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TWO-TRANSITIVE ACTIONS ON CONJUGACY CLASSES

MICHAEL J.J . BARRY AND MICHAEL B. WARD

Every group acts transitively by conjugation on each of its conjugacy classes of
elements. It is natural to wonder when this action becomes multiply transitive. In
this paper, we determine all finite groups which act faithfully and 2-transitively on a
conjugacy class of elements. We also give some consequences including a solvability
criterion based on what fraction of elements belong to conjugacy classes upon which
the group acts faithfully and 2-transitively.

1. INTRODUCTION

Certain natural group actions are always transitive. It is interesting to investigate
when those actions become 2-transitive. For example, in [1], finite groups G acting 2-
transitively by conjugation on Sylp(G), the set of Sylow p-subgroups of G for some prime
p, were determined, modulo the kernel of the action. Herein, we determine finite groups
G acting faithfully and 2-transitively by conjugation on CIQ{X), the conjugacy class of x
in G, for some x € G.

The following construction illustrates the sort of groups that can occur. Let W be
a finite dimensional vector space over a finite field and let T be the group of translations
of W. Suppose C is a subgroup of GL{W) with Z(C) ^ 1 which acts transitively on the
nonzero vectors of W. Of course, T acts transitively on W and so the natural semidirect
product G = TC acts 2-transitively on W. Consequently, C is a maximal subgroup of
G. Therefore, C, the stabiliser of the zero vector, is also the centraliser in G of any
nonidentity element z e Z(C). It is then a routine exercise to show the action of G on W
is equivalent to the action of G on CIQ(Z) by conjugation. Therefore, G acts 2-transitively
on clG{z).

Consider two concrete examples of that general construction. In the first example,
G is nonsolvable (except when q = 3) while, in the second, G is solvable.

EXAMPLE 1. Let W be a finite dimensional vector space over the finite field F, for some
prime power q > 2 and let C = GL(W). Here Z(C) consists of the q—1 scalar matrices.

EXAMPLE 2. Suppose q = p" for some prime p. Consider W = ¥q as an n-dimensional
vector space over Fp. Let C be the group of linear transformations of F, induced by
multiplication by elements of Fq. In this example, Z(C) = C is cyclic of order q — 1.
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In Section 2 we state our main result classifying finite groups acting faithfully and 2-
transitively on clc{x) for some x € G and begin its proof, which is concluded in Sections
3 and 4. For the solvable groups, we use Huppert's classification of solvable 2-transitive
groups [7]. In the nonsolvable case, we use the classification of nonsolvable 2-transitive
groups which is a consequence of the Classification of Finite Simple Groups and the work
of Hering [5, 6] and Curtis, Kantor and Seitz [2]. Finally, in Section 5, we give some
consequences, including an amusing solvability criterion.

2. T H E MAIN RESULT

NOTATION: F, denotes a finite field with q elements where q — pT for some prime p, {¥q)
k

the vector space of fc-tuples of F,-elements, ATL(k, q) the group of affine semilinear trans-
formations of (F,)*, FL(k, q) ^ ATL(k,q) the subgroup of semilinear transformations of
{¥g)

k, and T{k,q) ^ ATL(k,q) the full group of translations of (F,)*.

We recall that rL(k, q) is the semidirect product GL(k, q)(cr), where a is the semilin-
ear transformation induced by the Galois automorphism a*-t aP of F,, and that ATL(k, q)
is the semidirect product T(k,q)TL(k,q). In view of Huppert's classification, the case
k = 1 plays a special role. There, GL(l,q) = (w) where w is the linear transformation
induced by multiplication by S7, a generator of the multiplicative group of ¥q. We fix
those meanings of a and u>.

THEOREM 1 . Suppose G is a finite group, g is an element ofG, and G acts (by
conjugation) faithfully and 2-transitively on the conjugacy class clc(g)- Then G has a
unique minimal normal subgroup M which is elementary Abelian, and G is the semidirect
product MCG{X) for any x € clo{g)- In addition, if\M\ = pn where p is a prime, there
is a prime-power q and natural number k with qk = pn = \M\ such that G acting on
cldg) is permutation isomorphic to a subgroup H ofATL(k, q) acting on (¥q)

k, with M
mapped to T(k, q), and Cc{g) mapped to Ho, the point stabiliser in H of the zero vector
of (¥q)

k, which is a subgroup ofTL(k,q). The possibilities for Ho are the groups in the
following list having the property Z(H0) / 1.

