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1. Introduction. A module is said to be serial if it has a unique chain of
submodules, and a ring is serial if it is a direct sum of serial right ideals and a direct sum
of serial left ideals. The serial rings of Krull dimension 0 are the Artinian serial (or
generalised uniserial) rings studied by Nakayama and for which there is an extensive
theory (see for example [4]). Warfield in [10] extended the theory to the non-Artinian
case. In particular he showed that a Noetherian serial ring is a direct sum of Artinian
serial rings and prime Noetherian serial rings, and he gave a structure theorem in the
prime Noetherian case. A Noetherian non-Artinian serial ring has Krull dimension 1.
Serial rings of arbitrary Krull dimension have been studied by Wright ([9], [12], [13], [14])
with special results being proved when the Krull dimension is 1 or 2.

In this paper, we extend some of these results to serial rings of arbitrary Krull
dimension. The methods used rely heavily on making use of weak chain conditions. In
Section 3, it is shown that certain indecomposable serial rings with Krull dimension are
prime or can be written as triangular matrices, extending results of Singh, Warfield and
Wright. A structure theorem for prime serial rings of finite Krull dimension is given in
Section 4, which generalises results of Warfield and Wright when the Krull dimension is 1
or 2.

2. Background material and conventions. All rings considered here are associative
with identity element. We shall use N or N(R) to denote the nil radical of a ring R, and /
or J(R) to denote the Jacobson radical of R. The set of elements regular modulo an ideal
/ will be denoted by C(I). We refer to [3] and [5] for general material on ring theory and
Krull dimension.

Let R be a ring. As in [10], an fl-module M is said to be serial if for any submodules
A and B of M we have AcBorBcA. The ring R is said to be serial if it is the direct
sum of serial right ideals and is also the direct sum of serial left ideals. Such rings are
discussed in [10] and Chapter 6 of [3]. Serial rings with Krull dimension have been studied
in [9], [12], [13], [14]. It is shown in Theorem 6 of [14] that the left and right Krull
dimensions of a serial ring are equal. A serial ring R is Noetherian if and only if C\J" = 0,
and under these conditions Kdim(ft) «s 1 [10, Theorem 5.11].

Let R be a serial ring with Krull dimension. Then N is nilpotent by Theorem 5 of [6].
Also R/N is a serial semi-prime Goldie ring [5, Theorem 5.1] in which every
finitely-generated one-sided ideal is projective [10, Theorem 4.1]. Therefore R/N is a
direct sum of prime rings by Theorem 4.3 of [7]. Also R has an Artinian quotient ring if
and only if R satisfies the ascending chain condition for right annihilators [11, Theorem
5].

Let R be an indecomposable non-singular serial ring. Then R has a two-sided
quotient ring which is a blocked triangular matrix ring over a division ring D [10,
Theorem 4.1]. The corresponding full matrix ring over D is both the maximal left and
right quotient ring of R. Hence every complement one-sided ideal of R is generated by an
idempotent [1, Theorems 5.2 and 2.4]. The structure of R can now be described
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completely in terms of blocked triangular matrix rings over prime rings as in Theorem
6.10 of [1]. We shall use this in Corollary 4.3 to give the structure of non-singular serial
rings of finite Krull dimension.

3. Certain serial rings are prime. We shall establish some sufficient conditions for a
serial ring with Krull dimension to be prime. The first result of this type was Warfield's
theorem that an indecomposable Noetherian non-Artinian serial ring R is prime (in this
case Kdim(7?) = 1). A result of this type when Kdim(/?) = 2 was proved by Wright in
Proposition 2.7 of [12].

LEMMA 3.1. Let R be a serial ring with Krull dimension and let K be a non-zero serial
right R-module with KN = 0. Then there is a unique minimal prime ideal P of R such that
KP = 0. Also KQ = K for every minimal prime ideal Q of R with Q+P.

