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Abstract
Green–Griffiths–Kerr introduced Hodge representations to classify the Hodge groups of polarized Hodge
structures, and the corresponding Mumford–Tate subdomains. We summarize how, given a fixed period
domainD, to enumerate theHodge representations and correspondingMumford–Tate subdomainsD ⊂ D.
The procedure is illustrated in two examples: (i) weight two Hodge structures with pg ¼ h2,0 ¼ 2; and
(ii) weight three CY-type Hodge structures.
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1. Introduction

1.1. Hodge groups

Fix a period domain D¼Dh ¼GR=G
0
R parameterizing Q–polarized Hodge structures on a rational

vector space V with Hodge numbers h¼ hn,0,…,h0,n
� �

. Here

GR ¼Aut VR,Qð Þ
is either an orthogonal groupO a, 2bð Þ (if n is even) or a symplectic group Sp 2r, Rð Þ (if n is odd), and

G0
R is the compact stabilizer of a fixed φ2D. To each Hodge structure φ2D is associated a (Q–algebraic)

Hodge groupGφ ⊂ Aut V , Qð Þ, and aMumford–Tate domainD¼Dφ ¼Gφ �φ ⊂ D, whereGφ ¼Gφ Rð Þ.
Briefly, the Hodge structure φ2D determines a homomorphism of R–algebraic groups
φ : S1 !Aut VR, Qð Þ, and the Hodge group Gφ is the Q–algebraic closure of φ S1ð Þ. The Hodge group
Gφ may be equivalently defined as the stabilizer of the Hodge tensors of φ.

1.2. Motivations

The geometric considerations motivating a classification of the Hodge groups for a given period domain
D include the following. For generic choice of φ2D, the Hodge groupGφ is the full automorphism group
Aut V , Qð Þ. So when containmentGφ ⊊ Aut V , Qð Þ is strict, the Hodge structure has nongeneric Hodge
tensors. (And, becauseGφ0 ⊂ Gφ for all φ0 2Dφ, theMumford–Tate domainDφ will parameterize Hodge
structures with nongeneric Hodge tensors.) An extreme example here is the case that Dφ is a point φf g;
this is the case if and only if Gφ is a torus; equivalently, End V , φð Þ is a CM field. When containment
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Gφ⊊Aut V , Qð Þ is strict and theHodge structure is realized by the cohomology of an algebraic variety, the
variety and its self-products “should” admit nongeneric arithmetic properties (such as extra Hodge
classes, or automorphisms, et cetera). In general, the Hodge group can have significant geometric
consequences; for example, it plays a key role in Ribet’s study (Ribet, 1983) of the Hodge conjecture
for principally polarized abelian varieties (expanding upon earlier work of Tanke’ev’s, 1981; 1982).

Likewisemuch geometricmotivation for the classification of theMumford–Tate domains comes from
the moduli of algebraic varieties. In general, the period domain is not Hermitian. Two significant
exceptions are the period domains arising when considering moduli spaces of principally polarized
abelian varieties and K3 surfaces. The Hermitian symmetric structure ofD in these two cases, along with
global Torelli theorems, is the underlying structure that has made Hodge theory such a powerful tool in
the study of these moduli spaces and their compactifications (Laza, 2016). Even when the period domain
D is not Hermitian, it may contain Hermitian symmetric Mumford–Tate subdomains D. (For example,
every horizontal subdomain is Hermitian symmetric.) If a moduli spaceM has an injective period map
Φ :M!Γ∖D (a Torelli-type theorem) and the image is a Zariski open subset of the locally Hermitian
symmetric π Dð Þ ⊂ Γ∖D, with π :D!Γ∖D the quotient, then Hodge theory is again a significant tool in
the study ofM and its compactifications, cf. Allcock et al. (2002, 2011), Borcea (1997), Garbagnati and
van Geeme, (2010), Kondo (2000), Laza et al. (2018), Pearlstein and Zhang (2019), Rohde (2009), and
Voisin (1983). Reciprocally, given a Hermitian symmetric Mumford–Tate domain D ⊂ D it is a very
interesting problem to find geometric (or motivic) realizations of the domain; work in this direction
includes Kerr and Pearlstein (2016), Pearlstein and Zhang (2019), and Zhang (2014, 2016).

1.3. Objective and approach

The principal goal of this paper is to present an expository discussion of theGreen–Griffiths–Kerr (Green
et al., 2012) prescription to identify the real algebraic groupsGφ ¼Gφ Rð Þ that may arise. More precisely,
Green–Griffiths–Kerr identify the underlying real Lie algebra gR. This determines Gφ to finite data, and
suffices to identify the domains Dφ as intrinsic Gad

φ –homogeneous spaces. (See Patrikis, 2016 for the
classification of general Gφ:)

Example 1.1. The case of weight oneHodge representations is classical (Deligne, 1979;Milne, 2005):
The real form gR is one of sp2rR, u a, bð Þ, su a, að Þ, so 2, mð Þ and so∗ 2rð Þ. See Example 3.3 for the
corresponding Hodge representations.

Remark 1.2. We are aware of only a few cases in which the classification of the Gφ as Q–algebraic
groups has been completely worked out. These include Zarhin’s classification (Zarhin, 1983) of the
Hodge groups of K3 surfaces (see Example 5.3 for the corresponding Hodge representations), and
Green–Griffiths–Kerr classification (Green et al., 2012, §7) for period domains D with Hodge
numbers h¼ 2,2ð Þ and h¼ 1,1,1,1ð Þ.

