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ABSTRACT. A new three-dimensional finite-element model of the steady-state dynamics of temperate
glaciers has been developed and applied to Johnsons Glacier, Livingston Island, Antarctica, with the aim
of determining the velocity and stress fields for the present glacier configuration. It solves the full Stokes
system of differential equations without recourse to simplifications such as those involved in the
shallow-ice approximation. Rather high values of the stiffness parameter B (*0.19–0.23 MPa a1/3) are
needed to match the observed ice surface velocities, although these results do not differ much from
those found by other authors for temperate glaciers. Best-fit values of the coefficient k in the sliding law
(*2.2–2.7 x 103 m a–1 MPa–2) are also of the same order of magnitude as those found by other authors.
The results for velocities are satisfactory, though locally there exist significant discrepancies between
computed and observed ice surface velocities, particularly for the vertical ones. This could be due to
failures in the sliding law (in particular, the lack of information on water pressure), the use of an
artificial down-edge boundary condition and the fact that bed deformation is not considered. For the
whole glacier system, the driving stress is largely balanced by the basal drag (80% of the driving stress).
Longitudinal stress gradients are only important in the divide areas and near the glacier terminus, while
lateral drag is only important at both sides of the terminal zone.

INTRODUCTION
Johnsons Glacier is a small (about 5 km2) tidewater glacier
located at Livingston Island, South Shetland Islands, Ant-
arctica (62840’ S, 60830’ W). A local ice divide, at 200–
330 m a.s.l., defines it as a separate glacier basin within the
Hurd Peninsula ice cap (Fig. 1). It terminates in a 50 m high
ice cliff extending 500 m along the coast. The northern part
of the glacier has larger slopes (typical values about 108)
than those in the southern part (typical values about 68). The
confluence of the northern and southern flows of ice results
in a folded and highly fractured terminal zone. Because of
the orography and the prevailing northeasterly wind dir-
ection, the northern sector shows the largest accumulation
rates. The equilibrium-line altitude is about 150 m in the
northern area and 180–260 m in the southern area (Ximenis,
2001). From the thermal point of view, Johnsons Glacier is
temperate, as revealed by temperature and density profiles
measured at boreholes (Furdada and others, 1999; data from
M. Pourchet and J. M. Casas reported in Ximenis, 2001). This
is an unusual characteristic of Antarctic glaciers, though
common for the glaciers in the South Shetland Islands,
where typical summer temperatures at sea level are a few
degrees above zero.

This paper is focused on the modelling of the dynamics of
Johnsons Glacier, with the aim of determining the velocity
and stress fields for the present geometry, computed for the
values of the parameters in the constitutive relation and
sliding law that provide the best fit between observed and
computed ice surface velocities. The assumptions of the
shallow-ice approximation (SIA) typical of ice-sheet model-
ling are not appropriate for the modelling of small glaciers
with complex geometry such as Johnsons Glacier. Therefore,
we have developed a model of the dynamics of temperate

glaciers that numerically solves the full Stokes system of
differential equations governing glacier dynamics without
recourse to simplifications such as those involved in the SIA.
In a previous paper (Corcuera and others, 2001) we applied
an earlier two-dimensional (2-D) steady-state model to a
flowline of Johnsons Glacier. One of our conclusions was
that, due to the complex geometry of this glacier and its lack
of symmetries, a 2-D model was not suitable and a three-
dimensional (3-D) model was demanded. We now present
such a model, which has also been improved to include the
possibility of time evolution. It consists of two sub-models:
the dynamical sub-model involves the momentum- and
mass-conservation equations and uses Glen’s flow law as the
constitutive relation; the surface evolution sub-model is
defined by the kinematic characterization of the free surface
relating the changes in ice thickness to the velocity field and
the net mass balance. The latter sub-model is the one
allowing for the analysis of the time evolution; however, in
the present application its use has been restricted to the
smoothing of the surface geometry.

The proximity of Johnsons Glacier to the Spanish
Antarctic Station (BAE) Juan Carlos I has provided the
opportunity to collect a sufficient amount of field data to be
used both as input to the model and as a database for tuning
purposes. These data include:

Glacier geometry (Fig. 1): ice surface determined from
topographic measurements (Ximenis, 2001) and ice
thickness inferred from seismic data (Benjumea and
Teixidó, 2001) and radar data (Benjumea and others,
2003).

