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Abstract

Image inpainting methods recover true images from partial noisy observations. Natural
images usually have two layers consisting of cartoons and textures. Methods using
simultaneous cartoon and texture inpainting are popular in the literature by using two
combined tight frames: one (often built from wavelets, curvelets or shearlets) provides
sparse representations for cartoons and the other (often built from discrete cosine
transforms) offers sparse approximation for textures. Inspired by the recent development
on directional tensor product complex tight framelets (TP-CTFs) and their impressive
performance for the image denoising problem, we propose an iterative thresholding
algorithm using tight frames derived from TP-CTFs for the image inpainting problem.
The tight frame TP-CTF6 contains two classes of framelets; one is good for cartoons
and the other is good for textures. Therefore, it can handle both the cartoons and the
textures well. For the image inpainting problem with additive zero-mean independent
and identically distributed Gaussian noise, our proposed algorithm does not require us to
tune parameters manually for reasonably good performance. Experimental results show
that our proposed algorithm performs comparatively better than several well-known
frame systems for the image inpainting problem.
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1. Introduction and motivations

The image inpainting problem occurs when the pixels of an image are missing or
corrupted by various types of noise during image acquisition, storage, or transmission.
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Let Ω ⊆ {1, . . . , d} be a nonempty given observable region. Define a d × d diagonal
matrix PΩ by

[PΩ] j,k =

1, j = k with j ∈ Ω,
0, j = k with j < Ω or j , k,

j, k = 1, . . . , d. (1.1)

Image inpainting is generally formulated as the following: the observed image y =

(y1, . . . , yd)T ∈ Rd is given by

y = PΩx + n, (1.2)

where x = (x1, . . . , xd)T ∈ Rd is an unknown clean image to be restored and n is the
additive zero-mean independent and identically distributed Gaussian noise. Quite
often, the observation y in (1.2) is only available on a subset Ω of {1, . . . , d}, while
y j, j < Ω, are not available.

The goal of image inpainting is to recover the pixels of x on Ω by suppressing
the noise of y in the observable region Ω. Methods for image inpainting can be
classified into three groups: patch based, partial differential equation/variational based,
and sparse representation based methods. The reader may see a detailed list of
references for many different methods to study the image inpainting problem in the
literature [1, 6, 7]. Among those image inpainting methods, one popular approach is to
employ sparse representations and convex minimization schemes with regularization
(see [2–4, 6–8, 12, 13] and the references therein). Roughly speaking, one expects
that the unknown clean image has a sparse representation under a basis, or a frame,
or more generally a dictionary. Then one hopes to recover the unknown image x by
finding the few dominating large coefficients of x in the transform domain from (1.2)
by minimization schemes with some sparsity constraints. Due to the energy-preserving
property and computational efficiency, orthonormal bases and tight frames are often
used. For example, the orthonormal basis in the discrete cosine transform (DCT) has
many applications in image processing and has been known to be effective for sparsely
approximating the texture part of an image. Tight frames built from wavelets (called
tight framelets in this paper) or from curvelets/shearlets are claimed to provide sparse
approximations for natural images and they are particularly attractive for capturing the
cartoon part of an image [2, 5, 9, 11, 13].

Inspired by the recent development on directional tensor product complex tight
framelets (TP-CTF) and their impressive performance for the image denoising
problem in [10, 11], we use two tight frames derived from TP-CTFs for the image
inpainting problem. One is a single tight frame system which can handle both the
cartoon part and texture part well. The other tight frame, which can represent the
cartoon part well, is suggested to be used together with local DCT.

Before going further, we introduce some notation. The inner product of two vectors
x, y is defined to be 〈x, y〉 =

∑d
j=1 x jy j. The l2-norm of x is defined by ‖x‖2 =

√
〈x, x〉.

