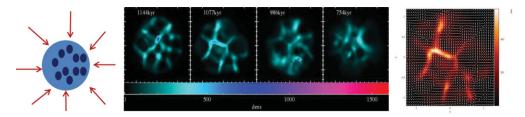
Filamentary structure formation in the Interstellar Radiation Field (ISRF)

Jingqi Miao, M. Lieu, Philip Cox, Tim Kinnear and Paul Cornwall

Centre for Astrophysics and Planetary Science (CAPS) University of Kent, CT2 7NH, United Kingdom email: j.miao@kent.ac.uk


Abstract. A new mechanism is proposed for the formation of filament/core structure by ISRF and clumpy molecular cloud interaction. The derived characterizes of the filament/core network is consistent with that produced by the compressive forcing turbulence model.

Keywords. ISM: clouds — ISM: evolution — ISM: structure

The filamentary networks revealed by Herschel over the entire range of galactic latitudes (e.g. Molinari *et al.* 2010) indicate a link to the surrounding ISRFs (e.g. Men'shchikov *et al.* 2010). We probe a new mechanism for ISRF(FUV) induced filamentary network formation by using an existing numerical code (Nelson & Langer 1997).

The four columns in the middle panel in Fig. 1 (from left to right) are the cross section density profiles from four different simulations for a clumpy cloud of an initial 40 solar masses and radius of 1.2 pc, subject to FUV radiation fluxes of 0.2, 0.6, 1 and 2 times the Habing constant respectively. A density contrast of 3 orders of magnitude is reached after 1.14, 1.07, 0.97 and 0.75 Myrs respectively. The right panel in Fig. 1 is the velocity vector field overlaid the cross section density profile corresponding to the second left column in the middle panel of the Fig. 1, which bears a resemblance to that produced by the compressive turbulent forcing model (Federrath et al. 2010).

Our simulation result shows that the interaction between ISRF and a clumpy molecular cloud can be taken as a possible mechanism for filamentary network formation. More simulation results, discussions and references can be found in a paper to be submitted.

Figure 1. The left panel is the initial configuration of the simulation, the rest are the results.

References

Molinari, S. et al. 2010, A & A, 518, L58

Men'shchikov, A. et al. 1999, A&A, 518, L103

Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., & Mac Low, M.-M. 2010, $A \mathcal{C} A$, 512, 81

Nelson, Richard P. & Langer, William D. 1997, ApJ, 482, 796