Ice velocity at the glacier surface, measured at a net of 20
stakes deployed in 1994 (Ximenis, 2001).
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Mass balance at the surface, measured at the net of
stakes (Ximenis, 2001).

Meteorological data at the BAE (Ximenis, 2001).

MODEL EQUATIONS
The ice mass is considered to be an incompressible and
isotropic non-linear viscous fluid. Because of the extremely
low Reynolds number (Re� 10–13), we may consider a
stationary quasi-static flow regime. The model can be
separated into two sub-models, whose unknowns are
functions of space and time and are solved separately,
through an iterative procedure that uncouples the equations.

Dynamical sub-model
The equations describing the dynamical model are the usual
ones for steady conservation of linear momentum and
conservation of mass for an incompressible continuous
medium:
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where �ij is the deviatoric stress tensor and p is the pressure
(compressive mean stress), linked to the stress tensor �ij

through the relations

�ij ¼ �p�ij þ �ij ,
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Conservation of angular momentum implies the symmetry of
the stress tensor, i.e. �ij ¼ �ji. As constitutive relation, we
adopt Glen’s law, given by the equations
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are, respectively, the strain-rate tensor and the effective
strain rate.

We have set n= 3 and taken B as a phenomenological
parameter whose value can be varied, within reasonable

Fig. 1. (a) Surface topography of Johnsons Glacier; (b) location of radar and seismic profiles; (c) ice-thickness map retrieved from radar and
seismic data; (d) subglacial relief determined by subtracting ice thickness from surface elevation. The light-grey areas are ice-free zones and
the dark grey represents the sea. Contour interval is 20 m. The contour lines in (c) and (d) are restricted to the area covered by the radar and
seismic surveys and used for the modelling. This is delimited by ice divides, rock outcrops and an artificial section delimiting the start of the
highly crevassed terminal zone. This artificial section follows a line joining velocity/accumulation–ablation stakes (not shown).
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limits, to fit the observed and computed velocities at the
glacier surface.

Free-surface evolution sub-model
This sub-model is given by the kinematic characterization of
the free surface, which defines the evolution of the glacier
surface due to the glacier motion and the accumulation and
ablation processes. The unknown function is the glacier
surface elevation h. Its material derivative (i.e. dh/dt)
represents the temporal variation of the glacier surface,
measured while ‘riding’ a moving particle, and has to equal
the vertical component w of the velocity plus the accumu-
lation rate a. Separating the material derivative into local
component @h/dt and convective term u � rHh (where u is
the velocity vector and rH is a horizontal gradient), we get

@h
@t

¼ w þ a� u � rHh , ð6Þ

which provides the kinematic characterization of the free
surface.

NUMERICAL SOLUTION
The model is solved iteratively by means of a procedure that
uncouples the dynamical and free-surface evolution sub-
models. Starting from an initial glacier configuration, the
finite-element method is used to solve the dynamical sub-
model, providing the velocity and pressure fields for the
initial configuration. These are then used to solve the free-
surface evolution sub-model, by semi-Lagrangian methods,
thus producing a new glacier surface configuration at a time
Dt later. The process is repeated until convergence.

Dynamical sub-model
Equations (1) and (2) are a Stokes system of equations
(Quarteroni and Valli, 1994, ch. 9) whose non-linearity is
not associated with the convective term usual in fluid
dynamics (which is absent) but with the non-linear character
of the constitutive relation. The unknowns are the velocity
components and the pressure. This system is reformulated in
a weak form, whose solution is approximated by finite-
element methods. The details are given in the Appendix.

The domain is divided into hexahedral elements such that
the pressure is constant within each element and the
velocities vary bilinearly across the element. For each
hexahedron, the velocity nodes are located at its eight
corners, while the pressure node is located at the centre of
the element. A sample grid of 960 elements is shown in
Figure 2. The main practical problem of using hexahedral
elements is that zero thickness points are not allowed.
Where such points really exist, the ice thickness has been set
to 5 m. As an alternative, a 3-D automatic gridding routine
which generates tetrahedral elements constructed by the
Voronoı̈ method following Delaunay triangulation rules
(Frey and George, 2000, ch. 7) is also available. Though it
is more efficient, it has a higher computational cost and it
produces a non-structured grid.

