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In magnetic confinement fusion devices close to axisymmetry, such as tokamaks, a key
element is the winding profile of the magnetic field lines, or its inverse, the safety profile
q = qB. A corresponding profile, qJ , can be defined for the current density field lines.
Ampère’s law relates any mode of current perturbation δJ m,n with a mode of magnetic
perturbation δBm,n. It is shown that the knowledge of the pair (qB, qJ ) allows us then
to characterize the resonant, or non-resonant, nature of the modes for both the magnetic
and current density field lines. The expression of qJ in the flux coordinate is derived.
Including this calculation in real-time Grad–Shafranov equilibrium reconstruction codes
would yield a comprehensive view of the magnetics. The monitoring of the pair (qB, qJ )
would then allow us to investigate the role played by the resonant modes for the current
density, that are current filamentary modes, in the plasma small-scale turbulence. By
driving the magnetic and current density profiles apart so that the images of qB and qJ
are disjoint, these filamentary modes would not impact the magnetic field topology, being
not associated with magnetic islands but with non-resonant magnetic modes. It remains
to be explored to what extent such a configuration, where the spectrum of tiny current
density filaments produces a spectrum of magnetic modes that has practically no effect on
heat transport, is beneficial.

Keywords: fusion plasma, plasma confinement

1. Introduction

In a magnetic confinement fusion (MCF) plasma, alpha particles produced from fusion
reactions will be confined by the magnetic field and heat back the plasma species,
and primarily electrons, through collisions. To ignite the plasma, the rate of alpha
heating must exceed (and at least match) the rate at which plasma loses energy. Finding
scenarios that minimize plasma losses is thus crucial for optimizing the achievement of
the conditions necessary for fusion and sustained ignition. A well-known prime reservoir
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for the minimization of plasma losses lies in the electron energy channel since the electron
heat transport is anomalous. This arises from the fact that, being the least massive charged
particles, electrons are also the most magnetized and thus the most sensitive to the
non-regularity of magnetic field lines. Understanding, controlling and ideally reducing
electron heat transport has thus been a major objective of MCF research so far.

A picture that emerged long ago is that the magnetic topology impacts then the
electron collective behaviour. Ideally, the magnetic field within a tokamak should be
axisymmetric with smooth magnetic field lines spiralling about the magnetic axis. Yet,
departures from axisymmetry caused by three-dimensional effects manifesting through
the overlap of magnetic resonances break the smoothness of the magnetic field lines and
introduce, at least locally, some stochasticity. Although a rigorously exact self-consistent
analysis of electron heat transport may still be mathematically out of reach, some
relevant estimates obtained using simplifying assumptions have existed for a long time.
A significant breakthrough occurred when Rechester & Rosenbluth (1978) showed that,
because electrons are strongly magnetized, even a slight braiding of magnetic field
lines could result in a noticeable increase in perpendicular heat transport. This means
that the magnetic field line diffusivity transfers to the electron thermal diffusivity.
This derivation was done under the assumption of stationary magnetic fluctuations and
prompted numerous theoretical studies aiming to clarify its application regime. Later,
Isichenko notably included the decorrelation effects produced by time-varying magnetic
perturbations (Isichenko 1991a,b). It emerges from this careful analysis that, except
for the extreme case of quick decorrelation where the characteristic frequency of magnetic
turbulence would be much greater than the ratio of the electron thermal velocity, ve, to
the magnetic exponentiation length, the electron thermal diffusivity is proportional to the
magnetic line diffusivity Dm. Furthermore, in the collisionless limit, it approximates to
veDm.

Critical to the anomalous electron transport is thus the existence of resonant magnetic
perturbations. This calls for an examination of the source of these resonant magnetic
perturbations. In addition to some possible curl-free magnetic perturbations coming from
external sources, e.g. due to ripple effects, the magnetic perturbations are associated
by Ampère’s law with plasma current density perturbations. This naturally introduces a
plasma current density approach that has been left apart up to now. Indeed, in a tokamak
plasma, the displacement current is largely negligible in front of the plasma current so that
the plasma current density, J , can be approximated as a divergence-free field satisfying

J = μ−1
0 ∇ × B. (1.1)

Equation (1.1), together with the Maxwell-flux equation for the magnetic field B

∇ · B = 0, (1.2)

form then a closed set of equations. It is the aim of the present Letter to explore the
implications of the divergence-free nature of the magnetic and current density fields linked
by Ampère’s law (1.1) in driven MCF ideally axisymmetric devices such as tokamaks.

