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Abstract

A class of Markov chains is considered for which a certain property of the tail events makes
bounded harmonic functions obtainable from bounded space-time harmonic functions.
Applications to almost surely convergent Markov chains are given and, in particular, a repre-
sentation of Martin-Doob-Hunt type is derived for all bounded harmonic functions of a finite
mean supercritical branching process.

1980 Mathematics subject classification (Amer. Math. Soc): 60 J 05.

1. Introduction

Let S be a countable set of integers, N = {0,1,...} and Q = SN. Define the variables
{Xn(ot>): «^0} on 12 by XjoS) = con where co = (ai0,u)1,...,<on,...) and let & be
the w-field generated by the variables {Xn(ai): n > 0}. Suppose that-nm = (TT^ :ieS)
is an initial probability vector whose components are strictly positive. Write
P = (P(i,j): i,j€S) for the transition probability matrix of the chain. The pair
(•n-(0),P) determines a probability measure P aa.3F and a temporally homogeneous
Markov chain {XJco): n>0} on (Q.^ .P) such that TTJ0) = P(X0 = i) and
P(Xn=j\Xn_1 = i) = P(i,j) whenever P(Xn_1 = i)>0. Apart from the proba-
bility measure P defined above we shall consider the probability measures {PJ with
/6 5 where Pf stands for the probability measure of a chain assuming the transition
matrix P and the Dirac measure S(/) for the initial probability distribution. An
expectation or a distribution function of a random variable will be denoted by Ei

and Fi respectively, when taken with respect to P*. A shift function T: Q-+G1 is
defined by setting T(oi0,(x}ly...) = (a^tdg,...). We shall write TA = {Tw. we A},
T -1 A = {to: Tco € A} and T° A = A. A set / in & is said to be invariant if T~x 1=1.

413

https://doi.org/10.1017/S1446788700012556 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012556


414 H. Cohn [2]

The class of all invariant sets, denoted by <f, is a a-field, called the invariant a-field.
Denote by J*"» the <r-field generated by Xn,Xn+1,... and by 9~ = OS-o^S1 t h e

tail o-field of the chain. We shall say that A = B almost surely if P(A A B) = 0 and
= A almost surely if

P(A A lim inf {Xn e AJ = P(A A lim sup {Xn eAn} = 0,
n-too n-»oo

where AAB stands for the symmetric difference of A and B. Write 7r|n) = ^(A^ = i)
and let £„ = {y: 7rj"> > 0}. It can be easily checked that 5O2 5X2... . We shall
suppose that {XjcS): «> 0} is a properly homogeneous chain, that is, that
PQimsupXne{Sn-Sn+1}) = 0, see Cohn (1979). Let R be the set of all real

numbers and R+ the set of nonnegative numbers. A function h: S->R+ will be
said to be harmonic if

(1) h(i) = S /»(», 7) *O) for all / e 5

and g: NxS->R+ will be said to be space-time harmonic if

(2) g(n,i) =. S-Pft./)*(»+1.7) for all / eS and »eJV.

In abbreviated form (1) will read/= Pf and (2) ^n = Pgn+V It is well known that
to each harmonic function/can be attached a martingale {f(Xn): n > 0} and it is of
interest to identify classes of harmonic functions of a chain. The identification of
the harmonic functions is the main object of the Martin boundary theory and,
roughly speaking, this is done by investigating the asymptotic behaviour of the
Martin boundary kernel K(i, j) defined as

where G(i,j) = ~E,n=4)P
n(i, j) is the Green function of the chain, P° the identity

matrix and Gn(j) = Sies^l01 G(i> J) (see> f°r example, Revuz (1975), Chapter 7).
Except for a few ca^es, the Martin boundary kernel is a very complicated expres-
sion and its handling seems to be a formidable task. Such a task was successfully
carried out, under certain conditions, for the finite mean branching processes by
Dubuc (1970), but seems hopeless in many other cases.