If a d × n matrixD is a tight frame, that is,DDT = I,

x =DDTx =Dc =

n∑
j=1

c jD j with c = (c1, . . . , cn)T =DTx.
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Here c j = 〈x,D j〉 are called the frame coefficients. An image x often has sparse frame
coefficients under some tight frames. The bivariate shrinkage function was introduced
by Sendur and Selesnick [14]. To take advantage of the cross-scale relations in the
wavelet tree of frame coefficients, we use the bivariate shrinkage function ηbs

λ as
follows:

ηbs
λ (c) = ηsoft

λc
(c) =

c − λcc/|c|, |c| > λc,

0, otherwise
with λc =

√
3σ2

n

σc
√

1 + |cp/c|2
, (1.3)

where σn = λ‖b‖2 with b being the high-pass filter inducing the frame coefficient c, the
frame coefficient cp is the parent coefficient of c in the immediate higher scale, and

σc =


√
σ̆2

c − σ
2
n, σ̆c > σn,

0, otherwise
with σ̆2

c =
1
|Nc|

∑
j∈Nc

|c j|
2,

where |Nc| is the cardinality of the set Nc (details of the choice of Nc can be found
in [14]).

2. Image inpainting algorithm using TP-CTF6

We now provide full details in Algorithm 1 for our proposed image inpainting
algorithm. The output x`+1 of Algorithm 1 is the restored (or inpainted) image.
The projection operator PΩ and the thresholding ηbs

λ are defined in (1.1) and (1.3),
respectively. Note that r is the percentage of missing pixels, that is, the ratio between
the number of missing pixels in the inpainting mask and the number of all pixels
in an image. We now discuss how to generate the thresholding values Λ1 and
Λ2. Algorithm 1 uses decreasing thresholding values Λ1 ∪ Λ2 from [λmin, λmid] ∪
[λmid, λmax], where we set

λmin = max{1, σ(1 − r2/2)}, λmax = 512, (2.1)

and

λmid = min{max{2λmin + 10, 20}, λmax}.

The sequence Λ1 of decreasing thresholding values on [λmid, λmax] and the sequence
Λ2 of decreasing thresholding values on [λmin, λmid] are given by

Λ1(i) = r(i−N1)/(N1−1)
1 λmid, i = 1, . . . ,N1,

Λ2(i) = r(i−N2)/N2
2 λmin, i = 1, . . . ,N2, (2.2)

where r1 = λmid/λmax and r2 = λmin/λmid. Note that 0 < r1, r2 < 1 and

Λ1(1) = λmax, Λ1(N1) = λmid,

Λ2(1) = r1/N2
2 λmid, Λ2(N2) = λmin.

Consider the image inpainting model (1.2). Let n j be the additive independent
and identically distributed zero-mean Gaussian noise with zero mean and standard
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Algorithm 1 Frame-based image inpainting algorithm using TP-CTF6

Require: The tight frame D ∈ Rd×n built from TP-CTF6, an inpainting mask
{1, . . . , d}\Ω (that is, Ω is a given observable region), standard deviation σ
of independent and identically distributed zero-mean Gaussian noise, and an
observed partial image y ∈ Rd on the observable region Ω.
Initialization: x−1 = x0 = 0, i = ` = 1, r = 1 − (#Ω)/n, where #Ω denotes the
cardinality of Ω. Generate thresholding values Λ1,Λ2 by (2.2) and iteration
parameters N1,N2, tol1, tol2 by Table 2.
Initialize thresholding value: λ = Λ1(1).
while (i 6 N1 + N2) do

y` = PΩ(y) + (I − PΩ)(x`).
c`+1 = ηbs

λ (DTy`).
x`+1 =Dc`+1.
error = ‖(I − PΩ)(x`+1 − x`)‖2/‖PΩy‖2.
if (error < tol1) and (i < N1) then

i = i + 1.
λ = Λ1(i).

else if (error < tol2) and (N1 6 i < N1 + N2) then
i = i + 1.
λ = Λ2(i − N1).

else if (error < tol2) and (i = N1 + N2) then
Break.