Proof. We know that KN = 0 and that N contains a product of minimal primes
(because R/N is a Goldie ring). Also K¥=0. Therefore there is a minimal prime ideal P
with KP =£ K. Let Q be a minimal prime ideal of R with Q^P. Because R/N is a direct
sum of prime rings, we have P + Q = R. Hence K = KP + KQ. But KPi-K and K is
serial. Therefore K = KQ. Let Qu . . ., Qn, P be the distinct minimal primes of R. Then

j = K for all i a n d Qx Q2 . . . QnP c N. T h e r e f o r e 0 = KN = KQ1... QnP = KP.

LEMMA 3.2. Let R be a serial ring and let K be a semi-prime ideal of R such that R/K
is a Goldie ring and K contains no non-zero idempotent elements of R. Then K = Kc = cK
for all c e C(K).

Proof. This is based on Remark (6) at the end of Chapter 6 of [3]. Let c e C(K). By
Theorem 3.3 of [10], there are non-zero orthogonal idempotents eit . . . , en of R adding
to 1 such that each etR is a serial right /?-module and cR = £ {etR n cR). We fix an

integer; with l=£y=£/i. We have ej$K. Also (cR + K)/K is an essential right ideal of
R/K. Hence etR n (cR + K) is not contained in K. Because etR is serial, it follows that

K)^ejK. But

ejR n (cR + K) = ejR n ( E (e,R D cR) + £ e,K) = etR HcR + ejK.

Hence ejR C\cR + ejK^ejK. Because e;R is serial, it follows that e^K c. e/R n cR. Hence
etK c cR for all / and ex +.. . + en = 1. Therefore K c cR. Because c e C(K), we have
cRf)K = cK. Therefore K = cK.

THEOREM 3.3. Let R be an indecomposable serial ring with Krull dimension and
oo

suppose that R has a non-nilpotent ideal X such that f l X" = 0. Then R is a prime ring.

Proof. We fix a minimal prime ideal P of R such that P does not contain X. We wish
to show that N = NP. Let e be an idempotent element of R such that eR is serial. It is
enough to show that eN = eNP, and this is trivial if eN = 0. Suppose that eN^O and that
eNi=eNP. By taking K = eN/eN2 in Lemma 3.1, we see that eNP-eN2. Because X is
not contained in P, there is no minimal prime of R which contains X + P. Therefore
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c 6 X + P for some c e C(N). But Nc = N by Lemma 3.2. Hence

eN = eNc = eN(X + P) = eAUf + eNP = eAUf + eN2.

Therefore eN=eNX=eNX2 = This is a contradiction because e N # 0 and n i " = 0 .
Thus N = NP. Because R/N is a direct sum of prime rings, we know that PIN is

generated by a central idempotent of R/N. Hence there is an idempotent element/of R
such that P=fR + N = Rf + N. Thus

N = NP = Nf + N2 = Nf + N(Nf + N2) = Nf + N3 = . . .

Hence N = Nf and P = Rf + N = Rf + Nf = /?/. By symmetry, we have P = Rf =fR. It
follows that / is a central idempotent element of R. Therefore P = 0 because R is
indecomposable.

A CO \

O J") is a direct sum of
/\runian rings ana prime rings. " = 1

Proof. Without loss of generality, we may suppose that C]J" = 0 and that R is
indecomposable. Either J is nilpotent and R is Artinian, or / is not nilpotent and R is
prime by Theorem 3.3.

COROLLARY 3.5 (Wright [12, Proposition 2.7]). Let R be an indecomposable serial
oo

ring with Krull dimension. Set J\= C\ J"- Suppose that Jt is not nilpotent and that

Pi ^i = 0. Then R is a prime ring.n-l

THEOREM 3.6. Let R be an indecomposable serial ring with Krull dimension. Suppose
that R has an Artinian quotient ring and that Kdim(Af) < Kdim(i?) as right R-modules.
Then there is a unique minimal prime ideal P of R such that Kdim(i?/P) = Kdim(/?). Also
P = Rf for some idempotent element f of R.