2. Hamiltonian representation of divergence-free field lines

At each given time, (1.2) is universally valid and (1.1) is a strongly relevant
approximation in tokamak plasmas since the magnitude of the displacement current
density J d = c−2∂tE is at least eleven orders smaller than that of the plasma current
density (Boozer 2015). Yet, the field lines of any solenoidal (i.e. divergence-free) field
can be identified to the trajectories of a one-and-a-half degrees of freedom Hamiltonian
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system. Here, this means that, at each given time t, magnetic and current density field lines
are the respective trajectories of two Hamiltonian systems Ht

B and Ht
J depending on three

space coordinates. In a simple toroid, the divergence-free vector fields B and J may be
represented in the general canonical forms, see Boozer (1983), Hatori et al. (1989) and
Yoshida (1994),

B = ∇ψB × ∇θ + ∇ϕ × ∇Ht
B, (2.1)

J = ∇ψJ × ∇θ + ∇ϕ × ∇Ht
J , (2.2)

where θ and ϕ are independent appropriate poloidal and toroidal angles. The differential
equations to solve to obtain the magnetic field lines are

dψB

dϕ
= B · ∇ψB

B · ∇ϕ = −∂Ht
B

∂θ
,

dθ
dϕ

= B · ∇θ
B · ∇ϕ = ∂Ht

B

∂ψB
,

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

with similar equations for J -field lines. Generically, the Hamiltonian Ht
B(ψB, θ, ϕ) can be

Fourier decomposed into an axisymmetric equilibrium part depending on the flux function
ψB and a non-axisymmetric perturbation part such that

Ht
B(ψB, θ, ϕ) = Ht

B0(ψB)+
∑

(m,n)�=(0,0)
ht

Bmn(ψB) cos
(
mθ − nϕ + χ t

Bmn

)
. (2.4)

For simplicity’s sake, the time t index will be dropped in the following. The axisymmetric
contribution is dominant in tokamak plasmas and yields integrable magnetic and density
field lines spiralling on flux surfaces given by

ψB = const.,
dθ
dϕ

= dHB0

dψB
≡ q−1

B (ψB),

ψJ = const.,
dθ
dϕ

= dHJ0

dψJ
≡ q−1

J (ψJ ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

defining the magnetic and current density ‘safety factor’ functions qB = q and qJ . Let
us note here that, under the usual assumption that the Grad–Shafranov equation holds at
equilibrium, both magnetic and current density flux surfaces are constant pressure surfaces
which allows us to construct a common set of canonical coordinates to express B and J ,
such as Hamada coordinates (Hamada 1962; Kikuchi 2011). For the present analysis, it is
sufficient that the same poloidal and toroidal coordinates be shared by B and J canonical
descriptions. Let us note also that, in fusion-relevant tokamaks, diamagnetic effects ensure
that qJ is not trivial.

3. Topology and classification of modes

Let us consider a perturbation to the axisymmetric state by a single mode (m0, n0). The
generic form of the Hamiltonian, for the B- or J -field lines, is then

H(ψ, θ, ϕ) = H0(ψ)+ εh(ψ) cos(m0θ − n0ϕ + χ0). (3.1)

Resonance occurs when the insertion of the O(ε0) axisymmetric solution produces a
secular forcing resulting in a linear increase of ψ with ϕ. This happens when there exists
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(a) (b)

FIGURE 1. (a) Example of two arbitrary magnetic and current density safety factor profiles as
a function of respectively normalized flux coordinates ψ̂B and ψ̂J . (b) Each dot represents an
(m, n)mode. It is a resonant mode for B if it is in the blue cone bounded by the lines y = qB minx
and y = qB maxx and/or for J if it is in the red cone bounded by the lines y = qJ minx and y =
qJ maxx. The violet intersection cone contains modes that are both resonant to B and J . The white
cone contains modes that are non-resonant to B and non-resonant to J .

