e i ( Q 1 + a 2 \ e*^ 1 + ^ 2 ^ ] . If 7 is a cycle and ap(7) equals + , - , i or -i, we
say 7 is a positive, negative, positive pure imaginary or negative pure imaginary cycle,

respectively. In the remainder of this paper, when we say cycle we mean a nonzero
cycle, that is, a cycle that contains no zero entries.

Some known results concerning real sign pattern classes easily extend to the com-
plex sign pattern classes. For example, sign singularity of an n-by-n sign pattern matrix
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(real or complex), meaning that every matrix in the sign pattern class is singular, is
equivalent to the existence of a p-by-q submatrix consisting entirely of zeros, where
p + q Js n + 1 This result is true for matrices over an arbitrary field, and follows from
a theorem of Frobenius-Konig (see [2, p.6], and [6]). However, some characterisations
do not carry over to the complex sign pattern classes. It is well known that a real sign
pattern matrix A is sign nonsingular, that is, every matrix in the sign pattern class
of A is nonsingular, if and only if there is at least one nonzero term in the determi-
nant of A, denoted by det A, and all nonzero terms in det A have the same sign [1].
To illustrate that this characterisation does not generalise to sign nonsingular complex
patterns, consider the following example. Let

+ \ /+ {
A = + \+i\ + , and B = c + di e Q(A),

) j

where a,b, c, d, e and / are positive real numbers. Clearly, A is sign nonsingular,
however,

det B = {ace - adf H ) + i(bce - bdf -\ ),

which has mixed signs in each of the real and imaginary parts. Two fundamental
questions arise:

(i) How are the sign nonsingular complex sign patterns characterised? and
(ii) How can the region in the complex plane consisting of the determinan-

tal values of the complex matrices B in the sign pattern class of a sign
nonsingular complex pattern A be located?

The latter question is addressed in section 2 of this paper, while the former question

remains an open research problem.

In section 3 we investigate cyclically nonnegative complex sign patterns, and also
characterise the complex patterns that are signature similar to nonnegative patterns. In
section 4, we extend sign stability to the class of complex patterns whose diagonal entries
have negative real parts, and we extend a characterisation from real sign semistable
patterns to complex patterns. In section 5, we obtain results on ray patterns. Finally,
in section 6, we mention several general open questions.

2. SIGN NONSINGULARITY

Let A be a real n-by-n sign nonsingular pattern. Then det A = + or det A = - .
If B € Q(A), then det B e (0, oo) whenever det A = + , and det B 6 (-co, 0) whenever
det A = —. The goal of this section is to establish general determinantal regions for
sign nonsingular complex patterns.
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If A is an n-by-n complex pattern, and if B 6 Q{A) with det B = b, then for any

positive number k, det ( \fh~ Bj = kb. If A is sign nonsingular, since ( \fk Bj 6

<5(J4), it follows that every nonzero number lying on the ray originating at the origin

and passing through b can be achieved as the determinant of some matrix in Q{A).

We call such a ray a determinantal ray of A. The set SA = {det B \ B € Q(A)} is

called the determinantal region of the complex sign pattern A.

THEOREM 2 . 1 . If A is a square sign nonsingular complex sign pattern, then the
determinantal region of A is a sector in the complex plane.

P R O O F : Let B, Bx g Q(A), and define Ct € Q(A) by Ct = tB + (1 - t)Bi for

0 ^ t ^ 1. Since the determinant is a function that depends continuously upon the
entries of a matrix, the curve C represented by the set of points {detCt | 0 ^ t ^ 1}
between det B and det B\ is continuous. Since A is sign nonsingular, C does not pass
through the origin. Let 9 and #i be the arguments of the points det B and det Bi.

We may assume that 9 < 9\ < 9 + 2TT . By the continuity of the curve C, we see that
either the sector from 0 to 0\ or the sector from 8\ to 9 + 2?r is contained in the
determinantal region of A. Since B and B\ are arbitrary matrices in Q{A), it follows
that the determinantal region of A is a sector. D

We now illustrate Theorem 2.1 with several examples. We let /„ be the diagonal
sign pattern of order n with + entries on the main diagonal.