The identification of the space-time harmonic functions is somewhat easier,
since the Green function of a space-time chain takes the simpler form

G((m,i):(n,j)) = Pn-m(i,j), n>m, i,jeS,

and there are several examples known in the literature when the space-time har-
monic functions were actually identified.
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[3] Harmonic functions for Markov chains 415

The aim of this paper is to point out a class of Markov chains for which classes of
harmonic functions can be identified by means of space-time harmonic functions.
The basic idea, suggested by the branching processes case, is the following: if we
have a space-time harmonic function g, we can 'extend' it by defining Pg0 = g_lt

Pg-\ = g-z> and so on. Suppose that h(i) = £ £ xg(n, i) < oo for all ie S. Then we
can easily check that h = Ph and hence h is an harmonic function. In general
Hi<%—aog(n, i) need not be finite and this construction does not always lead us to an
harmonic function. However, we shall define a class of Markov chains containing
some cases of interest, for which this purely analytical construction turns out to
have some probabilistic meaning and classes of harmonic functions will be identified
in this way.

The main probabilistic assumption is expressed by the following.

CONDITION (A). There exists a set \ e y with P(Ao)>0 such that
(a) For any m andn with m=£n, P(Tm\r\TnAJ = 0,

(b)P U Tn\ = 1 .

LEMMA 1. Suppose that Condition (A) holds. Then a set I is invariant if and only if
it can be represented as

00

/ = \J TnA almost surely
n——oo

for some Ae&~, with AsA,,.

PROOF. Suppose that / is an invariant set and consider the sets Jn = 7 n r n A 0

with neZ. Then according to Proposition 1 of Cohn (1979), In = Tn(I nAJ and
U£L-oo Jn = /almost surely. Reciprocally, U* a>TnA- is an invariant set for any
A e J and the lemma follows.

We shall further agree to modify the definition of the space-time harmonic
functions g to make it contain the negative values of n which were defined above,
that is, a sequence {gn: neZ} will henceforth be said to be space-time harmonic if
for any neZ, gn = Pgn+1, Z being the set of all integers.

THEOREM 1. Suppose that Condition (A) holds. Then any bounded harmonic
function h can be represented as

00

n=—oo

where {gn: neZ} is a space-time harmonic function.
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PROOF. According to Blackwell (1955), Theorem 2, any bounded harmonic
function h is expressible as h(i) = E(f\ Xo = i) where / is an invariant function.
Furthermore, any invariant function / is the limit of increasing simple invariant
functions

where A^\ ....A™ are invariant sets, ajm), . . . ,a^ ' are positive numbers and \A

is the indicator of the set A.
Consider now the conditional expectation

(3) E(fm\X0 = i) = ^

By Lemma 1 there exists a set AJ.m) with A ^ ' s A , such that

00

A^i* ~~ I J •* k *
n=—oo

Since P(r'A£»> n Tn A£">) = 0 for /#« we get

(4) P(A%n)\Xo = i) = S P(TnA%n)\X0 = i).

»=—oo

(3) and (4) together imply

m oo

F( f \ Y — A — V /2(n»> V
lc—1 n—oo

n——oo *=1

Since for any k and m, {P(rnAJ^m)| Xo = i): neZ} is easily checked to be a space-
time harmonic function, the same will hold for the {£j,m)(0: neZ} for any meN
where ^m)(i) = 2%.1a

l
l?

l)P(TnA%n)\X0 = i). It is easy to see that {gl™\i)} is
increasing with respect to m for any ieS and hence

exists for any /
Therefore

and since gn = hmm-»oO^m) = l i m ^ ^ P g ^ = Plimm^0OgJ»)
1 =i>gB+i, it follows

that {gn: n eZ) is space-time harmonic and the proof is complete.