Proof. Because Kdim(R/N) = Kdim(7?), there is a minimal prime P of R such that
Kdim(R/P) = Kdim(/?). We shall show that N = NP. Suppose that e is an idempotent
element of R such that eN is a non-zero serial right R-module and eNP = eN2; we shall
obtain a contradiction. We have Kdim(eN/eNP)^Kdim(N)<Kdim(R) = Kdim(R/P).
Let x be a non-zero element of eN/eNP. Then Kdim(;t/?) < Kdim(R/P). Therefore xR is
torsion as a right i?/P-module. Hence xc = 0 for some c € C(P). Let y eeN with
y + eNP = x. Then y(cR + P) c eN2. But d 6 cR + P for some d e C{N). Thus yd e eN2.
But N = Nd by Lemma 3.2 or [11, Theorem 5]. Thus ydeeN2d. Because R has an
Artinian quotient ring, we know that d is a regular element of R. Therefore v e eN2, i.e.
x = 0. This is a contradiction. It follows, as in the proof of Theorem 3.3, that N = NP and
that P = Rf for some idempotent /.

Suppose that Q is a minimal prime of R with Q^P and Kdim(R/Q) = Kdim(R).
Then N = NQ and Q = Rg for some idempotent g. We have g$P, i.e. gR^gP. By
Lemma 3.1 with K = gR/gN, we have gN = gP. Thus QP = RgP = RgN cN. Hence
N2 2 NQP = NP = N. Therefore N = 0. But /? is indecomposable. Therefore R is prime.
This is a contradiction because P^Q.

COROLLARY 3.7. Let R be an indecomposable serial ring with Krull dimension.
Suppose that R has an Artinian quotient ring and that Kdim(A0<Kdim(7?) as both left
R-modules and right R-modules. Then R is a prime ring.
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COROLLARY 3.8 (Singh [8, Theorem 2.11]). Let R be an indecomposable serial right
Noetherian ring which is neither prime nor right Artinian. Then

S t

T.

where S is a prime Noetherian serial ring, T is an Artinian serial ring, and M is an
S-T-bimodule.

Proof. We know that R has an Artinian quotient ring ([11, Theorem 5] or [3,
Theorem 6.10]). Also Nc = N for every regular element c of R (Lemma 3.2 or [11,
Theorem 5]). But N is finitely-generated as a right ideal. Therefore N is Artinian as a right
/^-module (see for example the proofs of [2, Lemma (A)] or [3, Lemma 5.2]). Thus
Kdim(/V) = 0 and Kdim(/?) = 1 as right tf-modules. Let P = Rf as in Theorem 3.6. Then

0 T

where 5 = RIP and T =fRf The minimal primes of T correspond to minimal primes Q of
R with Q¥=P. But R/Q is Artinian for every such Q by Theorem 3.6. It follows that T is
Artinian.

4. Prime serial rings of finite Krull dimension. We shall determine the structure of
prime serial rings with finite Krull dimension in terms of blocked matrices over integral
domains. The cases in which the Krull dimension is 1 or 2 were done by Warfield [10,
Theorem 5.14] and Wright [12, Theorem 2.11]. The proof will be module-theoretic and
will require that the domain of definition of certain homomorphisms can be extended.
The following lemma gives enough injectivity for this purpose and was suggested by
Theorem 1.4 of [4].

LEMMA 4.1. Let R be a serial ring with primitive idempotents e andf. Let x e eR, and
let a: xR —*fR be a homomorphism of right R-modules. Then one at least of the following
statements is true.

(1) There is a homomorphism b : eR —*fR with b(x) = a(x), or
(2) there is a homomorphism b:fR—*eR with ba(x) =x.

Proof. There are orthogonal primitive idempotents gx,. . . , gn of R adding to 1 such
that each Rg( is a serial left /?-module. We have xR =xgxR + . . . +xgnR. Because eR is
serial, we have xR = xgtR for some i. Thus xR - xgR for some primitive idempotent g. Set
w = a(xg) = a(x)g. Because Rg is serial, we have Rxg c Rw or Rw c Rxg.