1. Ho ^ TL(l,q) such that Ho is transitive on the set of nonzero elements of

(F,)fc-
2. Ho ^ GL(k, q) < FL(k, q) where (A,q) = (2,3), (2,5), (2,7), (2,11), (2,23)

or (4,3), and Ho is one of the 13 exceptional groups listed in Huppert's
classification of solvable 2-transitive groups, [7, p. 126-127].

3. SL(k,q) < Ho ^ TL(k,q), excluding the solvable cases (k,q) = (l,q),

(2,2), (2,3).

4. Sp(k, q) < Ho ^ VL(k, q) where qk — pn and n is even.

5. G2(2m) < Ho < TL(6,2m) where 26m = pn.
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6. E < Ho ^ TL(4,3), E is extra special of order 32, CHo{E) = Z(H0), and
H0/(E • Z(H0)) is faithfully represented on E/Z(E), and isomorphic to a
nonsolvable subgroup of S5.

7. SL{2,5) = H^ <H0^ TL{2, q) where q2 = p n and q = 9, 11, 19, 29, or

59.

8. SL{2,13)^H0^rL(6,3).

Conversely, if Ho is on the list above and there exists a nonidentity h e Z(H0), then
the semidirect product H — H0T(k, q) acts faithfully and 2-transitively on the conjugacy
class clH(h) = {tht'1 | t <E T(k,q)}.

PROOF: We start by proving the converse. Each H = H0T(k, q) acts faithfully and
2-transitively on (F,)*. If h € Z(H0) - {1}, then CH(h) = Ho, and the action of H on
clH(h) by conjugation is readily shown to be equivalent to the action of H on (F,)*.

Now suppose G acts (by conjugation) faithfully and 2-transitively on some conjugacy
class clc(g)- By a result of Burnside [4, Theorem 4.1B], the socle M of G is either (i)
a regular elementary Abelian p-group for some prime p, or (ii) a nonregular nonabelian
simple group. In both cases, M is the unique minimal normal subgroup of G, and
in case (ii) Cc(M) = 1 [4, Theorems 4.1B and 4.2B], allowing one to assume that
M < G ^ Aut(M). Solvable groups of the first type have been classified by Huppert in
[7], while Hering in [5], with a little cleanup ruling out sporadic groups as composition
factors in [1], classified the nonsolvable groups of the first type. Those of the second type
have been classified in [11] and [2]. Since the point stabiliser in our situation must be
Gc{g), we are looking for point stabilisers with a non-trivial centre. We shall show in
the next section that all examples of the second type have point stabilisers with trivial
centre. An examination of the lists of Huppert [7] and Hering [5, pp. 443-444] for point
stabilisers with possible nontrivial centres yields our theorem. D

3. RULING OUT ALMOST SIMPLE GROUPS

PROPOSITION 1. Suppose G is a 2-transitive nonsolvable group acting on a set

Q and M is a nonabelian simple group with M < G ^ Aut(M). Then Z(Ga) = 1 for all

a € n.

PROOF: By the classification of finite simple groups M is an alternating group, a
simple group of Lie type, or a sporadic group. When M is alternating, the classical
reference is Maillet [11]. We start by disposing of each of these six possibilities.
ALT1 In this case, n > 5 and G = M = An or G = Sn in the natural representation
of degree n. Hence Ga = An-i or Ga = Sn_i, respectively, both of which are centreless.

ALT2 G is A6 or S6 in the extra representation of degree 6. Again, Ga is A5 or S5.

ALT3 G = M = A5 or G — S5 in their degree 6 representation. This is really a special

case of CKS(ii)(a) below since A5 3* PSL{2,5).
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ALT4 G = M = A6 or G = S6 in their degree 10 representation. This is a special
case of CKS(ii)(a) below since A6 =• PSL{2,9).

ALT5 G = A8 in either of its degree 15 representations. This is a special case of
CKS(i) below since A8 =" PSL{4,2).

