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ABSTRACT

A new data analysis toolkit which is suitable for the analysis of large-scale, long-term datasets and the

phenomenon/anomalies they represent is described. The toolkit aims to expose and quantify scientific

information in a number of forms contained within a time-series based dataset in a quantitative and

rigorous manner, reducing the subjectivity of observations made, thereby supporting the scientific

observer. The features contained within the toolkit include the ability to handle non-uniform datasets,

time-series component determination, frequency component determination, feature/event detection and

characterization/parameterization of local behaviours. An application is presented of a case study

dataset arising from the ‘Lasgit’ experiment.
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Introduction

THE development of the safety case for deep

geological repositories has prompted a series of

experimental activities ranging from laboratory

scale to field scale. A proportion of such

experiments have a significant duration owing to

the longevity of the problems being studied, e.g.

the (re)saturation of clay buffers (SKB, 2007;

Dixon et al., 2002). The large-scale, long-term

nature of these experiments can yield vast datasets

that would be impractical to examine entirely by

hand.

Time-series analysis and signal processing

techniques applied computationally can help to

reduce subjectivity in observations made (e.g.

Chatfield, 1989), therefore supporting the scien-

tific observer. This is achieved by providing a

uniform and automated procedure for making

observations that, by its nature, performs the task

in a quantitative way. This approach improves

such observations by turning them into measure-

ments.

Such computational analysis may also be

instrumental in uncovering a wealth of informa-

tion contained within the dataset (e.g. Box and

Jenkins, 1976; Chatfield, 1989), and addressing

the practicalities of analysing a large-scale

dataset. In addition to any primary observations

or data processing, an analysis focussing on

smaller scale features can be performed to

expose this information and can potentially yield

extra value from the dataset. Such an analysis is

termed a ‘second order’ analysis in this work.

As an additional consequence of the longevity

of such experimental undertakings, non-uniform

datasets commonly arise due to circumstances

outside of the experimental control such as

hardware malfunction/failure. The probability of

experiencing an event causing non-uniformity

increases with the length of the experiment

(Halpern, 1978; O’Connor, 1995). Typically

automated computational analysis algorithms

take uniform input data, and as such can be
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hampered by the non-uniformities present in such

datasets (e.g. Box and Jenkins, 1976).

This paper describes the development at the

Geoenvironmental Research Centre (GRC) of a

series of data analysis tools designed around long-

term, large-scale datasets capable of performing

time-series and signal processing procedures on

non-uniform datasets. These approaches, based on

statistics, Fourier analysis and component

analysis are described within the paper as a

‘data analysis toolkit’. Each data processing and

analysis component has been chosen based on its

potential to expose useful scientific information

and implemented in such a way as to accom-

modate the input of such a dataset. An initial

analysis is then presented of a case study dataset

that aims to computationally identify and quantify

smaller scale and otherwise difficult to observe

behaviours and features.

Case study

An example of a long-term, large-scale experi-

ment with a large non-uniform dataset is the large

scale gas injection test or ‘Lasgit’, a field-scale

experiment located at the Äspö Hard Rock

Laboratory (HRL) in Sweden. The project is a

full-scale demonstration test based on the KBS-

3V high-level radioactive waste disposal concept

(SKB, 2006) and is designed to examine the

impact of gas (generated primarily by corrosion of

metal) in compact bentonite within a deposition

hole.

Lasgit has been in continuous operation since

February 2005 (Cuss et al., 2010) and has

undergone more than 90,000 logging cycles (i.e.

the recording of a single datum point at all

installed sensors at a specific time) leading to an

acquired dataset in excess of 14.7 million datum

points owing to its highly instrumented nature.

As of the end of 2011 three gas injection tests

have been undertaken. Tortuous gas flow paths

have been detected and a number of externally

caused events have been observed within the

dataset (Cuss et al., 2010, 2011). However a large

quantity of uninterpreted information may remain

within the dataset making it a candidate for

analysis of the kind described in this paper.

The Lasgit dataset possesses a number of

phenomena that require consideration during

computational analysis. Primarily the logging

(time) interval is not consistent across the

dataset. This non-uniformity is due, in part, to

increases of sample rates during periods of critical

interest such as gas injection phases and also to

hardware limitations and unavoidable breakdown

causing interruptions and loss of data. Some data

streams also occasionally ‘spike’, characterized

by a single datum point, disparate from the

consensus of surrounding data and therefore can

be considered to not be a representative measure-

ment at that time, or of the trend of the process of

interest at the observed scale.

Data analysis toolkit

To address the above problems a toolkit capable

of performing a ‘second order’ analysis (as

defined above) on long-term, large-scale datasets

with non-uniformities has been developed.