Green–Griffiths–Kerr (Green et al., 2012) showed that the Hodge groupsG¼Gφ and Mumford–
Tate domains D¼Dφ ⊂ Dh are in bijection with Hodge representations.

S1 !ϕ  GðRÞ, G ↪ Aut V , Qð Þ, .
with Hodge numbers hϕ ≤ h. (Given h1 ¼ hn,01 , , h0,n1

� �
and h2 ¼ hn,02 , , h0,n2

� �
, we write h1 ≤ h2 if

hp,q1 ≤ hp,q2 for all p, q:) Effectively one may say that the Hodge groups and Mumford–Tate domains are
classified by the Hodge representations: given a fixed D¼Dh (with specified Hodge numbers h), one
identifies all possible Hodge domains D ⊂ D by enumerating the Hodge representations with hϕ ≤ h.

Remark 1.3. There are some obvious subdomains that can be identified without Hodge represen-
tations: (products of) period subdomains. If Di is the period domain for Hodge numbers hi and
h1þ⋯þhℓ ≤ h, then D1�⋯�Dℓ is a Mumford–Tate subdomain of D.

Green–Griffiths–Kerr’s characterization of the Hodge representations is formulated as Theorem
3.1, which asserts that the induced (real Lie algebra) Hodge representations

R ! gR ! End VR, Qð Þ (1.4)
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are enumerated by tuples gssC , E
ss, μ, c

� �
consisting of:

(i) a semisimple complex Lie algebra gssC ¼ gC, gC½ �,
(ii) an element Ess 2 gssC with the property that ad Ess acts on gssC diagonalizably with integer

eigenvalues,
(iii) a highest weight μ of gssC , and
(iv) a constant c2Q satisfying μ ESS� �þ c2 1

2Z.

The real form gssR is the Lie algebra of the image Gad
φ of Ad :Gφ !Aut gRð Þ. We have Dφ ¼Gad

φ �φ,
and Ess is essentially equivalent to the isotropy group StabGad

φ
φð Þ.

1.4. Examples and special cases

1.4.1. Horizontal Hodge domains
As discussed above (§1.2) the identification of the horizontal subdomains is of particular interest. These
are the domains that satisfy the infinitesimal period relation (IPR, a.k.a. Griffiths’ transversality). It is
well-known that horizontal subdomains are necessarily Hermitian, and as such their structure as
intrinsic homogeneous complex manifolds is classical and well-understood. These results are reviewed
in §3.2. The Hodge representations with horizontal Dϕ are characterized in Proposition 3.7.

1.4.2. Weight two Hodge representations
In §4 we apply the prescription of Theorem 3.1 to identify all Hodge representations and Mumford–Tate
subdomainsD of theperioddomainD parameterizingQ–polarized, (effective)weightn¼ 2Hodge structures
with pg ¼ h2,0 ¼ 2 (Theorems 4.1, 4.3, 4.4 and Theorem 4.6). This period domain is chosen as our primary
example for two reasons. First, it is in a certain sense the simplest example of a period domain that is not
Hermitian symmetric. (The infinitesimal period relation is a contact subbundle of TD:) Second, it is the
period domain arising when considering families of Horikawa surfaces (Horikawa, 1978; 1978/79), in which
there has been much interest recently (Franciosi et al., 2015; 2017; Pearlstein & Zhang, 2019).

1.4.3. Hodge representations of Calabi–Yau type
Hodge representations of CY-type (those with first Hodge number hn,0 ¼ 1) are of considerable interest
and have been studied by several authors, including Friedman and Laza (2013, 2014), Gross (1994), and
Sheng and Zuo (2010). Much of this work is overR, but Friedman and Laza (2014) have identified some
rational forms Gφ Qð Þ admitting Hodge representations of CY 3-fold type. In §5 we classify the (Lie
algebra) Hodge representations of CY-type (Theorem 5.2). The CY-Hodge representations with D
Hermitian are well- known, and those with gR semisimple have been classified (Robles, 2014, Proposition
6.1); so the content of Theorem 5.2 is to drop the hypothesis that gR be semisimple from the classification.
This result is used in Han (2021) to enumerate the set of all Hodge representations of CY 3-fold type.
Those with horizontal (and therefore Hermitian) domain D ⊂ D are listed in Example 5.4, completing
the classification begun in Friedman and Laza (2013, §2.3).

1.5. Acknowledgements

We thank the referees for their thoughtful comments and corrections.

2. Hodge representations

What follows is a laconic review of the necessary background material on Hodge representations.
References for more detailed discussion include Green et al. (2012), Robles (2014, §§2–3) and Robles
(2016, §§2–3).
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2.1. Basics

Let

ϕ : S1 !GR and GR ! Aut VR, Qð Þ (2.1)

be the data of a (real) Hodge representation (Green et al., 2012). Without loss of generality, we may
suppose that the induced Lie algebra representation

gR ↪ End VR, Qð Þ (2.2)

is faithful. The associated Hodge decomposition

VC ¼¯Vp,q
ϕ

is the ϕ–eigenspace decomposition; that is,

Vp,q
ϕ ¼ v2VCjϕ zð Þ vð Þ¼ zp�qv, ∀z 2 S1

� �
The associated grading elementEϕ 2 igR (or infinitesimal Hodge structure) (Robles, 2014) is defined

by Eϕ vð Þ¼ 1
2 p�qð Þv for all v2Vp,q

ϕ ; that is, Eϕ 2End VCð Þ is defined so that Vp,q
ϕ is the Eϕ–eigenspace

with eigenvalue 1
2 p�qð Þ; for this reason it is sometimes convenient to write

Vp,q ¼V p�qð Þ=2

Remark 2.3. Together the grading element E and Lie algebra representation (2.2) determine the
group representation (2.1) up to finite data.