The choice of basis functions of the approximating spaces
for pressure and velocity made up of polynomials of different
degree is dictated by considerations of convergence and
stability of the numerical solution (Carey and Oden, 1986,
§3.3.3; Quarteroni and Valli, 1994, §9.3). From this point of
view, a much better choice would be to use bilinear
pressures and biquadratic velocities, as we did in a previous

application of the earlier 2-D model (Corcuera and others,
2001). In the present 3-D application, however, such an
option would involve too much computational effort. The ice
density and the rheological parameters B and n have been
taken as constant across the full glacier, though B can be set
as a function of position, temperature or water content.

The integrals involved in the element computations are
calculated by means of Gauss–Legendre quadrature. The
master integrals are computed by the usual isoparametric
transformation. The non-linear system of equations (A3) has
been solved iteratively, using a direct procedure based on
fixed-point iteration. The linear system associated with each
step of this iterative procedure is solved by a LU decom-
position method. The iteration procedure stops when the
norm of the vector difference between the non-dimensional
solutions for successive iterations falls below a prescribed
tolerance. We usually set this to 10–6.

Free-surface evolution sub-model
The surface evolution equation (6) is a non-linear advection
equation. Advection equations are usually numerically
solved by means of finite-difference methods combining
time and space discretizations (e.g. Van der Veen, 1999,
§8.2). An alternative approach would be the use of pseudo-
spectral methods (e.g. Hindmarsh, 2001). However, the use
of semi-Lagrangian methods has been found to be more
appropriate (Staniforth and Côté, 1991). Eulerian advection
schemes work well on regular Cartesian meshes, but often
lead to overly restrictive time-steps due to considerations of
computational stability. Lagrangian advection schemes
allow for much larger time-steps, but have the disadvantage
that an initially regularly spaced set of particles will
generally evolve to a highly irregularly spaced set at later
times, and important features of the flow may consequently
not be well represented. The idea behind semi-Lagrangian
advection schemes is to try to get the best of both
approaches: the regular resolution of Eulerian schemes and
the enhanced stability of Lagrangian schemes. This is
achieved by using a different set of particles at each time-

Fig. 2. Finite-element grid made of 21� 9� 7¼ 1323 velocity
nodes and 960 pressure nodes (one pressure node and eight
velocity nodes per element). Vertical dimension is exaggerated �5.
The light-grey area in the foreground is the artificial boundary near
the glacier terminus. The elements in the columns on both sides of
this boundary are shown to coalesce in zero-thickness boundaries.
The light-grey area on the righthand side represents an ice divide.
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step, the set of particles being chosen such that they arrive
exactly at the points of a regular Cartesian mesh at the end of
the time-step.

Focusing on our problem, if we try to solve iteratively the
equations for the dynamical and surface evolution sub-
models, starting from the present surface geometry, until it
reaches a steady-state configuration, the non-linear advec-
tion equation causes spurious dispersion coupled with other
fields leading to non-linear instabilities (Hindmarsh, 2001).
Finite-difference schemes for time evolution involve migra-
tion of modes at different phase speeds, while the semi-
Lagrangian methods show good phase speeds with little
dispersion (Staniforth and Côté, 1991).

In particular, our implementation of semi-Lagrangian
methods uses cubic spatial interpolation and two-step linear
time extrapolation. No further details of the method will be
given, as its use in the present application has been rather
limited. The model has not been run into steady state.
Starting from the present glacier geometry, the surface
evolution equation has only been used for a few very short
time-steps (five steps of 0.2 years) with the aim of smoothing
the upper surface of the glacier. The resulting @h=@t field
after such short time evolution is rather small in large parts of
the glacier, especially at the mid-altitudes, though it shows
maximum values of the same order of magnitude as the
accumulation rate in some parts of the divide (negative
values) and terminus (positive values) areas, indicating that
the glacier is not in a steady-state configuration but is not
very far from balance.