Options regarding reformatting of a dataset

Computational time-series analysis and algo-

rithmic procedures typically require uniform

datasets. To overcome the difficulty associated

with the computational analysis of a non-uniform

dataset the option exists to reprocess the data into

a uniform form. One method of achieving this is

by down-sampling the dataset to a uniform time

step (i.e. taking the points that correspond to the

lowest common sampling rate within the dataset)

at the cost of a loss of data resolution.

There may exist, however, as shown in the

case-study dataset, the situation where there is no

global timing grid that a base sample rate can be

affixed to, i.e. data logged at hourly intervals that

correspond with the top of an hour in one section

of the dataset do not necessarily correspond to the

top of an hour in other sections of the dataset that

are sampled at an hour. In the case study dataset

this is primarily due to logging hardware

requiring restarts at various points in the

experimental history, leading to an arbitrary

interval between two logging cycles.

An alternative to this approach is to define an

appropriate assigned and arbitrary global sample

rate for the dataset and to interpolate the defined

points using the original non-uniform data.

However a high percentage of the original data

could be abandoned in favour of the ‘created’ data

using this method. There is also the risk that detail

present in the original dataset will be lost in the

created dataset, particularly local maxima and

minima if they do no coincide closely with an

interpolated point.

Neither of these approaches was considered

entirely satisfactory therefore an adaption of
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relevant algorithms to a non-uniform applicability

was undertaken.

Generalization of algorithms to non-uniform
input

Time-series analysis can be considered as the

measurement or exploitation of the fact that

proximate datum points in a time-series are

interconnected to (or non-independent of) each

other (Box and Jenkins, 1976). Approaching time-

series analysis with this in mind helps ensure that

any modification/generalization of existing algo-

rithms towards non-uniform application preserve

the intent of the original algorithms and the

mathematics underpinning them.

Processes that involve moving windows across a

time-series, i.e. processes that allow the analyst to

specify the scale over which the non-independence

of points is assumed to occur, can be utilized. These

can be implemented by either collating a fixed

number of points around the centre of the window

or by collating all the points that fall within a fixed

time span around the centre of the window.

When a time-series has been sampled

uniformly the two approaches are equivalent,

however when applied to a time-series that is non-

uniform, the method using a window fixed in time

maintains the scale over which the observation is

made. Figure 1 depicts a comparison of the two

‘windowing’ methods when applied to a time-

series at the point the sample rate changes. It can

be seen that the approach using a fixed number of

points places a forward bias on the actual time

indices of the time-series.

Basic time windowing applications and
implications

Applying time windowing to a weighted moving

average algorithm requires a continuous user

defined weighting function in place of pre-

defined fixed weighting constants used in the

fixed number of points windowing method. This

allows the modified algorithm to adapt to non-

uniformities in the input time-series by deriving

weight as a function of each point’s time relative

to the centre of the window. Information such as

the local mean, standard deviation and character-

ising values of the window can be calculated.

Spike identification can be achieved by

comparing the absolute deviation of a point

from its local mean (excluding the point in

question) to a threshold defined as a multiple of

the local standard deviation around the point

(again excluding the point itself). Exceeding that

threshold classes the point as a spike, either

suggesting rapid process evolution or possible

measurement error at that point.

The time windowing implementation of point

gathering to determine the local parameters that

are required to make such a comparison ensure

that the observed density of spikes with time will

be unaffected by a change in sample rate,

assuming the frequency or likelihood of spike

occurrence is not a function of the sample rate and

that the data is sampled at a greater rate than the

underlying process evolution of interest.

Comparatively, using a fixed number of points

will result in variation in the threshold determina-

tion with changes in sample rate. Figure 2 depicts

FIG. 1. Comparison of time-series windowing methodologies.
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spike threshold evolution along a time-series with

varying local environments as determined by time

windowing.

Information quantification or parameterization

Quantification or parameterization of local

aspects of a dataset with respect to time can

potentially expose information about the system it

represents. Examples include quantification of

local standard deviation of the signal, as discussed

in the previous section, to characterize the noise

and/or rate of change within the time-series with

time. This method uses the time windowing

method for point gathering discussed in the

previous section.

Isolated peaks in the local standard deviation or

changes in the inherent amount of noise within the

system can indicate events within the dataset that

are candidates for scientific investigation, with

their relative prominence suggesting possible

relevance. Figure 3 depicts an arbitrary data

series, with the local standard deviation with

time. The large peak in standard deviation

corresponds to the large ramp in time-series

magnitude. The local standard deviation peak,

highlighted as an ‘anomalous noise peak’,

corresponds to a small scale event in the time-

series which is shown in more detail in Fig. 3b.

The effect identified by the local peak is unlikely

to appear significant when observed at the macro

scale of the dataset as a whole, however, could

indicate a second order process occurring.