OO

- S ft.
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2. Harmonic functions for convergent sequences

Suppose that {Xn{ui): n > 0} is a Markov chain with the property that there
exist norming constants {an} and {bn} with an > 0 such that hmn_>00 an(Xn+bn) = V
almost surely exists, is proper and nondegenerate. It was proved in Cohn (1977a),
Theorem 4, that limn_a}an+jan = <x and timn^aoan+1(bn+1-bn) = P exist, are
finite and a>0. We shall write Ffor the distribution function of V. In the course
of the proof of Theorem 4 of Cohn (1979) it was shown that if y is a jump point
for F, then

ya*+/3(a*-l)(«-l)-i, k = 0,1,...,

(y-]8)«-*-)Sa-i(a-*+1-l)(a-i-l)-1 , * = 1,2,...

are also jump points for F and

(5) Tk{V=y} = {V= yak+j9(<xfe-1)(a-1)-1} almost surely,

T~k{V=y} = {V=(y-p)ark-jSerV*41 -1 ) (« - 1 -1)"1} almost surely,

for k = 0,1, . . . .
If .Fis absolutely continuous in an interval (a,b) we shall denote by f(x,i) (for

xe(a,b)) the density of V with respect to the probability measure Pf and write
A, = 0/(1-a).

Consider now the functions

n=—oo

where x is a jump point for F and

h(x,i)= 5 «»

for xe (a, b).
We shall denote by o(V) the er-algebra generated by the random variable Fand

write Yn = an(Xn+bn),n>0.

THEOREM 2. Suppose that {Yn: «>0} converges almost surely to a proper and
nondegenerate random variable V, a > 1, and that

with hmn^ooxn = oo, limn^,_mxn = —oo are jump points for F. Assume further that
F is absolutely continuous in any interval (xn,xn+1) with neZ. Then

(a) {h(x, i)} are harmonic functions, except perhaps for xeN, N being a set of
Lebesgue measure 0 with N<=R—{xn: neZ}.

14

https://doi.org/10.1017/S1446788700012556 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012556


418 H. Cohn [6]

(b) For any bounded harmonic function h of the form h(i) = E^U) where U is an
invariant random variable measurable with respect to o{V), there exists a unique
positive measure r\ on R such that

(6) h(i) = V(Xo)Px{V= Ao)+ Ilr,(yll)h(yv,i) + f h(x,i)V(dx),
v=i Jr

where A,, = j8/(l —a),

T = (A1,<*A1+i3)u{Ao}u(A2,aA2+j9)-{yl,: v = 1, ...,m},

Ax > A,, and Ag < Â .

PROOF. AS in the proof of Theorem 4 of Cohn (1979) it can be shown that

T{a< V^b} = {oca+{}< V^ab+fl} ahnost surely,
and

= {a-^a-jS)< F < o r \ b - p ) } ahnost surely,

If we further notice that A,, is the fixed point of the mappings x-+otx+fi and
x -+ or^x - p), we write ax+ft = A,,+a(x - A,,), a"1^ - j3) = A,,+a"1^ - \) and by
iteration we get for )fc> 1

(7) r»{a < K< 6} = {Ao+a.n(a - A,,) < F < A,,+«»(6 - A,,)} ahnost surely,

and

(8) T-n{a<V^b} = {\)+ornia-X^<V^\)+(x-n(b-X0)} ahnost surely.

Now it is easy to check that for x^\, {Tn{x< V^ax+fi}: neZ] are disjoint
sets, whereas Tn{x< F3*ax+/J} and Tn+I{x< V^ooc+ffy have a common end
point for any neZ. Thus

(9) U 77n{Fe(A1,aA1+j8)} = {A0<K<oo} ahnost surely,
n=—oo

and

(10) U r»{Ke(A2,aA2+j8)} = {-oo<K<A0} almost surely.

