ON THE FORCED LIENARD EQUATION
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We consider the second order differential equation

(1) x + f(x)x + x = p(t) (. = dit)

with the assumptions that

(2) f(x) is continuous (-® < x < o) and p(t) is continuous and
bounded: |p(t)] < E, -o <t< .

Also, throughout this paper, F(x) denotes an antiderivative of f(x).

Many results are known concerning periodicity and boundedness
of solutions of (1) under various conditions, all of which include the
assumptions in (2). For example, a special case of a result of
W.S. Loud [4] concerning bounded solutions of (1) is the following which
we state in a form suitable for our purposes here.

THEOREM 1. I there is a constant ¢ > 0 such that f(x) > ¢ for

all real x and x(t) is any solution of (1), then there exists to such

, ]x(t)! + | x(t) | < K, the constant K depending only

that for all t > tO

on E and c.

Remark 1. We note that the statement of Theorem 1 above, as
given in [3], with the hypothesis "f(x) > c¢" replaced by "[f(x)| > c"
is false, as easily constructed examples show. (See Example 1 below.)

More recently, Frederickson and Lazer [2] have proved the
following result concerning periodic solutions of (1).

THEOREM 2. I f(x) > 0 for all real x and p(t) is 2w - periodic,
then (1) has a 2w - periodic solution if and only if

2w it 0
(3) | [ p(t) ¥ at] < 2 [ fx) ax
0 - 00
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It is our purpose here to investigate solutions x(t) of (1) which

satisfy

(1) x(t) = o{t) and x(t) = oft) as t- + o ,
or

(11) x(t) = O(t) and =x(t) = O(t) as t=> + o

Clearly, conditions (I) and (II) are weaker than those of boundedness and
periodicity of Theorems {1 and 2 and, accordingly, our main result
(Theorem 4) gives a necessary condition that solutions of (1) satisfy (I).
This condition is similar to (3) above. Sufficient conditions are stated
in Theorem 5.

The following example shows that conditions more stringent than

those in (2) must be placed on equation (1) in order that its solution
satisfy condition (II). Such conditions are given in Theorem 3.

Example 1. Let p(t) = 0 and f(x) = -Zx-i for all x > 1 and

f(x) = -3 for x < 1. Then the solution of the resulting equation (1)
satisfying x(0) =1, x(0) =1 is

x(t)'—'i—%; for 0<t< 1.

In this case, not all solutions of (1) exist in the future.

THEOREM 3. X (2) holds and
(sgnx)F(x) > -M and lF(x)lg Clx]

holds for all real x, where M and C are positive constants, then all

solutions x(t) of (1) exist in the future and satisfy (II).

Proof. Equation (1) is equivalent to the system

x = y-F(x)

(1) v = plt) - x.

Let V(x,y) = x2 + yz . Then along a solution x(t), y(t) of (1):
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. 1
V = -2xF(x) + 2yp(t) < 2 M|x| + 2E|y| < 4(M +E) V2

and thus, for all t for which V(t) # 0, we have letting B = 4(M + E)

d 3
E-t‘(ZV - Bt) < 0,

1
2

2V¢ - Bt is decreasing and

1
2

1
-Bt < 2V? - Bt < 2 Vz(to) - Bt

0 ’
1

1 1
0 < 2V3(t) < 2V3(0) - Bt0+ Bt ,

1
which shows that V2(t) = O(t) as t—» + o. Thus x = O(t) and
y = O(t) and since x = y - F(x), x = O(t) also.

THEOREM 4. I (2) holds and p(t) is 2m - periodic then there
exists a solution x(t) of (1) satisfying condition (I) only if

Zm it
(4) | f p(t) e dt|] < 2Rng F .
0

Here Rng F = sup ,F(a) - F(b) | where the supremum is taken over
all a, b in the domain of the function F(x) (all real a, b).

For the proof of Theorem 4, we require the following inequality.

LEMMA 1. I h(t) is a bounded Lebesgue measurable function for
0 <t< 2m, then

2m .
(5) | [ ht) ¢ at|] < 2Rng h.
0

Proof. It is clearly no restriction to assume that

0< h(t) <1, Rng h=1

and that h(t) is a step function:
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h(t) = o, for a <t < a ) where

= < . < = d 0 < 1
0 a0 < a1 an 2w an < Qk <
Then
2w it n iak iak A
(6) | [ ht) e dt|= |z @ (e © -e “Hl.
0 k=1
The indicated sum in (6) lies inside the set
n ia ia
k-1
SZﬁvk(ek-e );Oﬁﬁkﬁi ,
2

which is a convex polygon whose vertices are a subset of
n ia ia
(7) {Zﬁ(e k-ek-i);ﬁ=00riz,
k k '
k=1 )
~

and each element of (7) is not greater in modulus than the diameter of
the unit circle.

In

2m .
t
Hence, )f h(t) e1 dtl 2 < 2 Rngh, as desired.
0

Remark 2. Lemma 1 represents a generalization of an old result
of de La Vallée Poussin [1; p. 16] who proved, using a modulus of
continuity argument, that under the hypothesis of Lemma 1,

2m .
| [ b & dt| < N2 Rng h.
0

Proof of Theorem 4. Suppose that x(t) is a solution of (1) satisfying

it
condition (I). Multiplying (1) by e’ and integrating,

82

https://doi.org/10.4153/CMB-1969-009-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-009-3

2nw . . 2nw

% et s f(x)x et o+ x e:lt dt = (t) e:lt dt .
S 1 p
0 0
An integration by parts yields
2nw 2nw it 2n it
(8) x- ix + F(x) - F(x)e' dt = nf p(t)e  dt,
0
0 0

using the 2w - periodicity of p(t) .

We may assume, of course, in proving (4) that F(x) is bounded
for all real x (Rng F < ). Thus,

2n it 2n it
(9) ofm) - i [ F(x) e dt = n [ p(t) e dt.
0 0

Using Lemma 1, we have

2nm it n 2kmw it
If F(x)e1 dtl = IZ f F(x)e1 dtl
0 k=1 Z(k— 1)n
n 2k it
< = | F(x)e' dt |
k=1 2(k-1)w
n 2w it
= = | f F(x(t+2(k-1)r) e dt |
k=1 0

IA

n 2 Rng F(x(t)) < n2 Rng F

and, from (9), it follows that
2w

(10) | J p(t)e1t at | < "—f\ﬂ) + 2Rng F,
0

which implies the inequality (4).

THEOREM 5. If (2) holds and

(11) xF(x) > -M and IF(x)I < B for all real x, with
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M and B positive constants, and if x(t) is a solution of (1) such that
p(t)x(t) is bounded above, p(t) x(t) < C for all x, then =x(t) satisfies
condition (I).

Proof. We note first that the stated conditions imply, by Theorem 3,
that all solutions of (1) exist in the future and satisfy (II). Let x(t), y(t)

be the corresponding solution of (1') above and let V = x2 + yz . Then
V= 2yp - 2xF(x) < 2yp + M = 2(x + F(x))p + M < 2(C +BE) + M

and thus V(t) = o(tz), which implies that x = o(t) and y = o(t). Since
x = y - F(x), x=o(t) and the proof is complete.
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