ALT6 G — AT in the restriction of either of the degree 15 representations from Ag.
Here Ga is PSL(3,2) which is centreless.

The possibilities for G when M is simple of Lie type have been described in [2]. We
now dispose of each of these possibilities, using the numbering of [2]. For consistency
with the references used below, in this proof we write functions on the left.

In CKS(i), M = PSL(n,q) with n ^ 3, and we have PSL(n,q) ^ G ^ PTL(n,q).
Now G has two possible actions, one on lines, and a dual action on hyperplanes. Be-
cause of duality it will suffice to deal with the action on lines. We shall show that
CprL(n,q)(PSL(n,q)a) = 1. Using a bar to denote the images of transformations of
TL(n, q) in PTL(n, q), we must show that if g G TL(n, q) is such that

gag'1 -a

for all a in the preimage H in SL(n,q) of PSL(n,q)a, then ~g — 1. Let v be a nonzero
vector in V = (F,)n such that a is the line fqv. Our proof will be in two steps. First we
shall show for every line L in V there is a transvection in H fixing v with residual line
L. Then we shall apply an argument of O'Meara in [12] to conclude that 5 = 1 .

In what follows, for v G V and p in the dual of V, TVIP : V -» V is defined by

Then TV,P is a transvection if and only if p(v) — 0.

Let {vi = v,..., vn} be a basis for V. Let L be a typical line in V — {Fq)
n. Write

L — Fgw and w = J3 &iVi. Let {p i , . . . , pn} be the dual basis to {vi,..., vn}, that is,
Pi(vj) is 1 when i — j and is 0 otherwise. If w G ¥qvi, then TVltP2 is a transvection (because
P2(^i) — 0) fixing v = V\ with residual line L. If w # F9i>i, then u = w ~ ct\V\ ^ 0. Let
{wi = v,W2 = u,... ,wn} be a basis for V with span{u;2, • • • ,wn} = span{i>2,.. . ,«„}.
Let {p\,...,p'n} be the dual basis to {u>i,..., wn}. Then TW^ is a transvection (because
p'3(w) — 0) fixing v = u>\ with residual line L.

Let L be a typical line in V, let r be a transvection in H with residual line L. Then
grg~x is a transvection with residual line gL. Therefore f and g"f~g~x are projective
transvections with residual lines L and gL respectively. But r — g~T~g~l. Hence gL — L
for all lines L. This forces g to be a radiation, giving g = 1.

CKS (ii) In each of the four cases covered here, M ^ G ^ Aut(M) where M is a
simple rank one group of Lie type and Ma is a Borel subgroup B. We shall show that
if T an automorphism of M satisfying r(6) = b for all b G B, then r is the identity
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automorphism on M. The group B is a semidirect product UH, where U is a p-Sylow
subgroup for the natural characteristic p of M, B = NM(U), and (\U\, \H\) = 1. Now
T = iodofoiT = iof> where i, d, and / are inner, diagonal, and field automorphisms,
respectively. Since / , and d when present, map B to B, it follows that i does too. Hence,
if i is conjugation by an element g, we see that g € NG{B) — B. Our strategy then is
to show, by computing the action of r on a typical element of U, that / is the identity.
Furthermore, we show that d = 1 by showing d, if present, can realised as conjugation
by an element of H, a contradiction since d is supposed to be an outer automorphism.
This means that r is conjugation by an element of B. But, in these cases, CB(B) = 1.
Thus T is the identity.

In what follows of this case, we use the notation for Chevalley and twisted groups as
in [15], particularly that of Lemma 63 for the twisted groups. This lemma and the results
on conjugation by a diagonal element [15, p. 196] are used extensively in the calculations.

In CKS(ii)(a), M = PSL{2, q) = Ai(q). Here r = i o d o / , where i, d, and / are
inner, diagonal, and field automorphisms, respectively, and i is conjugation by an element
g of B. (Note that q must be odd for d to be present.) We can write g — xai(t)hai(s)
(using the notation of [15]) for some t € ¥q and some s G F*, while a typical element of
U has the form xai(ti) for U € Wq. So

xai(U) =T-xai(h)

= (*O do/).!„,(*!)