BOUNDARY CONDITIONS
The domain boundary can be divided into portions having
different boundary conditions. The upper surface is con-
sidered a stress-free area with unconstrained velocities. This

means that the observed surface velocities are not used as
boundary conditions; instead, they are used, together with
the computed surface velocities, for tuning of the free
parameters of the model, as is described later. At the ice
divides, the horizontal velocities and the shear stresses are
expected to be small, so we have set them as null and left the
vertical velocity unconstrained. Notice, however, that for
3-D models the divide is a curved surface where the
component of horizontal velocity in the normal direction is
null but the component in the tangent plane can be non-zero
(though usually small). At the lateral zero-thickness walls, the
ice is considered to be frozen to the wall, i.e. null velocities
are specified. No ice-thickness data are available near the
glacier terminus, which is a highly crevassed area. Because
of this, we have not modelled the glacier right to its terminus.
Instead, an artificial vertical boundary has been introduced
near the terminus (Fig. 1). At this boundary we have set
velocity boundary conditions. Both velocity modulus and
direction at the surface nodes of this boundary have been
interpolated from experimental velocities measured at the
stakes located along it. The velocities at depth have been set
according to a SIA velocity–depth profile. At the basal nodes,
the velocities are specified according to a sliding law

ub ¼ k
�
p
b

pq
e

, ð7Þ

where �b is the basal shear stress, pe is the effective pressure
(ice pressure less buoyant force) and we have set p ¼ 3 and
q ¼ 1, leaving k as a free parameter for the tuning process.
Equation (7) was used to determine the horizontal com-
ponents of the basal velocity, from which the vertical
component was computed using the equilibrium condition
at the bed, assuming a rigid bed and no melting at the bed,
i.e. w ¼ uð@b=@xÞ þ vð@b=@yÞ, where b is the glacier bed
elevation. In this way, the resulting sliding velocity follows
the driving-stress horizontal direction while remaining
tangent to the bed. There are no measurements of water
pressure at Johnsons Glacier. Instead of making assumptions
without any experimental foundation, we assumed the water
level to be at sea level, which is the lower limit for a
tidewater glacier. The basal slope was averaged over a circle
with radius equal to the ice thickness, in order to avoid local
effects.

Concerning the implementation of the boundary condi-
tions on the system of equations (A3), those given in terms of
stresses (Neumann conditions) are used in the computation
of the independent term of the system, which also involves
the body-forces terms. The boundary conditions given in
terms of velocities (Dirichlet conditions) are applied directly
upon the system, so reducing its dimension.

SENSITIVITY TESTS, MODEL TUNING AND RESULTS
In a previous paper (Corcuera and others, 2001, fig. 4), the
earlier 2-D model solution was successfully tested against
Nye’s analytical solution for an inclined parallel ice slab. For
an ice sheet with irregular surface and bed, the 2-D version
of the model solution was compared with the SIA solution,
showing a very good agreement at distances from the ice
divide larger than the divide ice thickness (unpublished data
from the authors).

A number of tests were also performed to check the
sensitivity of the model to changes in input data. The effects

Fig. 3. Coefficient of vector correlation between computed and
observed velocities at the surface, as a function of B and k. Contour
interval for vector correlation is 0.005. The ratio of basal velocity to
surface velocity is represented by dashed lines, shown with a
contour interval of 0.1.
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of an increase in resolution were tested first. Starting from a
rather coarse grid (about 7� 5 � 3 nodes), the finite-element
solution starts to converge. Increasing the resolution from
such values improves the solution smoothly, the improve-
ment being more remarkable for the pressure than for the
velocity solution, i.e. the pressure solution is much more
sensitive to mesh size. The observed surface velocities are
not used as input data to the model (they are only used for
tuning purposes), except for the velocities in the stakes at the
artificial boundary near the terminus. Changes for the latter,
using year average velocities instead of summer velocities,
which differ by about 35%, resulted in comparable changes
in the model solution. Finally, the process of tuning the free
parameters of the model (B and k) also constitutes a
sensitivity test.