end if
` = ` + 1.

end while
return x`+1 as the restored image.

deviation σ. Suppose that the pixels of the image are missing uniformly and randomly
with probability r. For any given tight frame, the noise standard deviation of each
frame coefficient (after normalization of the filters) is approximately σ

√
1 − r. The

boundary of the inpainting mask often creates artificial jumps between the observable
region and the missing region. Hence, the boundary of the inpainting mask also
contributes as another source of noise. As a consequence, we should set the positive
minimal thresholding value λmin greater than σ

√
1 − r. For simplicity, we take λmin as

in (2.1) and note that λmin > σ
√

1 − r.

3. Numerical experiments

Real images usually have two components referring to the cartoon part (the
piecewise-smooth part of the image) and the texture part (the oscillating pattern part
of the image). Both these components have sparse approximations under some tight
frame systems. The real part and imaginary part of TP-CTF4 have six edge-like
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Table 1. Simultaneous cartoon and texture image inpainting using different tight frames with local DCT.

Text 3 Text 4 50% 80%
TP-CTF4+Local DCT 35.37 31.85 33.24 26.89
[3] 34.52 30.88 32.71 26.60
[8] 35.07 31.49 32.76 26.43

Table 2. Choices of iteration parameters N1,N2 and stopping tolerances tol1, tol2 for Algorithm 1.

r N1 tol1 N2 tol2
0 < r < 0.5 5 5 × 10−3 8 10−4

0.5 6 r < 1 8 5 × 10−3 5 10−3

directional elements, which are expected to handle the cartoon part well. To illustrate
this property, we test the cartoon and texture inpainting by using the complex tight
frame TP-CTF4. To represent the texture part of the image, we use the local DCT,
which is a standard transform (see, for example, [3, 8]). We compare the complex
tight frame TP-CTF4 with the algorithms of Cai et al. [3] and Elad et al. [8]. Let
xt,0 = 0 and xc,0 = 0; we use the following iterative scheme:

xt,` =Dtη
soft
λt
{DT

t (PΩy + (I − PΩ)xt,`−1 − PΩxc,`−1)},

xc,` =Dcη
bs
λc
{DT

c (PΩy + (I − PΩ)xc,`−1 − PΩxt,`−1)},
λt = ρλt, λc = ρλc

to recover the corrupted image without noise. Here Dt denotes the local DCT andDc
denotes the complex tight frame TP-CTF4. In applications, the parameter ρ is set to be
0.95 and λt = 255, λc = 2.5λt. The iterative scheme stops when λc < 1. For the above-
mentioned algorithms [3, 8], we use the codes kindly provided by the authors. We
choose the image Barbara of size 512 × 512 as the test image; the comparison results
are given in Table 1.

To test our proposed algorithm, we use four test images and two inpainting
masks in Figure 1, which are from http://pan.baidu.com/s/1slwa2Ln. We compare
the performance of our proposed algorithm with several frame-based iterative image
inpainting algorithms including a spline tight framelet based image inpainting
algorithm by Cai et al. [2]; an adaptive inpainting algorithm based on undecimated
transform using the DCT–Haar wavelet filters by Li et al. [12]; and an image inpainting
algorithm based on undecimated transform using compactly supported nonseparable
shearlets by Lim [13]. The implementations of all those related frame-based image
inpainting algorithms are kindly provided by their own authors or downloaded from
their home pages. We run all the related image inpainting algorithms with their
default parameter values, which have been given in the source codes by their respective
authors. The parameters of Algorithm 1 are given in Table 2.

Some zoomed-in views of comparison results are shown in Figure 2. We observe
that our proposed algorithm produces the restoration results with fewer artefacts than
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Figure 1. (a)–(d) are test images of size 512 × 512. (e) and (f) are inpainting masks of size 512 × 512.
The observable region Ω is the complement of an inpainting mask.