= (iod)-Xai(f(tl))

= i • xai (dif(ti)) for some dx in F*

= xai(t)hai(s)xai(dlf(tl))hai(s-l)xai(-t)

for all U e F,.

Setting ti — 1 we get d\S2 — 1. This says that the diagonal automorphism d can
actually be realised as conjugation by the element hai(s~l) of H. Since the equation
tx = f(ti) now holds for all ti € F,, / must be the identity field automorphism. Thus r
is conjugation by an element of B, and, as argued above, must be the identity automor-
phism.

In C K S ( i i ) ( b ) , M = PSU(3,q) = 2 A 2 { q ) . N o w r = iodof, w h e r e i, d, a n d / a r e
inner, diagonal, and field automorphisms, respectively, and i is conjugation by an element
g of B. (Note that 3 must divide q + 1 for d to be present.) We can write g = (t, u)d(s)
where t, u € F,2, s € F%, and u + uq + tq+1 — 0, while a typical element of U has the
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form (ti,Ui). Then

(ti,ui) = (iodof)-(tuUl)

= i • (di/(*i), d?+ 1/("i)) for some dx in

for all (*i,wi) e F2,, satisfying uj + u? +1?+1 = 0. Setting tx = 1 gives s2~«di = 1.
Note that this implies that s1+9d?+1 = 1, using the fact that s"2'1 = 1. This says that
the diagonal automorphism d can be realised as conjugation by the element d(s~1) of H.
Since the equation t\ = f(ti) now holds for all tx € F,2, / must be the identity field
automorphism. Thus r is conjugation by an element of B, and, as argued above, must
be the identity automorphism.

In CKS(ii)(c), M — Sz(q) = 2B2(q), and the natural characteristic p is 2. Here
T = i o / , where i and / are inner and field automorphisms, respectively, and i is
conjugation by an element g of B. We can write g = (t, u)d(s) where t and u are
elements of Wq and s e F*, while a typical element of U has the form (*i, ui). Then

for all ui € F,. Setting ux = 1 gives s2fl = 1, from which it follows that s = 1 because s2fl

is s raised to a power of 2, whereas s has odd order. This implies that / is the identity
field automorphism. Thus r is conjugation by an element of B, and, as argued above,
must be the identity automorphism.

In CKS(ii)(d), M — 2G2(q), and the natural characteristic p is 3. Here T = j o / ,
where i and / are inner and field automorphisms, respectively, and i is conjugation by
an element g of B. We can write g = (t,u,v)d(s) where t, u and v are elements of F9

and s S F*, while a typical element of U has the form (ti,u\,vi). Then

(0,0,t;1) = ( to / ) . (0 ) 0 ,w 1 )

= »-(0,0l / (t; , ))

= (0,0, «/(»!))

for all v\ e ¥q. Setting V\ = 1 gives s — 1. This implies that / is the identity field
automorphism. Thus r is conjugation by an element of B, and, as argued above, must
be the identity automorphism.
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CKS(iii) G is PSL(2,4) ^ PSL(2,5) 3* A5 or PFL{2,4) ^ PGL(2,5) S 5 5 . The
degree is 5, and this case has been dealt with in CKS(ii)(a).

CKS (iv) G is PSL(2,9) ^ A6 or PSL(2,9) • Aut F9 S 56 . The degree is 6. This case
has been dealt with in ALT1 and ALT2.

CKS (v) G is PSL(2,11), and Ga = A5 which is centreless. The degree is 11.

CKS (vi) G is PTL{2,8) S 2G2(3) 3 Aut(L2(8)) S L2(8) • 3 [10, p. 172]. The degree
is 28, Ga is the normaliser of a Sylow 3-subgroup, and this case has been dealt with in
CKS(ii)(d).

CKS (vii) G is PSL(3,2) S PSL{2,7) or Aut PSL(3,2) S PGL(2,7) . The degree is
8, and this case has been dealt with in CKS(ii)(a).

CKS (viii) G is PSL(4,2) S A8 or Aut PSL{A, 2) ^ 58 . The degree is 8, and this case
has been dealt with in ALT1.