some ψ∗ such that q(ψ∗) = m0/n0. Figure 1 considers an instantaneous axisymmetric
plasma state with arbitrary magnetic and current density safety profiles. The plot on
the right highlights the possible resonant modes for B (in blue) and for J (in red). In
this example, there are modes that are both resonant for B and J in the overlapping
(violet) cone. By virtue of the linearity of Ampère’s equation (1.1), some (m0, n0) current
perturbation δJ m0,n0 is associated with some (m0, n0) magnetic perturbation δBm0,n0 .
Reciprocally, there could exist vacuum magnetic perturbations that have no manifestation
on the current density. Since our interest lies in the magnetic perturbations originating
from plasma current density perturbations, we focus on the current density modes.

Any mode of a divergence-free vector field with a rotational transform is either resonant
or non-resonant. Considering the current density field J , a mode (m0, n0) is resonant if
there exists some ψ∗

J such that q(ψ∗
J ) = m0/n0; if not, it is non-resonant. In the first case, a

poloidal cross-section cut of the current density field lines reveals that, around the current
flux surface ψ∗

J , even a tiny amplitude (m0, n0) perturbation produces a change in the
topology of current density field lines with the apparition of a vortex (island). In three
dimensions, such a resonant mode for the current density exhibits then a filamentary
structure such as in the example of figure 2. On the contrary, a non-resonant mode
manifests only through smooth deformations of flux contours. To be more specific, a
resonant mode (m0, n0) for B originating from a current density perturbation can have
for source either a J -resonant filament-like mode if there exists some ψ∗

J such that
q(ψ∗

J ) = m0/n0 (this is the case for modes in the violet cone of figure 1), or a non-resonant
J mode if not (this is the case for modes in the blue region of figure 1). Non-resonant
modes include collective modes of deformation of the current density radial contours.

4. Illustration in cylindrical geometry of the interplay between magnetic and current
density field topologies

Let us examine this further by deriving the magnetic and current density field lines
corresponding to some axisymmetric state, defined by given qB and qJ , perturbed by a
single mode with poloidal mode number m0 and toroidal mode number n0. Here, we
shall consider a cylinder configuration with length 2πR with periodic boundary conditions
(z = Rϕ) to simplify calculations without affecting the conclusions. One simplification of
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FIGURE 2. When there exists some ψ∗
J such that q(ψ∗

J ) = m0/n0, i.e. the mode (m0, n0) is
resonant for J , then a current filament flows within the current ‘flux tubes’ attached to elliptic
surfaces. In the representation, m0 = 5 and n0 = 3.

cylindrical geometry is that the action variable ψ only depends on the radius r so that we
can directly use r to compare qB and qJ .

The axisymmetric axial component of the magnetic field is denoted by B0(r) and
B0(0) ≡ B0. The total magnetic field amounts to B = Bθ (r)eθ + B0(r)ez + δB(r, θ, z)with
δB(r, θ, z) = ∇ × δA with δA = εm0,n0 f (r) cos(m0θ − n0ϕ)ez, for some waveform f (r).
The total current density field is obtained from Ampère’s law (1.1). The equations of the
magnetic field lines derive from B × dOM = 0 with dOM = drer + rdθeθ + dzez and
similarly for the current density field lines. For the equilibrium axisymmetric part, one
obtains the expressions of qB and qJ as functions of the magnetic field components

qB(r) = rB0(r)
RBθ (r)

, (4.1)

qJ (r) = −Bθ (r)+ rB′
θ (r)

RB0(r)
. (4.2)

Considering given radial profiles qB(r) and qJ (r), the system (4.1)–(4.2) allows us to obtain
the axisymmetric magnetic field components as Bθ (r) = rB0(r)/(RqB(r)) with the axial
component B0(r) solving a first-order differential equation as

B0(r) = B0 exp
(∫ r

0

x2q′
B(x)− 2xqB(x)

R2q2
B(x)qJ (x)+ x2qB(x)

dx
)
. (4.3)