The tuning parameters in our model are the stiffness
parameter B in the constitutive relation and the coefficient k
in the sliding law. Grid sizes larger than 960-elements (as in
Fig. 2) did not substantially change the estimates of the tuning
parameters, while they implied a large increase in compu-
tational effort, so that the 960-element grid was selected for
this purpose. For the tuning, B values were increased from
0.15 to 0.35 MPa a1/3, in steps of 0.02 MPa a1/3, and k from 0
to 7� 103 m a–1 MPa–2, in steps of 0.7�103 m a–1 MPa–2.
Tuning was made looking for optimal vector correlation, as
defined by Hanson and others (1992), between computed
and observed summer surface velocities. Correlation im-
proves as the correlation coefficient approaches 1. At the
model resolution, the best fit between computed and
observed velocities is obtained within a large area with B
values >0.19 MPa a1/3 and k values between 0.3�103 and
6.8�103 m a–1 MPa–2 (see Fig. 3). Within the area of highest
correlation (>0.975), the average ratios of basal to surface
velocity (shown as dashed lines in Fig. 3) cover a quite wide
range (0.1–0.7). Taking into account that this ratio is a value
averaged over the full glacier, we could consider 0.3 a
reasonable value. The corresponding values for B and k are
then within 0.19–0.23 MPa a1/3 and 2.2–2.7�103 m a–1 MPa–2,
respectively. As B and k are also responsible for the height-to-
width ratio of the glacier geometry and the latter can be
obtained by looking at the results in a steady state, the
analysis used is therefore only strictly valid if the present
glacier geometry is considered to be in steady state.

For the choice B= 0.21 MPa a1/3 and k= 2.4� 103 m a–1

MPa–2, the velocity and pressure fields were computed for a
grid of 5600 elements, much denser than that used for the
tuning, in order to obtain better resolution. The computed
velocities at the surface, together with the sliding velocities,
are shown in Figure 4. From the velocity and pressure fields,
the six terms of the stress tensor can be calculated. This
provides a means for calculating the force-balance compo-
nents (Van der Veen, 1999, §3.2). In Figure 5, driving stress
and basal drag are shown. Another possibility is to compute,
from the model output, the effective stress at surface. The
areas where their values exceed a particular material failure
criterion can be compared to the areas of occurrence of
crevasses. Figure 6 is a contour map of effective stress at the
surface, showing that the largest values are located near the
glacier terminus and, in particular, in its northernmost area,
where both the surface and bed slopes are very high.

DISCUSSION AND CONCLUSIONS
The model results are satisfactory, showing a good overall
agreement between computed and experimentally observed
ice surface velocities, except for vertical velocities, which
show the largest discrepancies: the average per cent
differences between computed and observed velocity
components are 4%, 7% and 39% for u, v and w
respectively. Locally, there exist some significant discrepan-
cies between computed and observed velocity values. For
the horizontal components, this is limited to 3 (of 20) stakes;
while the discrepancies for vertical velocities involve a
much higher number of stakes (about 7 of 20), not showing
any special pattern of spatial distribution. The use of a
constant value for B across the glacier could be a reason for
the local discrepancies; however, it is intrinsic to the tuning
procedure. A positive feature of the model is that, in the
divide areas, it shows the velocity pattern typical of higher-
order models and absent in SIA models (Raymond bumps).

The pattern of contour lines of the correlation coefficient
between computed and observed surface velocities (Fig. 3) is
consistent: an increase in B (which means lower deforma-
tions) corresponds to an increase in sliding. However, within
the area of highest correlation (>0.975), the values of the
stiffness parameter B required to match the observed ice