CKS (ix) G is Sp(n, 2) in one of its 2-transitive representations of degree 2n~1(2n ± 1),
with the stabiliser of a point being O±(2n, 2), both of which are centreless. This last
assertion follows from [3, p. 64]. For n = 2, Sp(4,2) = S& is not simple, and we are
talking about representations of 5 6 of degree 6 and 10, which have been dealt with in
ALT1, ALT2, and ALT4.

CKS (x) G is G2(2) S PSU{3,3) • Aut F9 or Aut G2(2) =* PTL{3,3). The degree is
28, and this case has been dealt with in CKS(ii)(b).

We now deal with the possibilities when M is sporadic. The possibilities for G are

1. Mn ,Mi 2 ,M 2 2 , Aut(M2 2),M2 3, or M24 acting on their associated Steiner
systems.

2. Mn m an exceptional 3-transitive action of degree 12 with point stabiliser

PSL(2,11).

3. HS in an action of degree 176, with point stabiliser U3(5): 2.

4. Co3 in an action of degree 276 with point stabiliser McL : 2 = Aut(McL),

by Dixon and Mortimer [4].

In all these cases the point stabiliser has trivial centre. The conclusion is obvious
when the point stabiliser is a simple group. In the other cases, including G = Aut(M22),
one can see by consulting the Atlas that a point stabiliser in M has much greater order
than that of any centraliser in M of an element of G, and thus the point stabilisers in G
must have trivial centre. D

4. P O I N T STABILISERS WITH NONTRIVIAL C E N T E R S

In this section we discuss when the groups Ho in Theorem 1 have nontrivial centres,
in other words, when HQ is the centraliser of some element of H.
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If Ho ^ TL(l, q) such that Ho is transitive on the set of nonzero elements of (F,)fc,
then Ho = {tJm,avujj) with TO, v and j satisfying the number theoretic conditions given
in [14, Theorem 2.3 with k replaced by TO] and q = pn where p is a prime. In particular,
m is a divisor of n. We shall show Ho = C//(t) if and only if t is the linear transformation
induced by multiplication by some element of the multiplicative group of the fixed field
of av. Sufficiency is clear. We prove necessity.

As t € Ho ^ TL{l,pn) = (<r,w), t = CT'O' with 0 ^ i < n. Since wm 6 CH{t),
a{ujl = (oW)"m = ai{u)-m)aiumij' = aitj-""'iujmu}' = <7iarm<P'-1>w'. Thus, 1 = u)-m&-n
and so (pn - 1) | m{pi - 1).

First we shall show i = 0. Assume i > 0. Suppose r is a Zsigmondy prime for p and
n, then r \ (pn — 1), but r does not divide n nor p* — 1. However, r not dividing n implies
r does not divide m. Hence, since r | (pn - 1) | m(pl - 1), r | (p* — 1), a contradiction.
Thus, there is no Zsigmondy prime for p and n, so by Zsigmondy's Theorem [9, Theorem
IX.8.3, p. 508, for instance], either p is a Mersenne prime and n = 2 or else p = 2 and
n = 6. In the former case, m \ n implies m ^ 2 and i < n implies i = 1. Therefore,
(p2 — 1) | 2(p - 1), that is, (p + 1) | 2, another contradiction. Finally, if p = 2 and n = 6,
then 327 = (26 - 1) | m(2* - 1)|6(2i - 1) which, by inspection, cannot occur since i < 6.
Thus, i = 0, which means t — wl.

Recall a normalises (w) and (7VLJJ centralises t. Hence, t = t""^ = (M1)"""5 =
(tjjiy = f". That shows LJ1 is in the fixed field of a" as claimed where u is a gener-
ator of the multiplicative group of Fpn and w is the linear transformation induced by
multiplication by To.

In each of Huppert's 13 exceptional groups, Z(H0) contains the scalar matrices
which lie in Ho. In particular, —I e Z(H0) where / is the identity matrix. To see that,
Huppert gives matrix generators for H0- In all the 2-dimensional cases, a simple matrix
calculation shows t commutes with the generators denoted A and B by Huppert if and
only if t e Z{GL{k,p)) and —I=B2€ Z(H0). In the 4-dimensional cases, we get the
same result from the fact that t commutes with generators A, B, C and D, In addition,
- / = A2 € Z(HQ).