Definition 2.4. We call the pair gRð ↪ Aut VR, Qð Þ,EÞ the data of a real, Lie algebra Hodge
representation (R-LAHR).

Remark 2.5. A key point here is that a Hodge representation (2.1) determines a grading element
Eϕ 2 igR. Conversely a complex reductive Lie algebra gC, a grading elementE2 gC determines both a
real form gR (§ 2.3.2) and a Hodge representation (§ 2.3.3).

Notice that ϕ is a level nHodge structure on VR if and only if theEϕ–eigenspace decomposition is

VC ¼Vn=2¯Vn=2�1¯ ⋯¯V1�n=2¯V�n=2: (2.6)

Remark 2.7. The Hodge structure is of level zero (equivalently, VC ¼V0,0
ϕ Þ if and only if ϕ is trivial.

We assume this is not the case.
Remark 2.8 (Period domains). The Hodge domainD determined by (2.1) is a period domain if and

only if GR ¼Aut VR, Qð Þ.

2.2. Induced Hodge representation

There is an induced Hodge representation on the Lie algebra gR. Define

gℓ,�ℓ
ϕ ; ¼ ξ 2 gCjξ Vp,q

ϕ

� �
⊂ Vpþℓ,q�ℓ

ϕ , ∀p, q
n o

:

Then

gC ¼
ℓ̄2Z

gℓ,�ℓ
ϕ (2.9)

is a weight zero Hodge structure on gR that is polarized by �κ, with κ the Killing form.
The Jacobi identity implies
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gk,�k
ϕ , gℓ,�ℓ

ϕ

h i
⊂ gkþℓ,�k�l

ϕ :

The subalgebra

gevenϕ,C ; ¼
ℓ̄2Z

g2ℓ,�2ℓ
ϕ

is the complexification kϕ˜RC of the (unique) maximal compact subalgebra kϕ ⊂ gR containing the
Lie algebra g0R ¼ gR ∩ g0,0ϕ of the stabilizer/centralizer G0

R of ϕ.

2.3. Grading elements

Hodge structures are closely related to grading elements. This relationship is briefly reviewed here; see
Robles (2014, §§2–3) and Robles (2016, §§2–3) for details.

Remark 2.10. Here grading elements are essentially linearizations of the circle ϕ : S1 ↪ GR in the
Hodge representation (2.1). The essential observation of this section is that the data gC, Eð Þ
determines the real form gR, and the Hodge domain and compact dual D ⊂ Ď (as intrinsic homo-
geneous spaces. They are not represented as subdomains of a period domain D until we select the
second half GR ↪ Aut VR, Qð Þ of the Hodge representation (2.1)).

2.3.1. Definition
Fix a complex reductive Lie algebra gC. A grading element is any element E2 gC with the property that
ad(E) 2 End gCð Þ acts diagonalizably on gC with integer eigenvalues; that is,

gC ¼
ℓ̄2Z

gℓ,�ℓ, with gℓ,�ℓ ¼ ξ 2 gCj E, ξ½ � ¼ℓξf g: (2.11)

Remark 2.12. The notation gℓ,�ℓ is meant to be suggestive. The grading element E determines a
weight zero (real) Hodge decomposition that is polarized by �κ, with κ the Killing form §2:3:3ð Þ.
Remark 2.13. The data gC, Eð Þ determines a parabolic subgroup PE ⊂ GC with Lie algebra
pE ¼¯ℓ≥0g

ℓ,�ℓ. The resulting generalized grassmannian Ď¼GC=PE (or rational homogeneous
variety) is the compact dual of the Hodge domain (as an intrinsic homogeneous space).

2.3.2. Grading elements versus real forms
Fix a complex reductive Lie algebra gC. Given gC and E, there is a unique real form gR of gC such that
(2.11) is a weight zeroHodge structure on gR that is polarized by�κ (Robles, 2016, §3.1.2). The real form
gR is determined by the condition that ¯ℓg

2ℓ,�2ℓ is the complexification kC of a maximal compact
subalgebra k ⊂ gR.

See §3.2 for a discussion of the examples that are of the most interest here.

2.3.3. Grading elements versus Hodge representations
Given the data of §2.3.2, the grading element E acts on any representation GR ! Aut VRð Þ by rational
eigenvalues. The E–eigenspace decomposition VC ¼¯k2QVk is a Hodge decomposition (polarized by
someQ), withVp,q ¼V p�qð Þ=2 as in §2.1, if and only if those eigenvalues lie in 1

2Z (Green et al., 2012). The
corresponding Hodge representation is given by the circle ϕ : S1 !GR defined by

ϕ zð Þv ≔ zp�qv, z2 S1, v2Vp,q ¼V p�qð Þ=2:

Note that E¼Eϕ.
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2.3.4. Normalization of grading element
The Lie algebra g of G is reductive. Let

g¼ z ¯gSS (2.14)

denote the decomposition of g into its center z and semisimple factor gSS ¼ g, g½ �. LetE¼E0 þESS be
the decomposition given by (2.14). The Hodge domain D is determined by gSS and ESS.