Fig. 4. Computed velocities at the glacier surface (a) and at the bed (b), for model parameters B= 0.21 MPa a1/3 and k= 2.4 � 103 m a–1 MPa–2.
Though the results were computed for a 5600 element grid, they have been decimated to aid graphical clarity.
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surface velocities (>0.19 MPa a1/3) are higher than expected
for ice close to the melting point (�0.17 MPa a1/3, according
to Paterson, 1994, ch. 5). Nevertheless, the values corres-
ponding to a reasonable average ratio of sliding to surface
velocities of 0.3 (B � 0.19–0.23 MPa a1/3) are close to those
found by other authors for temperate glaciers. For instance,
Hanson (1995) obtained values of 0.20–0.22 MPa a1/3 for
Storglaciären, Sweden, and reported that similar values were
obtained for Variegated Glacier, Alaska, USA, by Raymond
and Harrison (1988). Moreover, Hanson stressed that the
sliding speeds needed to match surface velocities were set
much lower than would have been expected from borehole
studies in Storglaciären. Although for Johnsons Glacier there
are no direct observations of sliding velocity, the velocities
produced by the sliding law are lower than would be
expected for a temperate tidewater glacier, especially since,
for the tuning, we have used summer stake velocities. As
shown in Figure 4b, the sliding velocities are very low in the
central part of the terminal zone. This is due to the small
surface slope in this area. The dividend in the sliding law
roughly depends on (�gHrhÞ3;H being the ice thickness,
while the divisor roughly depends on �gH, since we have
taken the water table equal to sea level and almost all of the
glacier bed is above it (see Fig. 1d). The quotient then
roughly depends on H2(!h)3. In spite of having the thickest
ice in this area (see Fig. 1c), the small value of !h
dominates. The only way to obtain larger sliding velocities
would be to have a very high water table, so that the buoyant
force could strongly decrease the effective pressure. As-
sumptions on water pressure such as those used by Vieli and
others (2000) for Hansbreen could be made; however, the
lack of water-pressure and meltwater production measure-
ments for Johnsons Glacier has not allowed us to make any
assumption having an experimental foundation. We have
thus taken a conservative approach, using the lower limit of
the water pressure, as the authors mentioned did for their
theoretical model of dynamics of tidewater glaciers (Vieli
and others, 2001). Another source of discrepancy between
modelled and observed velocities could be the use of an
artificial boundary in the terminal zone. The unavailability
of ice-thickness measurements in this area, due to the
abundance of crevasses, prevents modelling of the ‘real’

glacier, which has a calving front. It is doubtful, however,
that its inclusion would improve the results, because of the
complexity of the calving process and its modelling (e.g. Van
der Veen, 1996; Vieli and others, 2000, 2001). Neither has a
deforming bed been considered, again because of lack of
experimental evidence. There would be the possibility of
including both sliding and bed deformation through the use
of a thin layer of soft material at the bed. However, this
would imply a higher number of tuning parameters (as the
rheological parameters of the deforming bed should be
included), which is not advisable.

Temperate glaciers are isothermal, except for a small
dependence of the melting point on pressure, so that we
may consider B independent of temperature. For these
glaciers, however, B is strongly dependent on the water
content of ice. Duval (1977), using ice samples from
temperate glaciers and water contents of 0.01–0.8%,
showed a linear relationship between water content W
(given as %) and the rate factor A0 in Glen’s flow law
(Lliboutry and Duval, 1985):

A0ðW Þ ¼ ð3:2 þ 5:8W Þ � 10�15ðkPaÞ�3s�1, ð8Þ
where A0 ¼ B–n. According to such a relationship, our best-
fit estimate B� 0.19–0.23 MPa a1/3 would correspond to
temperate ice with a very low water content (0–0.3%).
However, water-content estimates from radio-wave velocity
data reported for Johnsons Glacier have an average of
0.6 ± 1.1% (Benjumea and others, 2003), for which B values
close to 0.17 MPa a1/3 should be expected according to
Duval’s formula.

Concerning k, the best-fit values k � 2.2–2.7� 103 m a–1

MPa–2 are of the same order of magnitude as that found by
Hanson (1995), 104 m a–1 MPa–2, for the same choice of p
and q.

The computations of force-balance components show
that the main source of flow resistance is basal drag (80% of
the driving stress for the whole glacier system). The
longitudinal stress gradients are significant mainly in divide
areas, where an extensional regime dominates, and to a
lesser extent in the terminal zone. Lateral drag is only
important on both sides of the terminal zone, where
narrowing of the glacier basin, proximity to the glacier

Fig. 5. Force-balance components: (a) driving stress; (b) basal drag. Force-balance components having much lower values (longitudinal stress
gradients and lateral drag) are not shown. The results shown have been decimated to aid graphical clarity.
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walls and strong bed and surface slopes are combined.
Unfortunately, the need to artificially end the glacier near
the terminus does not allow the model to fully exploit the
characteristics inherent to the solution of the full Stokes
system, except for the divide areas, where the typical
velocity pattern of higher-order models is shown.