In the nonsolvable cases 3, 4 and 5, we shall next show Z(H0) has nontrivial centre
if and only if HQ contains a nonidentity scalar matrix al with a in the fixed field of a-7

where GL(k,q)HQ/GL(k,q) = (GL{k,q)a*).
First, in the case SL(k,q) < Ho ^ FL(k,q), excluding the solvable cases (k,q) =

{l,q), (2, 2), (2,3), CTL{k,q)(SL(k,q)) = RL(k,q) where RL(k,q) := {al \ a e FJ} is the
set of A; x A; scalar matrices [12]. Thus,

Z(H0) ^ Cruk*){SL(k, q)) DH0 = RL{k, q) f~l Ho

Therefore, elements of Z(H0) are scalar matrices. Furthermore, it is easy to see al is in
Z(HQ) if and only if a is in the fixed field of a-7. The claim follows.
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In the case Sp{k,q) < H0 ^ TL(k,q), CrL(k,g)(Sp(k,q)) = RL(k,q) [13]. Thus, we
can deduce the claim as above.

In the case G2(2m) < Ho ^ FL(6,2m) where 26m = p", one can show (see below)
that Crt(6,2'»)(<-'2(2m)) = RL(6,2m) which again is sufficient to establish the claim.

Since we do not know a reference for the precise result Crx(6,2m)((-*2(2m)) =
RL(6,2m) of the previous paragraph, we shall give a sketch of its proof. Let Xi de-
note the fundamental dominant weight corresponding to the short root in a root system
of type G2- If F is a field of characteristic 2, it has been pointed out to us by Gary Seitz
that the action of G2{F) on V = ^(Ai), the rational irreducible 6-dimensional module of
highest weight Ai, preserves a non-singular symplectic form on V, thus giving rise to an
embedding of G2(F) in Sp(6, V). Taking a basis of weight vectors in V allows us to write
down matrices for the generators of G2(F). From this we can compute that the only
semilinear transformations on V which commute with these generators are the scalars.

In the case E < Ho s$ rX(4,3), Z(E) ^ CHo(E) = Z(H0) gives Z(H0) nontrivial.

In the case SL(2,5) ^ H^ < Ho «: FL(2, q), where q2 = pn and q = 9,11,19,29,59,
we see ZiH^) has order 2 and is characteristic in HQ which is characteristic in Ho.
Thus Z(H^) is characteristic, and hence normal, in Ho. If x is the nonidentity element
in Z(H^), then any conjugate of x by any element of Ho must equal x, putting 2 in
Z(H0).

Finally, in the case SL(2,13) = Ho ^ rZ,(6,3), Z(H0) has order 2.

5. SOME CONSEQUENCES

Suppose a group acts faithfully and 2-transitively on one of its conjugacy classes
of elements. Upon which other classes might it also act 2-transitively? We begin this
section by answering that question.

LEMMA 1 . Suppose M is a minimal normal self-centralising subgroup of G and
Cc(x) is a complement to M in G for some x € G. Then CG{X) is a maximal subgroup
ofG and all complements to M in G are conjugate in G.

PROOF: Let K be any complement to M in G, then K is a maximal subgroup of
G. For assume K ^ L ^ G, then L = K{L n M). Since L n M is normalised by L and
centralised by M, which is elementary Abelian by hypothesis, L n M is normal in G.
Hence, L D M — 1 or M. Thus, K is maximal.

Note, furthermore, that Z(G) ^ CG{x) D CC{M) = CG(x) n M = 1. It follows that
K = CG{Z(K)).

Next we shall show (|Z(if)| , \M\) = 1. Let \M\ = pn where p is a prime. Suppose p
divides |Z(/f) | . Let y be a nonidentity p-element in Z(K), then K ^ Cc(y)- Therefore,
Cc{y) = K by the maximality of K and the fact that G has trivial centre. Hence,
Z((y)M) ^ Cc(y) n CQ(M) = K n M — 1, a contradiction since (y)M is a p-group.
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Suppose K and J are complements to M in G. Set Z/M = Z(G/M), then Z =
M(KtlZ). Moreover, [KnZ, K] ^ MDK = 1, which implies KnZ ^ Z(K). Conversely,
Z{K) ^ KnZ since [Z(K),G] = [Z{K),KM] ^ [Z(K),M] ^ M. Therefore, KnZ =
Z{K) and Z = MZ(K). Similarly, Z = MZ(J).

