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Abstract. Current and forthcoming cosmological data analyses share the challenge of huge
datasets alongside increasingly tight requirements on the precision and accuracy of extracted
cosmological parameters. The community is becoming increasingly aware that these require-
ments not only apply to the central values of parameters but, equally important, also to the
error bars. Due to non-linear effects in the astrophysics, the instrument, and the analysis pipeline,
data covariance matrices are usually not well known a priori and need to be estimated from the
data itself, or from suites of large simulations. In either case, the finite number of realisations
available to determine data covariances introduces significant biases and additional variance in
the errors on cosmological parameters in a standard likelihood analysis. Here, we review recent
work on quantifying these biases and additional variances and discuss approaches to remedy
these effects.
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1. What noise does to your covariance matrix
The variance-covariance of cosmological data is often complicated and not known an-

alytically, receiving contributions from sample variance coupled with complex survey
masks, instrumental effects, as well as measurement and shot noise. Therefore it is cus-
tomary to estimate data covariance matrices from the data itself (via resampling tech-
niques) or from suites of realistic mock datasets. The latter are computationally expensive
to generate, so that there is a strong drive to keep the number of simulated realisations of
the data, NS , to a minimum. Conversely, the ever increasing size of surveys and number
of mature cosmological probes to be extracted leads to data vectors which can easily
exceed dimensions of ND > 1000 in the near future.

Despite the pressure to keep NS small while creating data vectors with large ND , cos-
mologists have until recently almost exclusively employed the standard sample covariance
estimator and proceeded to perform a likelihood analysis without further consideration
of the statistical uncertainty and potential biases of their covariance estimate. Only re-
cently, beginning with the work of Hartlap et al. (2007), has there been an increased
awareness of long-established results on this topic in the statistics literature.

If the elements of a data vector D are Gaussian distributed, the data sample covariance
estimate M = 〈ΔD ΔDτ 〉, where ΔD = D − 〈D〉, follows a Wishart distribution (the
multivariate generalisation of a χ2 distribution) with NS −1 degrees of freedom (Wishart
1928). The inverse data covariance, Ψ ≡ M−1 , which is required in least squares and
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Figure 1. Illustration of the impact of noise on a covariance matrix, for the toy case of a
20-dimensional identity matrix. Top: Realisations of Wishart-distributed random matrices with
expectation subtracted, generated for NS = 5000, 100, 22 (from left to right) to illustrate the
increasing levels of noise. Bottom: Ordered eigenvalues, averaged over 1000 realisations of co-
variance matrices. The lines show eigenvalues for different values of the number of realisation
used for computing the covariance, NS , as indicated in the legend. The dashed horizontal line
indicates the eigenvalues in the noise-free case.

likelihood expressions, then follows an Inverse-Wishart distribution with NS − ND − 2
degrees of freedom. The moments of this distribution were first derived by Kaufman
(1967) who found for the mean

〈
Ψ̂

〉
=

NS − 1
NS − ND − 2

Ψ , (1.1)

demonstrating that Ψ̂ is increasingly biased high for decreasing NS and diverges at NS =
ND + 2. Fig. 1 provides an illustration for this non-intuitive behaviour. For decreasing
NS the largest (smallest) eigenvalues of a noisy covariance matrix are biased increasingly
high (low), and the condition number dramatically increases. The smallest eigenvalue
drops to zero at NS = ND + 2, rendering the covariance singular. Even after correcting
for the bias, the variance in the covariance estimate diverges at a very similar rate (see
again Kaufman 1967).

One may wonder about the impact on early cosmological analyses which generally
boasted only a small number of simulations and seem to have ignored the biases in the
inverse data covariance. Since the estimated covariances would have been very noisy, one
can hypothesise that researchers would have calculated a singular value decomposition
and set the smallest eigenvalues to zero before proceeding with a Moore-Penrose pseudo-
inverse. Fig. 2 illustrates two possible scenarios, alongside with the bias expected from
Eq. (1.1). Depending on the exact value of NS and ND , and the details of the noise-
suppression measures, biases may have been large and both positive and negative. The
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Figure 2. The effect of noise stabilising measures (via singular value decomposition) on the
bias of the inverse covariance. Shown is the average fractional bias on the diagonal elements of
the inverse covariance matrix (for ND = 24; indicated by the vertical line), as a function of the
number of realisation used for computing the covariance, NS . The black solid line corresponds
to the bias of the inverse of the sample covariance matrix, as calculated by Kaufman (1967).
The red (blue) line shows the bias for the case that the smallest eigenvalues of the covariance
have been set to zero before calculating a pseudo-inverse, such that the condition number does
not exceed 1000 (100).

increase in the largest eigenvalues would have remained untreated, and consequently the
inverse covariance would have tended to zero (or the fractional bias to -1) for NS → 0.

Precise and accurate cosmological analysis requires a more careful treatment of these
noise effects, either quantifying their effect on cosmological parameter errors or mitigating
them by employing alternatives to the standard sample covariance estimator.