The terminal zone of Johnsons Glacier is highly cre-
vassed, which is typical of tidewater glaciers. These
crevasses are a consequence of the extensional stress
regime. The effective stress computed from the model
(Fig. 6) shows that the highest values are reached near the
glacier terminus, exceeding 1 bar only in its northernmost
area. If we consider a von Mises criterion for the occurrence
of crevasses corresponding to an effective stress of >1 bar
(Vaughan, 1993), this correlates well with the location of the
crevassed area.

Summarizing, the model results, and their comparison
with the field observations, clearly improve on those
previously obtained using a 2-D model (Corcuera and others,
2001). However, the sliding speeds required to match the
observed surface velocities are smaller than would be
expected for a tidewater temperate glacier, as the velocities
used for the tuning correspond to the melt season. A better
description of basal sliding is demanded, including a more
realistic treatment of water pressure. Allowance should also
be made in the model for deformation of glacial sediments.
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Staniforth, A. and J. Côté. 1991. Semi-Lagrangian integration
schemes for atmospheric models: a review. Mon. Weather
Rev., 119(9), 2206–2223.

Van der Veen, C. J. 1996. Tidewater calving. J. Glaciol., 42(141),
375–385.

Van der Veen, C. J. 1999. Fundamentals of glacier dynamics.
Rotterdam, etc., A.A. Balkema Publishers.

Vaughan, D. G. 1993. Relating the occurrence of crevasses to
surface strain rates. J. Glaciol., 39(132), 255–266.

Vieli, A., M. Funk and H. Blatter. 2000. Tidewater glaciers: frontal
flow acceleration and basal sliding. Ann. Glaciol., 31, 217–221.

Vieli, A., M. Funk and H. Blatter. 2001. Flow dynamics of tidewater
glaciers: a numerical modelling approach. J. Glaciol., 47(159),
595–606.
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APPENDIX

WEAK FORMULATION AND FINITE-ELEMENT
DISCRETIZATION

Weak formulation
Let us take a Cartesian reference system with vertical
coordinate z (positive upward) and horizontal coordinates x
and y in directions east and north, respectively. Therefore,
g ¼ ð0;0;�gÞ.To set the weak formulation of the problem,
we choose a mixed velocity–pressure method (Carey and
Oden, 1986, §3.3.3), applying the usual weighted residual

Fig. 6. Effective stress at surface, expressed in bar (1 bar = 105 Pa).
Contour interval is 0.1 bar. Values larger than 1 bar would corres-
pond to crevasses considering a von Mises criterion.
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argument by multiplying Equations (1) and (2), expressed in
terms of �ij, by arbitrary test functions qu, qv , qw , qp

(respectively) and setting equal to zero the integrals, over the
domain under consideration, of the resulting products. We
then apply Green’s theorem (integration by parts) to the
terms containing stress derivatives. The weak formulation is
thus stated as follows: find u, v, w, p satisfying the prescribed
boundary conditions and such thatZ

�

�xx
@qu

@x
þ �xy

@qu

@y
þ �xz

@qu

@z

� �
d�

¼
Z
�

�xxnx þ �xyny þ �xznz
� �

qu d� ,

Z
�

�xy
@qv

@x
þ �yy

@qv

@y
þ �yz

@qv

@z

� �
d�

¼
Z
�

�xynx þ �yyny þ �yznz
� �

qv d� ,

Z
�

�xz
@qw

@x
þ �yz

@qw

@y
þ �zz

@qw

@z
� �gqw

� �
d�

¼
Z
�

�xznx þ �yzny þ �zznz
� �

qw d� ,

Z
�

@u
@x

þ @v
@y

þ @w
@z

� �
qp d� ¼ 0 , ðA1Þ

for all test functions qu, qv , qw , qp belonging to spaces of
appropriate nature (Sobolev-type, for velocities, and square-
integrable functions, for pressure). The weak solution
(u,v,w,p) is also sought in the same spaces. In these
equations, n ¼ ðnx ,ny ,nzÞ is the unit vector normal (out-
ward) to the boundary G of the domain O.