The winding properties of the axisymmetric equilibrium magnetic and current density
fields are specified by the pair (qB, qJ ). In figure 3, a safety profile qB has been chosen.
We consider the effect of a small perturbation having m0 = 5 and n0 = 3 that is resonant
for the magnetic field because there exists some minor radius at which qB = 5/3. This
determines the Poincaré plot of magnetic field lines, shown in blue in figure 3(c). The
Poincaré plots of the current density field lines are plotted in red and vary according to the
qJ profile. For each qJ , the components of the magnetic field (normalized to B0) are fully
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(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

FIGURE 3. Examples of the impact on magnetic and current density field lines of a small
three-dimensional perturbation, having here poloidal m0 = 5 and toroidal n0 = 3 mode numbers.
The arbitrarily chosen safety profile qB is plotted in blue in (a). The Poincaré’s plot of the
magnetic field lines is shown in (c) and shows that the perturbation is magnetically resonant.
One considers five arbitrary qJ -profiles, noted qJ1 to qJ5, plotted in red in (a). The corresponding
current density field lines are plotted in (d–h). Knowing qB and qJ provides the full axisymmetric
magnetic configuration (b) (normalized to B0). Here, r̂ denotes the radial variable normalized to
the minor radius.

known and are plotted for the sake of completeness in figure 3(b). Depending on qJ , the
magnetic island is associated either with a current density island (or filamentation mode),
if there exists one radial coordinate at which qJ = m0/n0 (case qJ1) or more than one
(case qJ2). Let us note that the radial locations of the magnetic and current density islands
differ when qB and qJ do not coincide, which is the case considered here. Alternatively,
the magnetic island may be associated with a non-resonant current density mode when qJ
does not take the value m0/n0 (cases 3 and 5). Case 4 corresponds to a limiting case when
qJ reaches the value m0/n0 at the border.

It has been shown that providing the pair (qB, qJ ) allows for a comprehensive
characterization of the modes. This requires us to reconstruct in real time not only the
safety profile, qB, but also qJ . To facilitate this in the realistic toroidal geometry, their
expressions in flux coordinates are derived now.

5. Analytic expressions of the magnetic (qB) and current density (qJ ) profiles in flux
coordinates

In the Hamada set of variables (v, θ, ζ ), with v the volume enclosed by the flux surface,
and ζ and θ the toroidal and poloidal coordinates (chosen here to have period 1, not 2π),
both equilibrium magnetic and current density field lines are straight with

qB(v) = B · ∇ζ
B · ∇θ ,

qJ (v) = J · ∇ζ
J · ∇θ .

⎫⎪⎪⎬
⎪⎪⎭ (5.1)

This is a canonical set of variables for both the magnetic and current density field lines.
It is, however, not easy to accommodate because the toroidal and poloidal coordinates
are not the usual geometrical angles. Nevertheless, the previous illustration (in figure 3)
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as well as the diagram (in figure 1) show that, in order to classify modes, we essentially
need to compare the equilibrium windings of the magnetic field and the current density
field. Using the explicit transformation between Hamada coordinates (v, θ, ζ ) and the
flux coordinates (ψ, θg, ϕg), where θg and ϕg are respectively the poloidal and toroidal
geometrical angles, it was shown in Hua et al. (2010) that qB(v) is the usual safety
factor, namely

qB(v) = 1
2π

∮
ψ

B · ∇ϕg

B · ∇θg
dθg = qB(ψ). (5.2)

Moreover, using B = F(ψ)∇ϕg + ∇ψ × ∇ϕg where F(ψ) = RBϕg is the diamagnetic
function, and defining the flux surface average

〈X〉 .=
(∮

ψ

dθ ′
g

B · ∇θ ′
g

)−1 ∮
ψ

X dθ ′
g

B · ∇θ ′
g

= ∂

∂v

∫
V

X dv′, (5.3)

yields

qB(v) = F(ψ)
2π

∮
R−2 dθg

B · ∇θg
= F(ψ)

4π2

〈
R−2〉 v′(ψ). (5.4)