EXAMPLE 2.2.

(i) If A = h + i I ) , then SA is the first quadrant.

(ii) If A = I2 + H2) then 5,4 is the first two quadrants, together with the
positive imaginary axis. In other words S^ is the open sector from 0 to
n.

(iii) If A = h + ih, then 5.4 is the open sector from 0 to (3TT/2) .
(iv) If A = I4 + U4, then SA is the open sector from 0 to 2TT .
(v) If A — I5 + i/5, then 5^ is the whole plane excluding the origin.

(vi) If A = I ) = ( ) ~*~ M n n ) ' t n e n ^A 1S t n e

imaginary axis.

(vii) If A — I I + i I 1, then SA is the open sector from -TT/2

to TT/2.

Two important related research questions are:

(i) If A is sign nonsingular, are the boundaries of SA always axes in the
complex plane? and
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(ii) What is an effective characterisation of sign nonsingular complex pat-
terns?

It is well known that if A is a 3-by-3 sign nonsingular real pattern, then A contains
at least one zero entry. In our next example, we illustrate that this is not the case for
complex sign patterns.

+ i 0 0 + =A!+iA2.

Then the real part of det A is signed since Re(det A) = +, and it follows that det B ^ 0
for any B € Q(A). Thus A is an entry wise nonzero 3-by-3 sign nonsingular pattern.

In general, if A is an n-by-n sign nonsingular real pattern, then A contains at
least ("j1) 0-entries [15]. A natural question is: If A is a sign nonsingular complex
pattern of order n ^ 4, is there a minimum number of 0 entries, and, if so, what is the
minimum number?

It is of interest to determine the possible determinantal regions for arbitrary com-
plex patterns. For example, if

/ + + 0
A= + + 0

\ 0 0 (4.

then A is not sign nonsingular, and the determinantal region of A is the union of the
first and third quadrants, together with the origin. Note that this region is a union of
sectors plus the origin.

3. CYCLIC NONNEGATIVITY

We begin this section by describing positive and negative cycles in a complex
pattern. To this end, we note that if 7 contains at least one complex entry that
represents a quadrant, then 7 is not a positive or a negative cycle. Thus, if 7 is a positive
or a negative cycle, then 7 consists of a product of rays from the set {+,—,i,—i}.

The conjugate of a sector is defined in the usual way, for example, the conjugate
of [eia,ei/3) is (e~i/3,e~ia]. Hence if A = Ai +iA2, then A* is defined in the natural
way as the conjugate transpose of A, so that A* — A\ — iA\. A complex signature
pattern is a diagonal pattern 5 whose diagonal entries come from the set {+, —, i, — i}.
If S is a signature pattern, then S~x = S* is the signature pattern such that

+

o
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If A is an n-by-n complex pattern, and 5 is a signature pattern of order n , then
5 - 1 J 4 S is called a signature similarity of A. It is easy to show that any signature
similarity of A preserves the qualitative cycle structure of A. That is, if 7 is a cycle
in A, and if 7S is the corresponding cycle in S~1AS, then ap(7) = ap(7 s ) .

As in the case of real sign patterns, a cyclically nonnegative complex pattern is a
square pattern whose cycles are positive. Similarly, a cyclically positive complex pattern
is an entrywise nonzero cyclically nonnegative pattern.

THEOREM 3 . 1 . If A is an n-by-n cyclically positive complex sign pattern, then

A is signature similar to the all + pattern of order n.

P R O O F : We use induction on the order k of the matrix. Clearly, the result is true
for k = 1. Now assume the result holds for k — n — 1, and let A be an n-by-n cyclically
positive complex pattern. By the induction hypothesis, there exists a signature pattern
S\ such that

where Ai is the all + pattern of order n - 1, and where A4 = (an n) = (+) is a 1-by-l
positive diagonal entry of A (A is cyclically positive).