2. Impact on the errors of cosmological parameters
Taylor & Joachimi (2014, TJ14 hereafter) calculated the impact of biases and variances

in the data sample covariance on the cosmological parameter covariance, finding that
the latter is generally biased high and takes up additional variance (see Dodelson &
Schneider 2013 and Percival et al. 2014 for earlier, approximate results). For the case
that the parameter covariance is estimated from the curvature of the likelihood at its
peak (similar to estimates from MCMC samples), they derived its full distribution, which
is again a Wishart distribution with NS − ND + NP − 1 degrees of freedom, where NP

is the number of parameters, i.e. the dimension of the parameter covariance matrix. The
mean reads 〈

ĈW
μν

〉
=

NS − ND + NP − 1
NS − ND − 2

Cμν , (2.1)

while exact expression for the variance can also be derived. Additionally, TJ14 found an
exact expression for the mean of the parameter covariance estimated from the scatter in
likelihood peaks, 〈

ĈP
μν

〉
=

NS − 2
NS − ND + NP − 2

Cμν , (2.2)

which they determined from simulations based on random Wishart matrices. De-biasing
the parameter covariances based on these expressions, TJ14 derived constraints on the
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minimum number of simulations required to reach a maximum contribution, ν, to the
error on cosmological parameters originating from noise in the data covariance (see their
Fig. 5). In the case of the parameter covariance derived from the likelihood curvature,
CW , the minimum number is given by NS ≈ ND + NP /ν + 2ν−2 . For forthcoming
cosmological surveys, where easily ND ∼ 1000, this implies that, if one tolerates a 10%
increase in parameter errors due to noise in the data covariance, NS has to be only
slightly larger than ND , whereas if one restricts this increase to 1%, a challenging number
of NS > 104 would result.

3. Beyond the sample covariance
There are various alternatives to using the standard sample covariance estimator in a

likelihood analysis, which Taylor et al. (2013, TJK13 hereafter) presented in schematic
form in their Fig. 8. Below we summarise the most relevant points.

Resampling methods: We have concentrated here on the generation of realisations
of the data from simulations, i.e. externally. Resampling methods like bootstrap or jack-
knife allow for the estimation of covariances internally from the data. To preserve the
correlations in the data, one has to define blocks of survey volume, or patches on the sky,
which are quasi-independent. This requirement limits the number of blocks for a given
survey volume/area. Moreover, long-range correlations will invalidate this assumption to
some degree and cause biases. In addition, bootstrap and jackknife estimates are gener-
ally biased and, although consistent, can converge slowly. For more details on resampling
methods see the contribution by P. Arnalte-Mur.

Data compression: Data compression alleviates the problem of noise effects originat-
ing from the data covariance as biases and variances scale approximately with NS −ND .
Maximal data compression, i.e. ND → NP , even eliminates all adverse noise effects, as
can be seen from Eqs. (2.1) and (2.2). Note that in the latter case the factor from the
Kaufman bias in Eq. (1.1) remains, which can be removed as the parameter covariance is
now a linear transformation of the data covariance, so no inversion is necessary. However,
data compression techniques require some information about the data covariance. TJK13
show for maximal Karhunen-Loeve compression that, using the sample covariance in the
compression operation, exactly reproduces the original noise effects – nothing is gained.
Employing a noise-free model covariance instead renders the compression suboptimal,
thus increasing errors on cosmological parameters to a yet unknown degree.

Shrinkage: We are not completely ignorant about the form of covariance matrices
for cosmological data. Their elements vary smoothly across angular and redshift scales,
and sometimes it is fair to assume that the diagonal dominates the errors, e.g. if shot
noise is prominent. In some regimes, such as on large, nearly Gaussian scales, we may
even have good, if not exact, analytic models. This is valuable prior information that
can be used to improve covariance estimates. One such approach is shrinkage estimation,
building a linear combination of the sample covariance and a model covariance (which
can contain free parameters). The weighting of the linear combination can be estimated
analytically from the data. TJK13 test several shrinkage estimators of covariance for a toy
cosmological case (see also Pope & Szapudi 2008). Their worst-performing estimator was
derived by Stein et al. (1972) who proved that nonetheless their estimator outperforms
the sample estimator with respect to a ‘natural’ loss function based on the mean square
error of the mean vector of the data, which implies the sample covariance estimator is
inadmissible (see also D. van Dyk’s contribution).

https://doi.org/10.1017/S1743921314013428 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921314013428


Errors on errors 103

References
Dodelson, S. & Schneider, M. D. 2013, Phys Rev D, 88, 063537
Hartlap, J., Simon, P., & Schneider, P. 2007, A&A, 464, 399
Kaufman, G. M. 1967, Report No. 6710, Center for Operations Research and Econometrics,

Catholic University of Louvain, Heverlee, Belgium
Percival, W., Ross, A. J., Sanchez, A. G., et al. 2014, MNRAS, 439, 2531
Pope, A. C. & Szapudi, I. 2008, Tech. Report No. 37, Depart. Statist., Stanford University
Stein, C., Efron, B., & Morris, C. 1972, 389, 766
Taylor, A. N. & Joachimi, B. 2014, MNRAS, accepted (TJ14)
Taylor, A. N., Joachimi, B., & Kitching, T. 2013, MNRAS, 432, 1928 (TJK13)
Wishart, J. 1928, Biometrika, 20A, 32

https://doi.org/10.1017/S1743921314013428 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921314013428