Now let us also consider here qJ . We have

J · ∇ζ = 1
2π

J · ∇ϕg + F(ψ)
2π

(〈
R−2〉− R−2) J · ∇θg

B · ∇θg
,

J · ∇θ = B · ∇θ
B · ∇θg

J · ∇θg.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.5)

Moreover,

θ
(
ψ, θg

) =
(∮ dθ ′

g

B · ∇θ ′
g

)−1 ∫ θg

0

dθ ′
g

B · ∇θ ′
g

, (5.6)

implying

∂θg

∂θ
=
(∮ dθ ′

g

B · ∇θ ′
g

)
B · ∇θg. (5.7)

We have, from (5.5) and (5.6),

qJ (v) = J · ∇ζ
J · ∇θ = 1

2π

J · ∇ϕg

J · ∇θg

B · ∇θg

B · ∇θ + F (ψ)
2π

〈
R−2

〉− R−2

B · ∇θ . (5.8)

Let us use the fact that we can average ‘for free’ this function on θ as it only depends on
v. We have, for the first member of the right-hand side∮

1
2π

J · ∇ϕg

J · ∇θg

B · ∇θg

B · ∇θ dθ =
∮

1
2π

J · ∇ϕg

J · ∇θg
dθg. (5.9)

For the second member of the right-hand side, we have∮
F (ψ)

2π

〈
R−2

〉− R−2

B · ∇θ dθ =
∮

F (ψ)
2π

〈
R−2

〉− R−2

B · ∇θg
dθg = 0, (5.10)
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by definition of the flux surface average (5.3). This gives the result

qJ (v) = 1
2π

∮
J · ∇ϕg

J · ∇θg
dθg. (5.11)

Let us now use the Grad–Shafranov equation to get an explicit expression. This gives

J · ∇ϕg = dp
dψ

+ 1
μ0R2

F
dF
dψ
. (5.12)

Fromμ0J · ∇θg = (∇F × ∇ϕg) · ∇θg, B · ∇θg = (∇ψ ×∇ϕg) · ∇θg and ∇F = F′(ψ)∇ψ ,
one gets J · ∇θg = μ−1

0 F′(ψ)B · ∇θg. Consequently,

qJ (v) = 1
2π

∮ μ0p′ (ψ)+ FF′(ψ)
R2

F′(ψ)B · ∇θg
dθg

= 1
2π

∮
μ0p′ (ψ)

F′(ψ)B · ∇θg
dθg + 1

2π

∮
F(ψ)

R2B · ∇θg
dθg

= μ0p′ (ψ)
F′(ψ)

1
2π

∮
dθg

B · ∇θg
+ qB(v). (5.13)

This yields from (5.3) and (5.4)

qJ (v)− qB(v) = μ0

4π2

p′ (ψ) v′(ψ)
F′(ψ)

, (5.14)

that is, choosing the flux label ψ instead of v,

qJ (ψ) = qB(ψ)

[
1 + μ0p′ (ψ)〈

R−2
〉
FF′ (ψ)

]
. (5.15)

To the author’s knowledge, this is the first expression of the qJ profile in flux coordinates.
We are indeed in the same situation as in the previous cylindrical illustration where the
action variable depends only on the radius r: here, the action variable v in the Hamada set
depends only on ψ (v = v(ψ)). One can then do the comparison between the qB and qJ
profiles with flux coordinates. This can serve to figure out whether the modes resonant to
the current density, namely the current filamentary modes, produce magnetic perturbations
that are resonant to the magnetic field.