Fix a Cartan subalgebra h ⊂ gC that containsEϕ, is contained in g
0,0
ϕ and that is defined overR. Then

h¼ z ¯hSS,

where hSS ¼ h∩gSSC is a Cartan subalgebra of gSSC . Choose simple roots α1, , αrf g2 hSS
� �∗

of gSSC so

that α j Essð Þ ≥ 0, for all j. Without loss of generality, we may assume that α j Eð Þ 2 0,1f g (Robles, 2014,
§3.3).1 This is equivalent to the condition that the infinitesimal period relation ThD ⊂ TD is bracket–
generating; equivalently, g1,�1 generates gþ,� ¼¯ℓ>0g

ℓ,�ℓ as a Lie algebra.

2.4. Reduction to irreducible

V . If VR ¼V1¯V2 is reducible as a real representation, then the associated domain D factors D¼
D1�D2 into the product of the domains Di for the Vi. So without loss of generality we may assume that
VR is irreducible.2 The Schur lemma (and our hypothesis that (2.2) is faithful) implies

dim z 2 0,1f g: (2.15)

Remark 2.16. Note that z¼ span E0f g, so that g¼ gSS if and only if E0 ¼ 0.
Given an irreducible real representationVR there exists a (unique) irreducible representationU of

GC such that one of the following holds:

VR˜C¼
U and U ¼U∗ U is real w:r: t: gRð Þ,
U¯U∗ and U 6¼U∗ U is complex w:r: t: gRð Þ,
U¯U∗ and U ¼U∗ U is quaternionic w:r: t: gRð Þ:

8><
>: (2.17)

Let μ, μ∗ 2 h∗ denote the highest weights ofU andU∗ respectively.Whenwewish to emphasize the
highest weight of U , we will write U ¼Uμ.

Remark 2.18 (Period domains). In this case of Remark 2.8, we have VC ¼Uω1 , with μ¼ω1 the first
fundamental weight.

Remark 2.19. It follows from Remark 2.16 that action of the center z ⊂ gR on VR is determined by
the action of E0 The latter acts on U by scalar multiplication by c¼ μ E0ð Þ 2Q. In particular, z 6¼ 0 if
and only if c 6¼ 0. Moreover, E0 necessarily acts on the dual by �c¼ μ∗ E0ð Þ. So μ 6¼ μ∗, and U is
complex with respect to gR whenever gR has a nontrivial center z 6¼ 0ð Þ.

2.5. Real, complex and quaternionic representations

Note that U is complex if and only if μ 6¼ μ∗ By Remark 2.19, this is always the case when z 6¼ 0;
equivalently, g 6¼ gSS. When z¼ 0 equivalently, g ¼ gSS is semisimple

� �
the real and quaternionic

1There is a typo in Robles (2014, Proposition 3.4): in general one may assert only that the group F is R–algebraic (not Q–
algebraic).

2Note that a rational representation may be irreducible overQ, but not overR. So this assumption would be too strong if one
were looking for a classification over Q.
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representations may be distinguished as follows. Recall the conventions of §2.3.4, and let
A1, , Ar

� �
⊂ hss be the basis dual to the simple roots α1, , αrf g. Then

ESS
ϕ ¼

X
αi Eϕ

� �
Ai, with αi Eϕ

� �2 0,1f g:

Define

Tϕ≔ 2
X

αi Ess
ϕð Þ¼0

Ai:

If μ¼ μ∗, then U is real if and only if μ Tϕ

� �
is even, and is quaternionic if and only if μ Tϕ

� �
is odd

(Green et al., 2012).

2.6. Eigenvalues and level of the Hodge structure

Set

m≔ μ Eϕ

� �
and m∗≔μ∗ Eϕ

� �
:

Then the nontrivial eigenvalues of Eϕ on U are

m, m�1, m�2,…, 2�m∗, 1�m∗, �m∗f g:
Equation (2.6) implies

2m, 2m∗ 2 Z:

The Hodge structure ϕ on VR is of level

n¼ 2max m, m∗f g:

2.7. Reductive versus semisimple

Let gC, Eϕ, μ
� �

be a triple underlying a Hodge representation; gC is a complex reductive Lie algebra,
Eϕ 2 gC is a grading element (determining a real form gR, §2.3.2), and μ is the highest weight of an
irreducible gC–module U ¼Uμ. The purpose of this section is to observe that such triples are equivalent

to tuples gssC , E
ss
ϕ , μ

ss, c
� �

with gssC a complex semisimple Lie algebra,Ess
ϕ 2 gssC a grading element, μss the

highest weight of an irreducible gssC–module, and c2Q.
Recall the notations of §2.3.4. As discussed in Remark 2.19, the central factor E0

ϕ acts on the
irreducible U by a scalar

c¼ μ E0
ϕ

� �
2Q,

and on U∗ by �c. It follows that gC, Eϕ, μ
� �

and gssC , E
ss
ϕ , μ

ss, c
� �

carry the same data. (Here
μss ¼ μjhss is the highest weight of U as a gssC–module.)

As noted in Remark 2.19, gC ¼ gssC is semisimple if and only if c¼ 0.
The remainder of this section is devoted to discussing the relationship between the Ess

ϕ –eigenspace
decomposition of U and the Hodge decomposition (§2.1) of VR.