Aggregation of the derived local standard

deviation series across sensor types can be

performed allowing a visual indicator of synchro-

nization within a group of sensors. The result of

this process is shown in Fig. 5.

Frequency domain analysis

Cyclic information over a domain, i.e. frequency

components along with their amplitudes and

phases, can be quantified with application of a

Fourier transform (FT) analysis. Application to a

time-series requires a discrete Fourier transform

(DFT). The standard DFT process converts a

time-series into a power series consisting of a

discrete set of frequency locations defined by the

time-series length and sample rate.

The mathematical representation of a DFT is

shown in equation 1 (Bagchi and Mitra, 1999),

where P(k) is the power series of the time-series F

with points at n or tn (represented by a complex

number) at frequencies that are n multiples of

k/N, N is the number of points in the time-series

and 0 4 k 4 N�1.
To overcome the requirement for a uniform

sample rate in the time-series a modification to

equation 1 can be applied, resulting in an

implementation of a non-uniform discrete

Fourier transform (NDFT). This modification is

shown in equation 2.

PðkÞ ¼
XN�1

n¼0

Fn � e�i2pk
Nn ð1Þ

FIG. 2. Evolution of spike threshold with different levels of spike frequency and signal noise.
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PðoÞ ¼
XN�1

n¼0

FðtnÞ � e�iotn ð2Þ

The modification replaces the terms 2pk/N with

the term o (=2ph) allowing the power series to be

specified arbitrarily over a range of frequencies

(h) and references each point’s relevant time

index (tn). The algorithm implementing the NDFT

(equation 2) allows for calculation of the zero

frequency component, P(0), and subsequent

normalization of the time-series to zero average

magnitude. Normalization of the signal in such

way may help reduce distortion (aliasing) of the

power series.

Local peak detection algorithms can be used in

an iterative manner to highlight local maxima in

the resulting power series with the frequency,

amplitude and phase information associated with

these identified peaks easily obtainable.

The NDFTs can however present a positive bias

in amplitude calculations due to aliasing effects (a

type of distortion present in NDFTs).

Additionally, frequency domain filtering

(normally achieved through excluding unwanted

frequency content and performing an inverse

Fourier transform) is hampered by the arbitrary

nature of the frequency domain investigated.

Fourier transform procedures in general also

benefit from input data with no overall trend

FIG. 3. (a) Local standard deviations of a time-series. An isolated peak is highlighted as a small scale event

candidate. (b) Detailed view of time-series at section highlighted in (a).
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associated with them as detailed diagrammatically

in Fig. 4. The peak in the lower transform is more

defined due to an absence of low frequency

ramping present in the conversion resulting from

the trending time series. The frequency peak is

distinguishable in both power series in Fig. 4.

However, as the trending of the input time series

increases, the low frequency ramping in the power

series will obscure greater portions of the

frequency domain.

Non parametric data inspection techniques

Non-parametric data inspection of a time-series

consists of analysing the form of a time-series

without categorizing it with a mathematical

FIG. 4. Diagrammatic depiction of NDFT process on trending (upper) and non-trending (lower) time-series.

FIG. 5. Comparison of local standard deviations with time across multiple temperature sensors installed in the Lasgit

experiment. Vertical lineation indicates synchronicity in events or system behaviour changes.
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relationship, i.e. not defining a continuous

function to model it.

Scientific investigation of a time-series may

require separation of a number of underlying

contributions to the time-series. Singular spec-

trum analysis (SSA) is an analysis method

capable of decomposing a time-series into a

collection of mathematically independent compo-

nent time-series that sum to the original input.

The process (as described in Golyandina et al.,

2001) involves mapping a time-series F = (f0, ···,

fN-1) of length N into ‘‘a sequence of [K (= N � L

+ 1)] multidimensional lagged vectors’’ of length
L, such that when collected into a matrix, X, they

yield:

X ¼

f0 f1 f2 � � � fK�1
f1 f2 f3 � � � fK

f2 f3 f4 � � � fKþ1

..

. ..
. ..

. . .
. ..

.

fL�1 fL fLþ1 � � � fN�1

2
666664

3
777775

ð3Þ

Subsequently decomposing X into a series of

components such that X = X1 + ··· + XL. The

decomposition is achieved by performing a

singular value decomposition (SVD) (e.g.