6. Implications, perspectives and conclusions

In the case of a zero-β (constant zero pressure) plasma, (5.15) shows that qB and qJ
coincide. In this special case, (m, n) current filaments flow within (m, n)magnetic islands.
This case is not relevant to fusion conditions. Indeed, in ITER, to attain Q � 10, plasmas
will need to have a normalized beta βN > 1.8 with βN = β/I/aB, with I the plasma
current, a the minor radius and β ≡ p/B2/(2μ0) (Shimada et al. 2007). Consequently,
the qJ profile will be somehow separated from the qB profile according to (5.15). In view
of the one-and-a-half Hamiltonian picture of the field lines, this means that a MCF device
needs to drive the magnetic and current density channels apart. The present study should
thus have important implications:
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(i) Add the calculation of qJ to equilibrium reconstruction codes to diagnose the
separation of the magnetic and current density channels.
The kinetic equilibrium reconstruction codes presently serve to monitor in real
time the magnetics in modern tokamaks. This involves the resolution of the
elliptic nonlinear Grad–Shafranov differential equation to determine the magnetic
equilibrium configuration from the measurement data. This has been a challenging
and fundamental MCF research topic for around four decades, involving the
collaborative contributions of physicists, mathematicians and computer scientists
(Lao et al. 1985, 1990; Lütjens, Bondeson & Sauter 1996; Ferron et al. 1998; Lao
et al. 2005; Blum, Boulbe & Faugeras 2007; Katsuro-Hopkins et al. 2010; Blum,
Boulbe & Faugeras 2012; Li et al. 2013; Faugeras et al. 2018; Xing et al. 2021;
Zheng et al. 2022; Hansen et al. 2024), with recent contributions from fast-parallel
computing (Huang, Xiao & Luo 2017), artificial intelligence and neural networks
(Ma et al. 2018; Joung et al. 2019; Kaltsas & Throumoulopoulos 2022; Lao et al.
2022; Pavone et al. 2023).
One outcome of these codes is the real-time computation of the safety factor
profile q (that is, qB). The analysis presented here highlights the value of including
the computation of the current density qJ profile. It is shown by (5.15) that this
amounts to adding just a line to existing codes. Then, the knowledge of the
pair (qB, qJ ) will enable the complete identification of the electromagnetic, not
purely electrostatic, modes, both in terms of their magnetic contribution and their
contribution to the current density, as exemplified in figure 1.
Let us here note that the expression for qJ in (5.15) has been obtained under the
usual assumption that the plasma equilibrium is governed by the Grad–Shafranov
equation. This derives from the steady-state Navier–Stokes equation in which one
neglects the plasma velocity field. If this steady-state plasma velocity field happens
to be non-negligible, then plasma rotation could also contribute to separating the
magnetic and current density channels. Nevertheless, one can reasonably expect
the Grad–Shafranov equation to give the dominant contribution to qJ .

(ii) Investigate the relationship between the interplay of the qB and qJ profiles and the
confinement properties.
Any experimentally unavoidable perturbation to the axisymmetric current density
gives rise, through Fourier mode decomposition, to a spectrum of current density
modes. In particular, there exists, at any time, a spectrum of tiny filamentation
modes, that are modes for which qJ is rational. Obviously, linear theory may favour
some specific modes. The point here is just to stress that there should exist at all
times a spectrum of non-vanishing current density filaments that comes up, by
virtue of Ampère’s law, with a spectrum of magnetic perturbations.
Let us consider, for example, a situation where the images of the functions qB
and qJ are disjoint. Then, the resonant modes for the current density (i.e. the
filamentary modes) do not impact the magnetic field topology. They are not
associated with magnetic islands, but with non-resonant magnetic modes. In this
case, only collective modes of deformation of the current density, that do not
change the topology of the current density field lines, can be associated with
magnetic islands. It remains to be explored to what extent such a configuration,
where the spectrum of tiny current density filaments produces a spectrum of
magnetic modes that has practically no effect on heat transport, is beneficial.

(iii) Explore the possibility of controlling the current transport and preventing
disruptions by playing on the current density profile.
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In MCF devices such as tokamaks, apart from magnetic perturbations due to the
vacuum configuration, such as the ripple-induced magnetic disturbances, one can
consider the current density channel as the driver for magnetic perturbations. By
separating the qB and qJ profiles, one can prevent the magnetic perturbations
due to the aforementioned tiny current filaments from contributing to magnetic
diffusivity. Ultimately, the current path might also be controlled by monitoring
and playing on the shear of the qJ profile, with potentially important implications.
In conclusion, this Letter points to the benefits of monitoring both the qB and qJ
profiles to get a full, real-time, picture of the magnetic and current density channels
in MCF devices. Some reconstruction of the qJ profile from experimental data will
be presented and analysed in a forthcoming study.
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