Let

U ¼Uμ Ess
ϕð Þ¯⋯¯U�μ∗ Ess

ϕð Þ (2.20)

be the Ess
ϕ –eigenspace decomposition of U . We have
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m¼ μ Eϕ

� �¼ μ Ess
ϕ

� �
þ c:

Likewise, the Ess
ϕ –eigenspace decomposition of U∗ is

U∗ ¼U∗
μ∗ Ess

ϕð Þ¯⋯¯U∗
�μ Ess

ϕð Þ:

It is a general fact from representation theory that μ ESS
ϕ

� �
and �μ∗ ESS

ϕ

� �
are both elements of Q,

and any two nontrivial Ess
ϕ –eigenvalues of U differ by an integer.

(a) If Uμ is real, then μ¼ μ∗ and VC ¼Uμ imply that c¼ 0 and

Vp,q ¼U p�qð Þ=2:

(In this case, we have z¼ 0.)

(b) If U is complex or quaternionic, then

Vp,q ¼U p�qð Þ=2�c¯U∗
p�qð Þ=2þc:

Remark 2.21. From (2.20), we see that the number of nontrivialE–eigenvalues forUμ is precisely
e μ, Eð Þ¼ μþμ∗ð Þ Eð Þþ1. By (2.6) and (2.17), we have e μ, Eð Þ ≤ nþ1. And by Remark 2.7,
e μ, Eð Þ ≥ 2. Thus

2 ≤ e μ, Eð Þ¼ μþμ∗ð Þ Eð Þþ1 ≤ nþ1:

3. Identification of Hodge domains: general strategy
3.1. Main result

Given a complex semisimple Lie algebra gC with Cartan subalgebra h ⊂ gC, and irreducible gC–
representation U and a rational number c2Q, let E0 ¼ c Id 2 End Uð Þ be the operator acting on U
by scalar multiplication. We specify that E0 ¼�c Id 2 End U∗ð Þ act by �c on the dual representation.
Then

egC ¼ gC¯spanC E0f g
is a reductive Lie algebra (semisimple if c¼ 0), with semisimple factor gC and center z spanned byE0

(We are essentially making a change of notation here, replacing the reductive/semisimple pair gC, g
ss
C of

the previous sections with (possibly) reductive/semisimple pair egC, gC. This is done for notational
simplicity: it is cleaner to drop the ss superscript.)

The upshot of the discussions in §§2.3–2.7 is.

Theorem 3.1 (Green–Griffiths–Kerr [Green et al., 2012]). In order to identify the Hodge represen-
tations (2.1) with specified Hodge numbers h¼ hn,0,…, h0,n

� �
, it suffices to identify tuples

gC, E, μ, cð Þ consisting of a complex semisimple Lie algebra gC, a grading element E2 h ⊂ gC
(as in §2.3.2 and §2.3.4), the highest weight μ2 h∗ of an a irreducible gC– module U , and c2Q that
satisfy the following conditions:m; ¼ μ Eð Þþ c2 1

2Z, and the irreducible representationVR §2:4ð Þ of the
real form gR determined by E (§2.3.2) has EþE0ð Þ–eigenspace decomposition of the form (2.6) with
dimV p�qð Þ=2 ¼ hp,q.

Example 3.2 (Period domains). The domain Dϕ is a period domain if and only if the tuple
gC, E, μ, cð Þ is of one of the following two forms:
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(i) gC ¼ sp2rC;μ¼ω1, so that U ¼C2r is the standard representation; αr Eð Þ¼ 1 and c¼ 0:
(ii) gC ¼ somC;μ¼ω1, so that U ¼Cm is the standard representation; and c¼ 0. If m¼ 2r is even,

then we also have αr�1þαrð Þ Eð Þ 2 0,2f g.
Example 3.3 (Weight n¼ 1). The weight n¼ 1Hodge representations are well understood (Deligne,
1979; Milne, 2005). The corresponding tuples gC, E, μ, cð Þ are.

(i) sp2rC, Ar , ω1,0ð Þ, with egR ¼ gR ¼ sp2rR. The corresponding Hodge domain D is the period
domain D parameterizing polarized Hodge structures with h¼ r, rð Þ.

(ii) slrþ1C, A1, ωi, i
rþ1� 1

2

� �
, with egR ¼ gR ¼ su 1, rð Þ if 2i¼ rþ1, and egR ¼u 1, rð Þ otherwise.

(iii) slaþbC, Aa, ω1, 1
2� b

aþb

� �
, with egR ¼ gR ¼ su a, að Þ if a¼ b, and egR ¼ u a, bð Þ otherwise.

(iv) somþ2C, A1, ωr , 0
� �

, with mþ22 2r, 2rþ1f g and egR ¼ gR ¼ so 2, mð Þ.
(v) so2rC, Ar , ω1,0ð Þ, with egR ¼egR ¼ so∗ 2rð Þ.
Remark 3.4. Note that the two tuples gC, E, μ, cð Þ and gC, E, μ∗, �cð Þ determine the sameHodge
representation (§§2.4 & 2.7).

Remark 3.5. One consequence of Remark 1.3 is that in any particular example – that is, the case of a
fixed period domainD with specified Hodge numbers h – it suffices to identify the irreducibleHodge
domains D with Hodge numbers h0 ≤ h. For example, in §4, where we consider the case that
h¼ 2, h1,1,2

� �
, it will suffice to consider the two cases that h0 ¼ 1, h, 1ð Þ and h0 ¼ 2, h, 2ð Þ with

h ≤ h1,1.