From the discussion preceding this theorem, we know that A cyclically positive im-

plies that S^ASi is cyclically positive. Thus (Si1ASi)n.(S^1ASi)i(Si1ASi) n =

+ for all indices 1 ^ i,j ^ n . Since (SiXASi).. is an entry in Ai, we see that

(Si1AS1).. = + , and it follows t ha t (S^ASi)^(S^1 ASi) .n = + for all 1 ^ i,j < n.

Consequently, (Sf 1AS\)ni = x for all i = 1,... ,n - 1 and (SfMSi) n = y for all

j = 1 , . . . , n — 1, for some x and y in the set {+, - , i, -i], where xy = +. Finally, if

/+ \

S2 =

\ x)

then it is clear that S2^ [S^X AS\)S2 is the all + pattern of order n. D

COROLLARY 3 . 2 . An irreducible complex sign pattern A is cyclically nonneg-

ative if and only if A is signature similar to a nonnegative pattern.

PROOF: Let A be an n-by-n irreducible cyclically nonnegative complex pattern.
Then, since A is irreducible, every nonzero entry of A lies on some simple cycle. Fur-
ther, since A = (aij) is cyclically nonnegative, we know that no entry in A represents
a quadrant, that is, each a.ij £ {+, — ,0, i, — i}.

Now if Pi = ajfcj . . . a,kpj and P2 = a.imi ... amqj are two paths in A from i

to j , then A irreducible implies that there is at least one path from j to i, say,
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P = a.jni .. .an3i. Since P\P and P2P are products of simple cycles in A, it follows

that ap (PiP) = ap (P2P) = + . Thus ap(P x ) = a p ( P 2 ) , and we conclude that all

paths in A from i to j for any pair of indices i and j have the same sign.

Define the matrix A' = (a^-) by

I aij if aij 7̂  0
aij — S

[ ap (Pij) if a^ = 0, where P^ is a path from i to j .

Then A' is entry wise nonzero and cyclically positive. From Theorem 3.1, there exists
a signature pattern 5 such that S~1A'S is the all + pattern, and, hence, S'^^AS is
nonnegative.

Since the converse of corollary 3.2 is clear, the proof is now complete. D

A natural question now arises, namely: What can we say about reducible cyclically
nonnegative complex patterns? Recall that every reducible pattern A is permutation
similar to a pattern of the form

/An Ayi ... Aim\

A22 ••• A2m

/

where the diagonal blocks are irreducible. This is called the Frobenius normal form of
A, and the An's are called the irreducible components of A. Since every cycle of a
reducible matrix occurs in some irreducible component, a complex pattern is cyclically
nonnegative if and only if each irreducible component is cyclically nonnegative.

It is also of interest to characterise the n-by-n complex patterns that are signature
similar to nonnegative patterns. If A is signature similar to a nonnegative pattern, then
B € Q{A) is signature similar to a nonnegative matrix. From the Perron-Frobenius
theory, we know that the spectral radius p(B) is an eigenvalue of B. Thus every
B €. Q(A) has its spectral radius as an eigenvalue, and we say that A requires the Perron
property. Real sign patterns that require/allow the Perron property are discussed in
[4]. Later, in Theorem 3.5, we show that cyclically nonnegative complex patterns are
precisely those that require the Perron property.

If a complex sign pattern A is cyclically nonnegative, then for each k and j ,
dkjO-jk — + or 0, that is, ctjk = a,kj or one of ajtj and a^ is 0. Hence, when we form
the sum A + A*, by adding corresponding entries, we obtain a complex sign pattern.
Further, we note that if A is cyclically nonnegative, then A is a subpattern of A + A*,
meaning that A can be obtained by setting some fc (k ^ 0) entries in A + A* to 0.
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THEOREM 3 . 3 . Let A be an n-by-n complex sign pattern. Then the following
are equivalent:

(i) A is signature similar to a nonnegative pattern;
(ii) A is cyclically nonnegative and A + A* is signature similar to a nonneg-

ative pattern;
(iii) A and A + A* are both cyclically nonnegative.