Finite-element discretization
In order to obtain a finite-element approximation to the
weak form of our problem, we first discretize the domain O
to a union of finite elements. Next we introduce global
piecewise approximations U, V, W, P to the unknown
functions u, v, w, p constructing finite-dimension subspaces
�u, �v , �w and �p , using piecewise Lagrange polynomials.
Denoting the corresponding basis as

Nu
j

n oNU

j¼1
, Nv

j

n oNV

j¼1
, Nw

j

n oNW

j¼1
, Np

j

n oNP

j¼1
,

the approximate solutions (or trial functions) are given by

U ¼
XNU

j¼1

UjNu
j , V ¼

XNV

j¼1

VjNv
j ,

W ¼
XNW

j¼1

WjNw
j , P ¼

XNP

j¼1

PjN
p
j : ðA2Þ

The finite-element equations are constructed by means of
the Galerkin method, taking as equal the spaces for the test
and trial functions. The weak statement (A1) then leads,
using Equations (A2), together with the constitutive relation

(4) and the definitions (5), to the system of equations

Kuu Kuv Kuw Bx

ðKuvÞT Kvv Kvw By

ðKuwÞT ðKvwÞTKwwBz

ðBxÞT ðByÞT ðBzÞT 0

0
BB@

1
CCA

U
V
W
P

0
BB@

1
CCA ¼

Fx

Fy

Fz

0

0
BB@

1
CCA, ðA3Þ

where U ¼ ðU1, . . . ,UNUÞT , V ¼ ðV1, . . . ,VNV ÞT , W ¼
ðW1, . . . ,WNW ÞT , P ¼ ðP1, . . . ,PNP ÞT , T means transpose
and the elements of the submatrices and vectors in
Equation (A3) are given by the following expressions, in
which a comma followed by a subindex denotes a partial
derivative with respect to the variable specified by the
subindex:

Kuu
ij ¼

Z
�

�ð2Nu
i,xN

u
j,x þNu

i,yN
u
j,y þNu

i,zN
u
j,zÞd� , ðA4Þ

Kvv
ij ¼

Z
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v
j,y þNv

i,zN
v
j,zÞd� , ðA5Þ

Kww
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Z
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i,yN
w
j,y þ 2Nw

i,zN
w
j,zÞd� , ðA6Þ

Kuv
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Z
�

�Nu
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v
j,x d� , Kuw

ij ¼
Z
�

�Nu
i,zN

w
j,x d� ,

Kvw
ij ¼

Z
�

�Nv
i,zN

w
j,y d� , ðA7Þ

Bx
ij ¼ �

Z
�

Nu
i,xN

p
j d� , By

ij ¼ �
Z
�

Nv
i,yN

p
j d� ,

Bz
ij ¼ �

Z
�

Nw
i,zN

p
j d� , ðA8Þ

Fx
i ¼

Z
�

ð�xxnx þ �xyny þ �xznzÞNu
i d�, ðA9Þ

Fy
i ¼

Z
�

ð�xynx þ �yyny þ �yznzÞNv
i d�, ðA10Þ

Fz
i ¼ �

Z
�

�gNw
i d� þ

Z
�

ð�xznx þ �yzny þ �zznzÞNw
i d�:

ðA11Þ
The above system of NU+NV+NW+NP equations is
symmetric, because of the symmetry of the submatrices in
the principal diagonal and the transpose structure of the
remaining submatrices. However, the system is undefined.
Therefore, the eigenvalues are real but with variable sign. It
is possible to transform system (A3) into an equivalent one
which is positive definite, but no longer symmetric, so that
all its eigenvalues have a positive real part (Quarteroni and
Valli, 1994, §9.2.1).

Although system (A3) has the appearance of a linear
system of equations, the elements in the submatrices K
depend on the viscosity �, which in turn depends on the
derivatives of the velocities. The system is therefore non-
linear and has to be solved iteratively.
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