3.2. Horizontal Hodge domains

Theorem3.1 identifies all theHodge subdomainsD of the period domainDh.We are especially interested
in the horizontal subdomains, which are necessarily Hermitian. These are the domains that satisfy the
infinitesimal period relation (IPR, a.k.a. Griffiths’ transversality). These distinguished subdomains may
be identified as follows.

It is a consequence of the normalization in §2.3.4 that the Hodge subdomain D ⊂ D is horizontal if
and only if the induced Hodge decomposition (2.9) is of the form

gC ¼ g1,�1
ϕ ¯g0,0ϕ ¯g�1,1

ϕ ; (3.6)

that is, gℓ,�ℓ
ϕ ¼ 0 for all ∣ℓ∣ ≥2, cf.Čap and Slovák (2009) and Robles (2014, §§2–3). This is a condition

on the grading element:

eα Eϕ

� �¼ 1,

where eα is the highest root. All such domains are necessarily Hermitian symmetric.
For the simple, complex Lie groups gC the set of all such grading elements (see §2.5 for notation), the

corresponding compact dualsĎ, the real forms gR, and themaximal compact subalgebra k ⊂ gR are listed
in Table 3.1. Here Gr a, Caþb� �

is the grassmannian of a–plane in Caþb, Qd ⊂ Pdþ1 is the quadric
hypersurface, and GrQ r, C2r� �

is the Lagrangian grassmannian of Q–isotropic r plane in C2r . The
following proposition is immediate and well-known.

Proposition 3.7. If gC, E, μ, cð Þ is a tuple indexing a Hodge representation (2.1) (cf. Theorem 3.1),
then the resulting Hodge domain Dϕ is horizontal if and only if gC, Eð Þis a sum of those pairs listed in
Table 3.1.

In general theHodge domainsD ⊂ Ď are cut out by positivity conditions defined by aHermitian form
H. For example, in the case of period domains, the compact dual essentially encodes the first Hodge–
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Riemann bilinear relation, and the second Hodge–Riemann bilinear relation is the positivity condition
cutting out D. To illustrate this, we describe the Hodge domains for the first three rows of Table 3.1.

(1) In the case of Ď¼ Gr a, Caþb� �
, we note that Caþb has an underlying real structure, and we fix a

nondegenerate Hermitian form H on Caþb of signature a, bð Þ. Then
D¼ E2Gr a, Caþb� �

Hj jEis pos def
� �

:

(2) In the case that Ď¼Qd ¼GrQ 1, Cdþ2� �
we define a Hermitian form H on Cdþ2 by

H u, vð Þ¼�Q u,vð Þ. Then
D¼ E2GrQ 1, Cdþ2� �

Hj jE is pos def
� �

:

(3) In the case that Ď ¼GrQ r, C2r� �
we define a Hermitian form H on C2r by H u, vð Þ¼ iQ u,vð Þ.

Then

D¼ E2GrQ r, C2r� �
Hj jEis pos def

� �
:

4. Example: Hodge domains for level 2 Hodge structures

The purpose of this section is to illustrate the application of the strategy outlined in §3 in the case that
D¼Dh is the period domain parameterizing Q–polarized, (effective) weight two Hodge structures on
VR with Hodge numbers

h¼ h2,0, h1,1, h0,2
� �¼ 2, h1,1,2

� �
:

Equivalently, φ2D parameterizes Hodge decompositions

VC ¼V2,0¯V1,1¯V0,2,

with

dimC V2,0 ¼ 2¼ dimC V0,2:

(We assume throughout that h1,1 ¼dimC V1,1 6¼ 0:) Geometrically such Hodge structures arise when
studying smooth projective surfaces with pg ¼ 2.

We have

GR ¼Aut VR,Qð Þ¼O h1,1,4
� �

:

As discussed in §1.3 it suffices to identify the irreducible Hodge representations (2.1) with either hϕ ¼
1, h, 1ð Þ or hϕ ¼ 2, h, 2ð Þ, and h ≤ h1,1. (Each such Hodge representation corresponds to a Hodge

Table 3.1 Data underlying irreducible Hermitian symmetric Hodge domains

gC E Ď¼GC=PE gR k

sl aþb, Cð Þ Aa Gr a, Caþb� �
su a, bð Þ s u að Þ ¯u bð Þð Þ

sl dþ2, Cð Þ A1 Qd so 2, dð Þ s o 2ð Þ ¯o dð Þð Þ
sp 2r, Cð Þ Ar GrQ r,C2r� �

sp 2r, Rð Þ u rð Þ
so 2r, Cð Þ Ar Spinor variety so∗ 2rð Þ u rð Þ
e6 A6 Cayley plane EIII so 10ð Þ ¯R

e7 A7 Freudenthal variety EVII e6¯R:

10 Xiayimei Han and Colleen Robles
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subdomain D¼GR �ϕ of the period domain D¼Dhϕ parameterizing Q–polarized Hodge structures on
VR with Hodge numbers hϕ:) The analysis decomposes into three parts:

(A) We begin with the simplifying assumptions that gC is simple and that D is horizontal. This has
the strong computational advantage that we may take the grading element E to be as listed in
Table 3.1. The resulting domains are enumerated in Theorems 4.1 and 4.3.

(B) Continuing to assume that gC is simple, we turn to the case that horizontality fails; the domains
are enumerated in Theorem 4.4.

(C) Finally we consider in Theorem 4.6 the case that gC is semisimple (but not simple).

Together Theorems 4.1, 4.3, 4.4 and 4.6 give a complete list of the irreducible Hodge representations (2.1)
with hϕ ≤ h¼ 2, h1,1,2

� �
.