PROOF: (i) => (ii). If S~1AS is nonnegative for some signature pattern S, then
S~1A*S is nonnegative. Hence, S~1(A + A*)S is nonnegative.

(ii) => (iii) is clear.
(iii) => (i). Suppose A and A + A* are cyclically nonnegative. Since A + A* =

(A + A*)*, the Frobenius normal form of A + A* is given by

o
122

o

\

J
for some permutation pattern P. Further, since each irreducible component An is
cyclically nonnegative, by corollary 3.2, there exists a signature matrix Su such that
S^AuSii is nonnegative. Therefore, if

' i i O
S =

O

then S~1P*(A + A*)PS is nonnegative. Consequently, PS^P'^A + A*)PSP* is non-
negative. However, PSP* is a signature matrix, and it follows that A + A* is signature
similar to a nonnegative pattern. Finally, since A is a subpattern of A + A*, it is clear
that A is signature similar to a nonnegative matrix. D

EXAMPLE 3.4. Let

A =

Since A and A + A* are cyclically nonnegative, it follows that A is signature similar
to a nonnegative pattern. D

When we say that we are emphasising a simple cycle 7 in a complex pattern A, we
mean that we are choosing a matrix B in Q{A) such that the entries along 7 each have

( +
i
—

0
^ 0

0
+
i

0
0

—
0

+
0
0

-

0

+
i

+
0
-

—I

0
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modulus one, and all other nonzero entries in B have modulus e, for some arbitrarily
small e > 0. To prove the necessary condition stated in Theorem 3.5, we shall need the
type of perturbation arguments used in [4, pp.303-304]. These arguments use the fact
that the eigenvalues depend continuously upon the entries of a matrix.

THEOREM 3 . 5 . An n-by-n complex sign patters A requires the Perron property

if and only if A is cyclically nonnegative.

PROOF: Suppose a complex pattern A has a simple fc-cycle 7 = di^cii^ • • • a{|ti1
such that ap (7) 7̂  +. By emphasising the cycle 7, we can find a matrix B € Q(A)
such that c = bili2bi2i3 ...6ijfeil ^ 1 (but \c\ = 1). Then k of the eigenvalues of B
are arbitrarily close to the complex fc-th roots of c and the other n — k eigenvalues
of B are arbitrarily close to zero. Since c is not positive, B does not have the Perron
property.

Now suppose A is cyclically nonnegative. Then each irreducible component of A
is signature similar to a nonnegative sign pattern matrix (by corollary 3.2), and, thus,
A requires the Perron property. U

4. STABILITY

A matrix B is said to be stable if each eigenvalue of B has a negative real part.
Complex (real) sign patterns A that require stability are called sign stable, and complex
(real) patterns that allow stability are called potentially stable. Considerable research
has been done to characterise real sign stable patterns. In [13] and [14], the class of
matrices that are sign stable is identified for the case in which a real sign pattern A has
a negative diagonal. To date, there is no effective characterisation of real potentially
stable patterns, and perhaps complex qualitative analysis may shed some light on this
problem. Since a complex pattern A is sign stable if and only if each irreducible
component of A is sign stable, we turn our attention to characterising irreducible sign
stable complex patterns.

To prove the following lemma, we can modify the argument used in the proof of
Theorem 3.5. Here we choose a matrix B in Q(A) by emphasising a simple 2-cycle 7
so that the product of the entries in B along 7 is not equal to —1 but has modulus 1.

LEMMA 4 . 1 . If a complex sign pattern A is sign stable, then A has no simple
2-cycle of the form 7 = (s + ti)(u + vi), where s,t / 0 or II,D / 0.

Lemma 4.2 gives the necessary conditions for complex sign stability. The necessary
conditions for real sign stability are given in Lemma 5.1 of [13]. Condition (i) of [13,
Lemma 5.1] has been modified here to allow some complex diagonal entry that has a
negative real part. All other conditions in Lemma 4.2 are the same as the conditions
for real sign stability, and can be proved using similar arguments as in [13], together
with Lemma 4.1.
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LEMMA 4 . 2 . If A = A\ + iA2 is an n-by-n complex sign stable pattern, then

(i) all diagonal entries in Ai are nonpositive, with at least one diagonal entry
negative;

(ii) all simple 2-cycles in A are negative;

(iii) there are no simple cycles in A of length greater than 2; and

(iv) A is sign nonsingular.