Case (a). Suppose that RxgQ^Rw. Then xg = rw for some r e R . But x = ex and
w =fw. Hence, without loss of generality, we may suppose that r = erf. Define b :fR—*eR
by b(fs) = rs for all s eR. Then ba(xg) = b(w) = rw = xg. But xR = xgR. Hence x = xgt
for some teR. Therefore ba(x) = ba(xgt) = (ba(xg))t = xgt = x.

Case (b). Suppose that RwcRxg. Then w = rxg for some r eR with r =fre. Define
b:eR-*fR by b(es) = rs for all s eR. Then b{xg) = rxg = w = a{xg). As in (a), it follows
that b(x) = a(x).

THEOREM 4.2. Let R be a prime serial ring with finite Krull dimension. Then there is a
serial integral domain T such that either

(1) R = Mn(T) for some positive integer n, or
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(2) there is a positive integer k^\ and sets Hit for 1 =£i, j^k such that R is
isomorphic to the ring of k by k matrices with (i, j)-entries in H^, where

(i) if i <j then Htj is the set of all n, by n, matrices with entries in T for some positive
integers /i, and njt

(ii) if i >j then H^ is the set of all n, by n, matrices over J{T), and
(iii) each Hu is a prime serial ring of finite Krull dimension and with smaller Goldie

rank than that of R.
Thus each Hu can in turn be written as a matrix ring in the same way that R is, and so on.

Proof. We shall frequently use the well-known fact that a nonzero homomorphism
between uniform right ideals of R is injective. Set J = /(/?). Suppose firstly that / is a
prime ideal of R. Then all simple right fl-modules are isomorphic. There are orthogonal
idempotents eu ..., en of R adding to 1 such that each etR is a serial right fl-module.
Each e,7?/e,J is a simple module. Therefore eiR/eJ = ejR/ejJ for all i and /. It is now
routine to show that etR = etR and that (1) holds with T = E n d ^ e ^ ) .

For the remainder of the proof, we suppose that / is not a prime ideal of R. Set J0 = J

and /„ = Pi J'n-i f°r every positive integer n. Because R has finite Krull dimension, we

have Jh = 0 for some h [14, Theorem 6]. For each i, let Kt be the ideal of R containing /,
such that KjJj = N(R/Ji). Each Kt contains no non-zero idempotent element of R. We
have K0 = J and Kh = 0. Thus Ko is not prime and Kh is prime. Let p be the largest integer
such that Kp is not a prime ideal. Set K = Kp and L = Kp+X. These meanings for K and L
will be retained for the rest of the proof.

oo

Set I = (~) K' and let e be a primitive idempotent of R. We shall show that I = L.

Because K is nilpotent modulo Jp we have I = f~] K'p = (~]J'p = Jp+l^L. Also Lr c / p + 1 for
i=i

some non-negative integer r. Hence Lr cjpc. K. Therefore Lc.K. But L is prime and K
is not. Therefore L^K. Let i be a positive integer. Then eK' is not contained in the
prime ideal L. Because eR is serial it follows that eK' § eL. Because 1 is the sum of such
idempotents e, we have L^K'. Hence Lcl. Therefore L = I = Jp+i. From "eK'^eL",
it also follows that eK1 ± eK' if / =£/.

The reason for choosing K to be semi-prime but not prime is that we take k in (2) to
be the number of prime ideals of R minimal over K.

Set C = C(K). We shall show that C is an Ore set in R. Let a e R and ceC. Because
R/K is a semi-prime Goldie ring we have ad = cb + u for some d eC, b eR, u e K. By
Lemma 3.2, we have u = cv for some v e K. Thus ad = c(b + v). Therefore C is an Ore
set in R, and the elements of C are regular in R. Let 5 be the partial quotient ring of R
with respect to C. Then K = 7(5) and L is a prime ideal of 5. Because HK' = L it follows
that S/L is a prime Noetherian serial ring.