Golyandina et al., 2001). Each component Xi is

associated with an eigenvalue (l) and eigenvector

(U) of the matrix XXT such that Xi = HliUiVi
T

and Vi = XTUi/Hli.
Computationally the eigenspace solution that

forms the majority of the work can be achieved

using the Jacobi eigenvalue algorithm (Golub and

van der Vorst, 2000). To produce a derived time-

series component, Fi, from each component

matrix, Xi, the average of the elements of the

matrix along the diagonals defined by indices i + j

= constant, i.e. the off diagonal, is taken. The form

of the derived time-series components is deter-

mined by the SSA process with no user defined

specification other than number of decomposition

components. Components of the input time-series

typically have decreasing magnitude as the

magnitude of the eigenvalue they are associated

with decreases. Dependent upon form, they are

typically characterized as either trends, oscillatory

components or noise. Measurements of the

independence of each component from the others

can be performed, as can statistical tests on

residual components, to confirm only noise

remains. This can aid understanding of the

meaning of each component or set of components.

The trends determined by SSA can also

potentially be used to pre-process the original

FIG. 6. Comparison of original time-series with derived

component time-series and residual derived

components.
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signal (e.g. be subtracted from the original signal)

in order to improve frequency domain analysis or

can be used to examine physical processes.

Application of data analysis toolkit

The developed toolkit has been applied to the case

study (Lasgit) dataset as described earlier and an

initial analysis of the dataset and assessment of

the toolkit was performed.

Exposed/highlighted and quantified phenomena

Application of the spike identification algorithm

to the Lasgit dataset was performed utilizing a 48

hour window and a threshold of 3slocal. The

3slocal threshold was chosen to coincide with the

upper limit of the empirical 68–95�99.7 rule for

normally distributed data. This limits false

positive detection of spikes to 0.3% assuming

the noise is normally distributed. The 48 hour

window was chosen to ensure a large enough

population from which to calculate the standard

deviation at lower sample rates that occur within

the Lasgit dataset. The algorithm identi-

fied 117,165 spikes (approximately 0.8% of the

recorded datum points), with a notable concentra-

tion of those occurring in the temperature records,

and within them concentrated during the annual

minimum temperature regions.

Aggregation of the local standard deviations

into time-series (Fig. 7) identifies second order

events as indicated in Fig. 3a,b, with second order

features in the time-series being highlighted.

Further aggregation of local standard deviation

series into groups (defined by sensor type or

proximity for example) allows for a visual

assessment of the independence of each time-

series. Figure 5 shows the ranked standard

deviation with time of each temperature sensor

installed at the Lasgit experiment. Vertical

lineation indicates synchronized behaviour. The

abrupt changes in standard deviation level

indicated by the red lines in Fig. 5 coincide with

entries in the experimental log describing ‘over-

pressurizations’ of the experiments fluid injection

system. Additional behaviours and events can be

identified and associated in other sensor sets using

this method, e.g. the reciprocating nature of the

injection pumps and the closure of pressure relief

holes close to the experiment.

Frequency domain analysis performed on the

temperature sensors confirmed an annual temp-

erature cycle in all down-hole positions. Phase

(offset from air temperature cycle) and amplitude

of the temperature cycles with depth is shown in

Fig. 8. The only time-series in which a daily

frequency component was detected was the air

temperature record of the tunnel.

Signal component identification using SSA was

performed on a reduced resolution version of the

dataset to reduce the computational burden during

the initial investigation phase. Representative

daily values were calculated and a vector length

of 365 days was applied (corresponding to an

annual scale).

FIG. 7. Second order events identified in a radial pressure record from the Lasgit dataset.

3362

D. P. BENNETT ET AL.

https://doi.org/10.1180/minmag.2012.076.8.48 Published online by Cambridge University Press

https://doi.org/10.1180/minmag.2012.076.8.48


Figure 6 compares a radial pressure record

from Lasgit with the sum of the first two

components and presents the residual of the

original series without the first two components.

The presence of two trending components may be

an indicator that two processes are driving the

time-series in question.

Frequency content is observable in the residual

along with anomalies that coincide with closure of

the pressure relief holes near the experimental

set-up. The presence of this anomaly is more

pronounced in other sensor types. Analysing the

dataset post pressure relief hole closure may

produce more informative components due to the

SSA process not attempting to account for a

significant imposed change in system behaviour.

Conclusions

A toolkit has been developed to analyse long-

term, large-scale datasets, particularly of the

nature arising from geomechanical and geoenvir-

onmental experiments. The toolkit has been

designed to support the scientific observer,

reducing the subjectivity of observations through

qualitative processes.

The toolkit is capable of performing a range of

analyses on non-uniform datasets including: event

candidate detection; quantification and parameter-

ization/characterization of time-series data;

frequency domain analysis; non-parametric trend

and component derivation; and system synchro-

nization/association visualizations.

The toolkit was applied to the Lasgit dataset as

a case study and an initial analysis was under-

taken. The toolkit highlighted possible events in

individual time-series records and synchroniza-

tions across sensor types at specific points in time.

A correlation of temperature cycles within the

system (characterizing both amplitude and phase)

with depth was also achieved.
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