Hence {A,,<K<oo} and {—oo<F<A0} are either invariant sets or differ from
invariant sets by null sets. As a consequence, if A,, is a jump point for F, {V = Aj}
either is also invariant or differs from an invariant set by a null set. Another con-
sequence of (9) and (10) is that in order to get all the harmonic functions {h(x, i)}
we can limit ourselves to the values of x belonging to

A = (A1,aA1+#u{A0}u(A2,aAi!+j3)

since for any xeR there exists x' in A such that h(x,i) = h(x',i) for all i.
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[7] Harmonic functions for Markov chains 419

Now if P(V = x)>0, h(x,i) is harmonic, since h(x,i) = Pi(\J'Z~-aa
Tn{v = x))

and Lemma 1 and the already-mentioned Theorem 2 of Blackwell (1955) apply.
Consider now the function G^x) = PiiV^^T^VeAni-oo^)}) forxeF,

which is also harmonic. It is easy to see that

Gi(x)= S
n=—°o

for xe(X1,acX1+p) and

Gt(x)=

- 2
n=—oo

Take now x e (a, b) where (a, b) is an interval in which F is absolutely continuous.
As we have remarked before, G(x) = {G^x)} is harmonic and PG(x) = G(x) implies
that its derivative G^x) is also harmonic, provided that it exists and is finite.
Notice now that G'^x) = h(x, i). The proof of (a) can now be completed on invoking
the Fubini theorem on differentiation (see, for example, Riesz and Nagy-Sz (1955),
p. 11) which asserts that the differentiation term by term is validated at all points
xe(a,b) except, maybe, for a set of Lebesgue measure 0.

To prove (b) we first notice that there are only a finite number of values
{xn: n 6 Z} in V since we have assumed that limt._>_00 xk = — oo and lim^o, xk = oo.
Furthermore, because all the invariant events of the form Un-=-oo^n(^ = xm) a r e

obtained for xm e F it follows that there are only a finite number of invariant sets
generated by the jump points of F, which will be denoted by ylf ...,ym.

Let us further notice that a slightly different variant of Lemma 1 entails that
any invariant event can be expressed as U»=-oor"-^ with As{FeA}. It is not
difficult to see that such an event can be written as

U TnA1u{V=X0}u U TnA2
n=—oo n=—oo

with A1c{Ke(A1,aA1+jS]} and A2c{Ke(A2,aA2+j8]}. Choose now

Afab) = {Fe{(a,6)n(A1)aA1+iS]}}
and

A2(c,d) = {KG{(c,(/)n(A2)<xA2+)3]}}.

Then the class of sets {{V= AJuAx(a,b)uA2(c,d)} for a,b,c,deA generates all
the invariant events in <J(V).
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Since the representation (6) is valid for

h(i)= 2 Pi(T"A1{a,b)) + Pi{V=\))+ 5
»=—00 Jl=—00

a standard approximation argument in the integration theory leads us to conclude
that h(i) = E^U) where U is a <x(F) measurable, bounded, invariant variable and
the proof is complete.

REMARK. It is easy to see that for any x e {xn: n eZ}, h{x, i) ^ 1 for all /. However,
as a function of (x,i), h is unbounded. Indeed, if we choose xe(xm,xm+1) for a
certain m and take e>0, the martingale convergence theorem implies that
limn^P(Ve{x-e,x+s)\Xn) - l{V^x-e,x+e)) almost surely. It follows that there
exists a sequence {/„} such that \imn^x>Pip'-n{Ve{x-e,x+e)}) = 1. The mean
value theorem entails lim,^,*,2eh(r)n,in) = 1 for some rjne(x—e,x+e) and since s
was arbitrarily chosen, h turns out to be unbounded.

3. Applications

We shall further consider two applications of Theorem 2 to supercritical branch-
ing processes. Let {Zn: n^O} with P(Z0 = / )>0 for all ieN be a simple branching
process and write m = E(Zi). It is known that if 1 < m < oo then there exists some
norming constants {Cn} such that lim^o, ZJCn = W almost surely where W is a
proper random variable, P(W = 0) = q and W admits an absolutely continuous
distribution function on (0,<x>) (see Seneta (1968) and Heyde (1970)). Besides
lim^oo Cn\Cn_x = m. It is easy to see that the conditions of Theorem 2 are
satisfied with A<, = 0 and that (A^aAj+jS) can be taken to be (l,w], whereas
(Ag.aAjj+^S) is absent since P(W^0) = 1. In fact, the result of Theorem 2 can be
strengthened in this case to yield the following.