Recall that A is combinatorially symmetric if a,ij ^ 0 implies a,ji ^ 0. Since [13,
Lemma 5.2] involves only the location of the zero and nonzero entries of a matrix, the
result is also true for complex sign patterns. We state this result as Lemma 4.3, and
omit the proof, which can be found in [11].

LEMMA 4 . 3 . If A is irreducible and has no simple cycles of length greater than
two, then A is combinatorially symmetric with n-1 nonzero terms above (below) the
main diagonal.

Clearly, negative 2-cycles have one of the following forms: (i)(i), (-i)(-i), ( -)(+),
or (+)(—) • Consequently, we can extend the characterisation of real sign stable patterns
with negative diagonal entries, found in [13] and [14], to complex patterns.

THEOREM 4 . 4 . Let A = A\+iA2 be an n-by-n irreducible complex sign pattern

matrix, where all the diagonal entries of A\ are negative. Then A is sign stable if and

only if

(i) all simple 2-cycles in A are negative; and

(ii) there are no simple cycles in A of length greater than 2.

P R O O F : Necessity follows from Lemma 4.2.

For sufficiency, let B G Q(A). We construct a diagonal matrix D = (dij) as follows:
Set d^ — 0 for all indices i ^ j , and let du = 1. For all indices i,j = l,...,n, choose
dn — adjj, where a = —bji/bij, whenever bij is nonzero.

Then conditions (i) and (ii) together with Lemma 4.3 guarantee that da > 0 for

all i — 1 , . . . , n. Since A is a tree sign pattern matrix (A is irreducible, combinatori-

ally symmetric and has no cycles of length greater than two), initially specifying du

uniquely determines D.

Now, when i ^ j and b^ ^ 0, the (i, j) entry of DB + B*D is

dubij + bjidjj = -r^-djjbij + bjidjj = (-bji + b~j?)djj = 0.

Also, the (i, i) entry of DB + B*D is dubu + buda = (ba + bu)dn, which is negative
since the diagonal entries of B have negative real part. Thus, DB + B*D is a diagonal
matrix with negative diagonal entries. By Lyapunov's Theorem, B is a stable matrix. D
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A general characterisation of real sign stable patterns is given in [10]. The char-
acterisation in Theorem 4.4 extends the class of real sign stable patterns with negative
diagonal entries identified in [13] and [14]. A natural generalisation of this is to find a
characterisation of arbitrary complex sign stable patterns.

We note that if A — A\ + iA<i is an n-by-n sign pattern matrix with the property
that all the diagonal entries of A\ are negative, then clearly, A is potentially stable.
This follows because we can choose B £ Q(A) so that the entries on the diagonal of
B are large in modulus in comparison with the remaining entries in B. Consequently,
a natural question is: What are the necessary and sufficient conditions for A to be
potentially stable?

We say that an n-by-n complex (real) sign pattern matrix A is sign semistable

if, for each B e Q(A), Re (A) ^ 0 for all A in the spectrum of B. The necessary
and sufficient conditions for real semistable sign patterns are given in [14]. Using
these conditions, we obtain the following characterisation of irreducible sign semistable
complex patterns.

COROLLARY 4 . 5 . Let A = Ai + iA2 be an n-by-n irreducible, complex sign
pattern. Then A is sign semistable if and only if

(i) all diagonal entries in A\ are nonpositive;
(ii) all simple 2-cycles in A are negative; and
(iii) there are no simple cycles in A of length greater than 2.

PROOF: The necessity of the conditions is clear.