Theorem 4.1. The irreducible Hodge representations (2.1) with gC simple, hϕ ¼ 1, h, 1ð Þ and
horizontal Hodge domain D ⊂ D 1,h,1ð Þ are given by the following tuples gC, E, μ, cð Þ:
(i) Period domains: so hþ2, Cð Þ, A1, ω1,0

� �
, with hϕ ¼ 1, h, 1ð Þ.

(ii) Complex balls: both tuples

sl 1þ r, Cð Þ, A1, ωr , �1= rþ1ð Þ� �
and sl 1þ r, Cð Þ, Ar , ω1, �1= rþ1ð Þð Þ

yield Hodge representations with hϕ ¼ 1,2r, 1ð Þ.
Remark 4.2 (Geometric realizations). Pearlstein and Zhang (2019) have exhibited geometric real-
izations of Gφ ¼G1�G2 with Gi one of SO 2, hið Þ orU 1, rið Þ, corresponding to the two cases/factors
of Theorem 4.1.

Theorem 4.3. The irreducible Hodge representations (2.1) withgCsimple, hϕ ¼ 2, h, 2ð Þand hori-
zontal Hodge domain D ⊂ D 2,h,2ð Þ are all grassmannian Hodge domains (corresponding to the first
row of Table 3.1), and are given by the following tuples sl aþb, Cð Þð , Aa, μ,cÞ:

(i) The tuples

sl 3, Cð Þ, A1, ω2,2=3
� �

and sl 3, Cð Þ, A1, ω1, �2=3
� �

yield Hodge representations with hϕ ¼ 2,2,2ð Þ.
(ii) The tuple sl rþ1, Cð Þ, A2, ω1,2= rþ1ð Þ� �

yields a Hodge representation with hϕ ¼ 2,2r�2,2ð Þ.
Theorem 4.4. The irreducible Hodge representations (2.1) with gC simple and hϕ ≤ h¼ 2, h1,1,2

� �
,

for which the Hodge domainD ⊂ Dh is not horizontal are given by the following tuples gC, E, μ, cð Þ:

(i) Period domains: so hþ4, Cð Þ, A2, ω1,0
� �

, with hϕ ¼ 2, h, 2ð Þ.
(ii) Special Linear contact domains: sl rþ1, Cð Þ, A1þAr , ω1,0

� �
, with hϕ ¼ 2,2r�2,2ð Þ.

(iii) Special Linear contact domains: sl 4, Cð Þ, A1þA3, ω2,0
� �

, with hϕ ¼ 2,2,2ð Þ.
(iv) Spinor contact domains: so 5, Cð Þ, A2, ω2,0

� �
and so 7, Cð Þ, A2, ω3,0

� �
, both with

hϕ ¼ 2,4,2ð Þ. (The first is quaternionic, the second is real.)
(v) Symplectic contact domains: sp 2r, Cð Þ, A1, ω1,0

� �
, with hϕ ¼ 2,4 r�1ð Þ, 2ð Þ.

(vi) Exceptional contact domains: g2, A
2, ω1,0

� �
with hϕ ¼ 2,3,2ð Þ.

SeeHan and Robles (2020, §A.8) for further discussion of the domainsD appearing in Theorem 4.4
as homogeneous spaces.

Remark 4.5. The Spinor contact domain given by the tuple so 5, Cð Þ, A2, ω2,0
� �

in Theorem 4.3
(iv) is a special case of Theorem 4.3(v) under the isomorphism so 5, Cð Þ≃sp 4, Cð Þ.
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Theorem 4.6. The irreducible Hodge representations (2.1) with hϕ ≤ h¼ 2, h1,1,2
� �

and gC semi-
simple (but not simple) are given by:
(i) gC ¼ sl2C¯sl2C acting on U ¼C2˜C2 with E¼A1þA2; and
(ii) gC ¼ sl2C¯sl4C acting on U ¼C2˜C4 with E¼A1þA3.

Each of these Hodge representations is real (implying ). The Hodge numbers are and
h¼ 1,2,1ð Þ and h¼ 2,4,2ð Þ c¼ 0 respectively.

The theorems are proved in the Appendix (Han & Robles, 2020, §A).

5. Hodge representations of Calabi–Yau type

We say that a Hodge representation (2.1) is of Calabi–Yau type (or CY-type if the first Hodge number
hn,0ϕ ¼ 1. The irreducible CY-Hodge representations with gR semisimple are classified in (Robles, 2014,
Proposition 6.1). They are precisely the tuples gC, E, μ, cð Þ of Theorem 3.1 with c¼ 0 (§2.7), and such
that:

(a) μi ¼ 0 whenever αi Eð Þ¼ 0, where αi are the simple roots of (the semisimple) gC and the 0 ≤ μi 2
Z are the coefficients of μ¼ μiωi as a linear combination of the fundamental weights ωi;

(b) either the representation is real equivalently, U ¼U∗ and μ Tϕ

� ��
is an even integer), or

(c) μ Eϕ

� � 6¼ μ∗ Eϕ

� �
, and U is necessarily complex.

Remark 5.1. The condition (a) above is equivalent to the statement that dimUμ Eð Þ ¼ 1; equivalently,
Uμ Eð Þ is a highest weight line.