Let e be a primitive idempotent of R. Then eR is a serial R-module. Hence eS is
serial as a right 5-module. For each i, set A/, = anns(eK'/eK'+1). Because S/L is a prime
Noetherian serial ring and eK' 3 eL for all i, it follows, as in the proof of [10, Theorem
5.14], that the sequence Mo, Af1( M2,.. . starts by running through the distinct maximal
ideals of 5 and then repeats itself. The only way in which e influences this sequence is in
determining its starting point. In R, this means that: the primes of R minimal over K are
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precisely the ideals of the form annR(eK'/eK'+i) for some non-negative integer i;
annR(eK'/eK'+l) = annR(eK'/eK'+l) if and only if i =j mod(A:), where k is the number of
primes of R minimal over K; ann(eK'/eKi+l) is determined by ann(eK'~1/eK') and not
by e.

Notation. From now on, g denotes a fixed primitive idempotent element of R; P is a
fixed prime ideal of R minimal over K such that gR^gP, i.e. gK = gP (Lemma 3.1);
T = EndR(gK).

We shall show that T = Ends(g5). Recall that K = J(S). Let a e T. For x e gK and
c e C{K), we have a{xc~*)c = a(xc~xc) = a(x), i.e. a(jcc~') = a(x)c~\ Thus a :gK—*gK is
a right 5-module homomorphism. Because gS/gL is a cyclic serial module over the
Noetherian ring S/L, we have gK = yS for some y e S. We shall use Lemma 4.1 to show
that a can be extended to an element of End5(g5). Suppose that there is a right 5-module
homomorphism b:gS—>gS such that b{y)=y. Then b(gK)^b(a(gK)) = ba(yS) = yS =
gK. Hence b(gK) = gK and b(gS) = gS. Thus b is an automorphism of gS and its inverse
is an extension of a. If no such b exists then a can be extended to an element of Ends(g5)
by Lemma 4.1. It follows that T = Ends(gK) = Ends(gS).

From now on, we identify T with Ends(gS). We nave J{T) = {a e T:a(gS) ^gK}.
Let a e T with a # 0. Then a(gS)/a(gK)=gS/gK, and gS/gK = gK'lgKi+x if and only if i
is divisible by k. Hence J(T) = {a eT:a(gS)<=gKk} = {a eT:a(gK)^gKk+i}.

Let e be a primitive idempotent element of R. Because L is prime, we have
oo

eRg £L = P | K'. Let i be the smallest positive integer such that eRg £ K', i.e. such that

there is a right i?-module homomorphism u:gR—*eR with u(gR)^eK'. These meanings
for i and u will be fixed until further notice. We have eK'~l ^u(gR)=£eK'. Hence
u(gP) = u{gK)ceKl. Let Q be any prime of R minimal over K with Q*P. Then
P + Q = R and eK'%u(gR)P + u(gR)Q ceK1: + u(gR)Q. Hence eKi^u(gR)Qc
eK'~lQ. It follows from Lemma 3.1 that e/C'"1P = eA:'. Thus P = annR(eKi~l/eKi). Now
set Q = annR(eKi/eKi+1). Then Q±P and eK1 = eK'P + eK'Qcu(gR)P + eKi+1 c

u(gR)K^eK'. Therefore u(gK) = eK'. Let 5 be a positive integer such that
Vc^) = P. Then eKs~lg is not contained in eKs because g $ P. The minimality

of i gives s^i. It follows from the periodicity of the sequence of ideals ann(eK'/eKj+l)
that i =s k.

Let / also be a primitive idempotent of R and let j and v be determined by / in the
same way that i and u were determined by e. Set H = HomR(ei?, fR). The aim is to
identify H as either T or J(T) according to the relative sizes of i and j . Let heH. Because
hu(gR) cfR, we have hu(gR) <^fK'~x by definition of /. Hence hu(gK) c / /P = v(gK).
Thus h induces an element v~1hu of EndR(gK). We shall now investigate the function
from H to T which sends ft to v~lhu.