THEOREM 3. Let {Zn: n ^ 0} be a simple branching process with 1 < m < <x>. Then to
any bounded harmonic function h there corresponds a unique positive measure t] such
that

(11) h(i) =

where q = limB^00 P(Zn = 0).

PROOF. If we notice that Pi(W=0) = qi then the representation (11) is a con-
sequence of (6) and is thus valid for any harmonic function h expressible as
h(i) = E^U) where U is an invariant, bounded and a{W) measurable random
variable. Further by a result established independently by Lootgieter (1977) and
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Brown (1977), &~ = o(W) apart from null sets. Now, since any invariant variable is
^"-measurable, an appeal to already mentioned Theorem 2 of Blackwell (1955)
completes the proof.

REMARK. Dubuc (1970, 1971) has shown that {h(x,i)} are extremal harmonic
functions provided that E(Z2)<co and if E(Z log2 Z)<ao any harmonic function
(bounded or not) admits the representation (11). Pakes (1978), p. 70, has noticed
that Dubuc's condition E(Z log2 Z)<co can be relaxed to £"(ZlogZ)<oo. Loot-
gieter (1977) used a different method to show that if 1 < m < oo, {h(x, i)} are extremal
harmonic functions, provided that they are finite. He has also given a representa-
tion for the space-time harmonic functions.

Our next application will refer to a regular branching process with infinite mean.
In such a case it was proved in Schuh and Barbour (1977), Theorem 2.32, that there
exists a slowly varying function U and some norming constants {Cn} with
limCn/CB_1 = a > l such that {U(Zn)/Cn} converges almost surely to a proper
random variable V=U(\/T), where P(T^x) = exp(-x) for all x>0 and

THEOREM 4. Suppose that {Zn: n^O} is a regular branching process with infinite
mean and assume that U has a continuous derivative. Let F be the distribution
function of V and fits density function. Then

(a) for any x>0

(12) h(x,i)= £ <xn+1iFi-\ocn+1x)f(ocn+1x) fo r /> l
n=—oo

is an harmonic function and for any fixed i, h(x,i) is continuous;
(b)for any distinct values y1,...,yme(l,a],h(y1,i),...,h(ym,i) are linearly

independent.

PROOF. By equation (11) of Cohn (1977b) we get that

Fi(x) = Fi(*x) forz>l

and it is easy to see that F0(x) = 1 for x > 0. Elementary calculations lead us to (12).
Given that U is a slowly varying function and that T is exponentially distributed,
it is not difficult to convince ourselves that the series given by (12) converges
uniformly in any closed interval [a,b] with a,b>0 and thereofre h(x,i) are con-
tinuous functions.
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To prove (b) we recall that in Remark after Theorem 2 we have noticed that
there exists a sequence {/„} such that limn_aoPin(T-n{Ve(x-e,x+e)}) = 1 and
that lim,^2eh{-qn,in) = 1 with rfne((x-s),(x+e)). Further we know that
ine{j: (U(Zn)ICn)e(x-e,x+e)} and therefore ine(U-\Cn(x-e),U-\Cn(x+e)).
Elementary calculations can easily show that h(x, in) is continuous in x, uniformly
with respect to n, and this implies that \xmn_Kh(x,in) = oo. We take now x = yk

where A:e{l,...,m). Since h m ^ p J U ^ L - o o ^ F ^ x - s . x + e ) ) = 0 and because
{x—e,x + e) can be made small enough to ensure that all but one of the points
yx, ...,ym are outside (x-e,x+s) we get that if lim^ch{yk,in) = oo then
kmn_>mh(yk., in) = 0 for &V k and this entails the linear independence of
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