For sufficiency, let B € Q(A). Set B = B — el, where e is some arbitrarily small

positive number, and / is the identity matrix of order n. Then B € Q(A), and A

satisfies the conditions stated in Theorem 4.4. Thus B is stable, and for sufficiently

small e > 0, the eigenvalues of B are close to the eigenvalues of B. Consequently, B

is semistable (see [14, Lemma 5]. D

5. RAY PATTERNS

A ray pattern was defined and ray nonsingularity was investigated in [12]. By a
ray pattern we mean a matrix each of whose entries is either 0 or a ray e*e. Associated
with each n-by-n ray pattern A = (aij) is the qualitative class of A, defined by

Q(A) = {B € Mn(C) | bij - 0 if and only if â - = 0, arg 6^ = argoi:;

for all i and j where a^ ^ 0}.

For ray patterns, the definitions of the terms require (allow) a property P, simple cycle,
and cyclically nonnegative are the same as for complex sign patterns. However, we note
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that positive 2-cycles in a ray pattern have the general form (e'e) (e~l$), and negative
2-cycles have the general form (e*e) (e*("~e)).

For a ray pattern A, we define A* in the usual way as (A) . A signature ray

pattern S is a diagonal ray pattern with nonzero diagonal entries.

The arguments and results of sections 3 and 4 can easily be modified to apply to

ray patterns. For example, corollary 3.2 for ray patterns becomes:

THEOREM 5 . 1 . An irreducible ray pattern A is cyclically nonnegative if and

only if A is signature similar to a nonnegative pattern.

The irreducible cyclically nonnegative complex patterns form a proper subclass of
the class of irreducible cyclically nonnegative ray patterns. However, the respective
reducible classes are clearly different, since the strictly upper triangular blocks in the
Frobenius normal form allow different types of entries.

When we say a ray pattern A is ray stable, we mean that every matrix B S Q(A)

is stable. For ray patterns, Theorem 4.4 on stability can be rephrased as follows:

THEOREM 5 . 2 . Let A be an n-by-n irreducible ray pattern, where all the di-

agonal entries of A have arguments in the left half plane. Then A is ray stable if and

only if

(i) aJ] simple 2-cycles in A are negative; and

(ii) there are no simple cycles in A of length greater than 2.

To prove the sufficiency of the conditions in this latter theorem, we choose a =
\bji/bij\ arid proceed as in the proof of Theorem 4.4.

Although we have greater variability with the negative 2-cycles in ray patterns than
in complex sign patterns, the diagonal entries in the latter could represent the second
or the third quadrants, so that the irreducible sign stable complex patterns do not form
a proper subclass of the class of irreducible ray stable patterns.

Complex patterns and ray patterns are two generalisations of real sign patterns.
More generally, one can consider a sector pattern where each entry is either 0 or an
arbitrary sector in the complex plane.

6. CONCLUDING REMARKS

In the first five sections of this paper, we mentioned several open questions related
to the topics covered in these sections. We now give some additional open questions.
For example, it is of interest to characterise the n-by-n complex sign patterns that
require/allow k real eigenvalues, where A; is a positive integer less than or equal to n.
Since the nonreal eigenvalues of real matrices occur in complex conjugate pairs, it is
clear that if A is an n-by-n real sign pattern matrix, and if n is odd, then A requires
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a real eigenvalue. We note that the real patterns of even order that require a real
eigenvalue are characterised in [5]. Since complex sign patterns of odd order may or
may not require a real eigenvalue, any characterisation of complex patterns that require
one real eigenvalue must include odd as well as even orders. Another spectral question
is: What are the complex sign patterns that require repeated eigenvalues?

Given a complex pattern A that allows nonsingularity, what are the possible com-
plex patterns of the inverses of the invertible matrices B in Q(A)? A natural related
question is: When does A require/allow B~l 6 Q(A)? We note that real sign patterns
that require B~x £ Q{A) are called self-inverse sign patterns and are characterised
in [7], and real sign patterns that allow this property are discussed in [8]. Another
question is: What complex sign patterns allow an invertible matrix B € Q{A) such
that the inverse of B is in Q(A*)? In particular, what complex sign patterns arise as
the sign patterns of unitary matrices?
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