Table 3. Performance in terms of PSNR values of several image inpainting algorithms without noise
for four 512 × 512 test images in (a)–(d) of Figure 1. Top left table for inpainting mask Text 3 in (e) of
Figure 1. Top right table for inpainting mask Text 4 in (f) of Figure 1. Bottom left table for 50% randomly
missing pixels. Bottom right table for 80% randomly missing pixels.

Hill Man Boat Barbara Hill Man Boat Barbara
[2] 35.08 34.50 33.10 31.89 31.63 30.70 29.29 29.04
[12] 35.73 34.82 34.62 35.03 32.85 31.34 30.35 31.51
[13] 35.69 35.11 34.66 35.17 32.13 31.52 30.65 32.45
Algorithm 1 36.03 35.52 34.94 36.59 32.54 31.92 30.76 32.65

[2] 28.90 28.18 27.02 24.32 28.93 28.06 27.03 24.32
[12] 34.43 33.45 34.08 33.85 28.99 27.69 27.87 26.39
[13] 33.11 32.81 33.07 34.13 29.07 28.42 28.01 28.08
Algorithm 1 34.53 34.25 34.42 35.69 29.59 29.15 28.56 28.11

by other methods. Compared to the peak signal-to-noise ratio (PSNR) presented in
Tables 1 and 3, we also notice that TP-CTF6 produces better results than TP-CTF4
combined with local DCT does. One reason is that TP-CTF6 provides a multi-
resolution decomposition, while local DCT only provides one-level decomposition.

The inpainting algorithm by Li et al. [12] and the algorithm by Lim [13] only
consider the noiseless case. For the algorithms proposed by Cai et al. [2] and the
algorithm by Elad et al. [8], the parameters of these iterative algorithms are often
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Figure 2. Zoomed-in portion of the clean image Man in Figure 1 (b) in (a), the corrupted image in (b)
by 50% randomly missing pixels without noise, and the inpainted images in (c) by [2], (d) by [12], (e)
by [13], and (f) by our Algorithm 1.

Table 4. Performance in terms of PSNR values of our proposed image inpainting algorithm under
independent and identically distributed zero-mean Gaussian noise with noise standard deviation σ =

10, 30, 50 for four 512 × 512 test images in (a)–(d) of Figure 1. Top left table for inpainting mask Text 3
in (e) of Figure 1. Top right table for inpainting mask Text 4 in (f) of Figure 1. Bottom left table for 50%
randomly missing pixels. Bottom right table for 80% randomly missing pixels.

σ Hill Man Boat Barbara Hill Man Boat Barbara
10 31.45 31.43 31.04 31.81 29.90 29.64 28.77 29.84
30 27.84 27.58 27.41 27.17 27.00 26.66 26.20 26.24
50 26.18 25.77 25.55 24.89 25.56 25.11 24.75 24.28

10 30.70 30.64 30.65 31.10 27.90 27.55 27.08 26.66
30 27.04 26.82 26.64 25.93 25.33 24.92 24.42 23.30
50 25.36 25.00 24.71 23.56 23.95 23.39 22.90 21.85

manually set and depend on the noise levels and test images. Here we only report
the performance of our proposed Algorithm 1 for image inpainting with noise. We
choose the independent and identically distributed zero-mean Gaussian noise with
three different standard deviations σ = 10, 30, 50. The results are summarized in
Table 4. See more numerical experiments and details of TP-CTFs in the supplementary
file [15].
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4. Conclusions

We propose a frame-based image inpainting algorithm. Numerical results show
that our proposed inpainting algorithm can restore corrupted images with better
quality than those recovered by the state-of-the-art frame-based iterative inpainting
algorithms [2, 3, 8, 12, 13]. Moreover, our proposed algorithm performs well for
image inpainting under noise. In future, we expect that our results on image inpainting
could be further improved by exploring the freedom in the design of directional tensor
product complex tight framelets [10, 11] or by using directional nonseparable tight
framelets [9].
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