Theorem 5.2. An irreducible Hodge representation (2.1) is ofCY-type if and only if the corresponding
tuple gC, E, μ, cð Þ of Theorem 3.1 has the properties:

(i) The condition (a) above holds.
(ii) If Uμ is not real (with respect to the semisimple gR), then μ Eð Þþ c> μ∗ Eð Þ� c.

Proof. It is straightforward to deduce the theorem from the proof of Robles (2014, Proposition 6.1)
and the discussion of §2.7. Details are left to the reader. □

Example 5.3. The (rational) Hodge groups of K3 type (CY 2-fold type) were determined by Zarhin
(1983). The corresponding (real) Hodge representations (2.1) are those with Hodge numbers
hϕ ¼ 1, h, 1ð Þ. The list of all associated tuples (Theorem 3.1) is.
(i) sohþ2C, A1, ω1,0

� �
, with hϕ ¼ 1, h, 1ð Þ and h ≥ 3.3

(ii) sl2C¯sl2C, A1þA2, ω1þω2,0
� �

, with hϕ ¼ 1,2,1ð Þ.4
(iii) slrþ1C, A1, ω1, 1

rþ1

� �
with hϕ ¼ 1,2r, 1ð Þ and r ≥ 2.

(iv) sl2C, A1,2ω1,0
� �

with hϕ ¼ 1,1,1ð Þ.
(v) sl4C, A2, ω2,0

� �
, with hϕ ¼ 1,4,1ð Þ.

Example 5.4. The set of all Hodge representations (2.1) of CY 3-fold type (Hodge numbers hϕ ¼
1, h, h, 1ð ÞÞ is enumerated in Han (2021). In the case thatDϕ is horizontal (and therefore Hermitian)
these are of particular interest (Friedman & Laza, 2013; 2014; Gross, 1994). In fact, this completes the
classification begun in Friedman and Laza (2013, §2.3); our (v), (vii) and (x) are omitted from

3The associated domain Dϕ is the period D parameterizing polarized Hodge structures of K3-type with hϕ ¼ 1, h, 1ð Þ, cf.
Example 5.2.

4Recall that go4C¼ gl2C¯gl2C is semisimple. Here Dϕ is again the period domain.
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Friedman and Laza (2013, Corollary 2.29). The corresponding (horizontal) tuples gC, E, μ, cð Þ of
Theorem 3.1 are.

(i) sl2C, A1,3ω1,0
� �

with hϕ ¼ 1,1,1,1ð Þ.
(ii) sl2C, A1, ω1,0

� �¯3
with hϕ ¼ 1,3,3,1ð Þ.

(iii) sl6C, A3, ω3,0
� �

with hϕ ¼ 1,9,9,1ð Þ.
(iv) slrþ1C, A1, ω1, 3

2� r
rþ1

� �
with hϕ ¼ 1, r, r, 1ð Þ.

(v) slrþ1C, A1,2ω1, 3
2� 2r

rþ1

� �
with hϕ ¼ 1, h, h, 1ð Þ and hþ1¼ 1

2 rþ1ð Þ rþ2ð Þ.
(vi) slrþ1C, A2, ω2, 3

2� 2 r�1ð Þ
rþ1

� �
with hϕ ¼ 1, h, h, 1ð Þ and hþ1¼ 1

2r rþ1ð Þ.
(vii) slrþ1C, A1, ω1

� �
¯ slr0þ1C, A1, ω1
� �

and c¼ 3
2� r

rþ1� r0
rþ1 , with hϕ ¼ 1, h, h, 1ð Þ and

h¼ rþ r0 þ rr0.
(viii) sl2C, A1, ω1,0

� �
¯ g0C, E

0, μ0, c0
� �

with hϕ ¼ 1, h0 þ1, h0 þ1,1ð Þ, where g0C, E
0, μ0, c0

� �
is

any tuple of Example 5.3 with Hodge numbers h0 ¼ 1, h0, 1ð Þ.
(ix) sp6C, A3, ω3,0

� �
with hϕ ¼ 1,6,6,1ð Þ.

(x) somC, A1, ω1,1=2
� �

with hϕ ¼ 1, m�1, m�1,1ð Þ.
(xi) so10C, A5, ω5,1=4

� �
with hϕ ¼ 1,15,15,1ð Þ.

(xii) so12C, A6, ω6,0
� �

with hϕ ¼ 1,15,15,1ð Þ.
(xiii) e6, A6, ω6,1=6

� �
with hϕ ¼ 1,26,26,1ð Þ.

(xiv) e7, A7, ω7,0
� �

with hϕ ¼ 1,27,27,1ð Þ.
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rithm, and carries it out in full detail (see the appendix) in two cases: (1) weight twoHodge structures with
h^{2,0}=2 and (2) weight three Calabi-Yau type Hodge structures. Classically, Hodge theory has been
successfully applied to study the moduli spaces of principally polarized abelian varieties and K3 surfaces.
One important reason whyHodge theory is a powerful tool in the study of these moduli spaces is that the
corresponding period domains are Hermitian symmetric. Weight two Hodge structures with h^{2,0}=2
and weight three Hodge structures of Calabi-Yau type are the simplest cases where the corresponding
period domains are not Hermitian symmetric. The paper under review (and some upcoming paper) lists
all the horizontalMumford-Tate subdomains (which areHermitian symmetric), and can be thought of as
the first step for finding non-classical applications of Hodge theory in the study of the moduli spaces of
algebraic surfaces with geometric genus 2 and Calabi-Yau threefolds. As far as I can see, the paper is
correct and quite nice. I recommend it for publication in Experimental Results.
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