Case (a). Suppose that i>j. Let / i e # . Then h(eKi~l) = h(eR)K'-1 c/K'"1. Set
g = annnifK'-^fK'). We have l*zj<i^k. Hence / < i < Jfc +/. Therefore i ^ / mod(&),
i.e. aim*(/A:'-7/K')*annj?(/#-1/,/K')> i.e. Q * P . Hence P + Q = fl and ft(e/C1-1) =
h(eK'-1P) + h(eKi-lQ) = h(eKi) + h(eKi-1)Q<=fKi+fKi-lQ=fKi. If i + 1 <jfc + y, we
can repeat the argument and obtain h(eK'~1) c//C'+1. After a finite number of steps, we
have h{eKl-x)^fKk+i-\ Hence h(eK')czfKk+i, i.e. hu(gK)<=v(gK)Kk, i.e.
v-xhu(gK)<=gKk+\ i.e. v~lhueJ(T). Now let f e/(T). We shall show that f = iT'/tu for
some heH. We have t(gK)c.gKk+1. Because eK' = u(gK), it makes sense to set
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a{x) = vtu~\x) for all x e eK'. We have a(eK') = vt(gK) c v(gKk+l) = v(gK)Kk =fKk+i.
Thus a:eK'^>fKk+J is a right i?-module homomorphism. We fix x e eK' with x $ eKi+i.
Let w be the restriction of a to x/?. Because R is a non-singular ring, any extension of w to
an element of H will also be an extension of a. Suppose that there is a homomorphism
b:fR-+eR with bw{x)=x. We have eKi+1 ^xR = bw(xR) = ba(xR) c ba{eKl) c
b(fKk+') = b(fR)Kk+l <=eKk+i. Hence e / f / + ' s e ^ + ' , i.e. i + l>A:+y. This is a con-
tradiction because k 3= i and j 3= 1. Hence there is no such ft. Therefore w can be extended
to an element h of H, by Lemma 4.1. It follows that h is an extension of a and that
t = v~lau = v~lhu. Thus h-*v~lhu gives a bijective function between / / and J(T). We
used w rather than a above because the domain of a may not be a cyclic submodule of eR.

Case (b). Suppose that / < ; . We shall identify H with T. Let teT. As above set
a = vtu~l:eK'-*fK', fix x e e/C' with x $ eK'+i, and let w be the restriction of a to xi?.
Suppose that there is a homomorphism b.fR^eR with bw(x) = x. Then e^'+1gx7? =
6w(;d?) = ba(xR) c b(fK') c eK'. Hence i + 1 >y, which is a contradiction. Therefore no
such b exists, and w can be extended to an element h of H by Lemma 4.1. We have
t = v~lhu and we can identify H with T via h—*v~lhu.

We do not wish to consider the case i = j .
We drop the special meanings for e, i, u, f, j , v.
Let eu . . . , en be orthogonal primitive idempotents of R adding to 1. For each j , let

/(/) be the smallest positive integer s such that P = annw(ey/C
i~1/cy/C

:s). From above, we
have i(y) =£ k. Suppose that there is a non-negative integer i with K'P = K'. Then for
every primitive idempotent e and every integer y & i we have K'P = K' and P =£
ann(eK;/e/Cy+1); this is a contradiction. Hence, for each integer s with l « j « f e , there is
an integer j with lssy=£n such that ejK'^P^e/K'^, i.e. P = ann(e//r~

1/ey/C
5), i.e.

'(/) = 5 - ^ e can arrange the numbering so that i(l) = i(2) = . . . = i(jk) = k, i(jk + 1) =
. . . =i(jk+jk-i) = k-l, . . . . . . . =i(n) = l. For l=£s, f=s«, set //„ = HomR(e,i?, e,#).
Then R is isomorphic to the ring of n by n matrices with (s, f)-entries in Hst. If i(s) < i(t)
then we can identify Hst with J(T) as in case (a). If i(s) > i(t) then we can take Hs, = T by
case (b).

COROLLARY 4.3. Let R be an indecomposable non-singular serial ring with finite Krull
dimension. Then there is a division ring D such that R is isomorphic to a blocked upper
triangular matrix ring in which the above-diagonal blocks are full sets of matrices over D,
and each diagonal block is a ring as described in Theorem 4.2 which has a full matrix ring
over D as its quotient ring.

Proof. This follows from Theorem 4.2 and the last paragraph of Section 2 combined
with [1, Theorem 6.10 and Corollary 3.3].
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