From above, Z(K) and Z(J) are Hall p'-subgroups of Z. As Z is a solvable group,
Z(K)W = Z{J) for some w € Z. Consequently, Kw = C G ( Z ( / 0 r = CG(Z(J)) = J.
Thus, all complements to M in G are conjugate as was to be shown. D

PROPOSITION 2 . Suppose G acts faithfully and 2-transitively on CIG(X) for
some x £ G, then G acts faithfully and 2-transitively on clG(y) if and only if y is
conjugate to a nonidentity element of Z(CG{x)). Furthermore, no two distinct elements
of Z{CG(X)) are conjugate in G.

PROOF: Let M be the minimal normal subgroup of G. By Theorem 1, M is Abelian.
(That is the only place our classification is used in this proof. The rest is elementary.)
By [8, II.1.4 and II.3.2], M is self-centralising; CG{X) is a complement to M in G and
Cc(x) is a maximal subgroup of G.

If G acts faithfully and 2-transitively on clc{y), then [8, II.3.2] also implies CG{y)
is a complement to M. Hence, CG(x) = Cdy1) for some t € G by Lemma 1. Thus,

For the converse, suppose yl € Z(CG{X)) for some t £ G, then, by the maximality
of CG{X), either CG(y') = Cc{x) or yl € Z(G). The latter is impossible since M is
self-centralising. By the faithful action of G on clgix) we have

1 = fl CG(x)o - p | Cdyy = f| CG{y)«.
gee seG jeG

Therefore, G also acts faithfully on clc(y)-

To show G acts 2-transitively on clc{y), we shall show Cc{y) acts transitively on
clc(y) — {y}- Let ?/s and y'1 be distinct elements of clc{y) - {y}- It is easy to calculate
that xl~lg and xl~lh are distinct elements of dc{x)-{xt'1}. By the 2-transitivity of G on
clG(x), xl~l<>w = xl~lh for some w G Ccix1'1) = CG(y). Thus, ffw/i-1 € C G ^ " ' ) = CG(j/)
and y9W = yh.

Finally, suppose z, z9 are distinct nonidentity elements of Z(CG{x)) for some g g G,
then (CGOIO.CGOC9"1)) ^ CG(z)- By the maximality of CG(x), it must be that CG(x) =
Cc{x9'1), for otherwise z e Z(G). Thus, g~l 6 NG(CG(a;)) = CG(i), from which it
follows that z3 = z. Therefore, no two distinct nonidentity elements of Z{CG{X)) are
conjugate in G. D

We conclude this section with a solvability criterion based on the fraction of elements
of a group belonging to classes upon which the group acts faithfully and 2-transitively.

THEOREM 2. Suppose G is a finite group and at ieast 1/12 of the elements ofG

belong to conjugacy classes upon which G acts faithfully and 2-transitively, then G is

https://doi.org/10.1017/S0004972700033086 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033086


[11] Two-transitive actions 419

solvable. Moreover, by choosing a solvable G appropriately, the fraction of such elements
may be made arbitrarily close to 1.

PROOF: Let F = {x 6 G : G acts faithfully and 2-transitively on clc(x)}. For any

x £ F we have, by Proposition 2, \F\ = (\Z(CG{X))\ - l ) l - ^ | where M is the minimal

normal subgroup of G. Therefore,

\z(CG(x))\
\G\ ~ \CG(x)\\M\ \CG(X)\ '

Assume G is nonsolvable, then we have by Theorem 1, CG{X) is nonsolvable. As in
Hering [5], we set S = CG(z)(o°> and by [5, Theorem 5.8(g)], we have Z(CG{x)) ^ CG(S)
is a subgroup of the set of scalar matrices RL(k, q) with k and q as in Theorem 1. Thus,

\F\ \RL(k,q)\ q - l

\G\ \CG(x)\ \CG(X)[

In case 3 of Theorem 1, CG(x) ^ SL(n,q). Suppose n = 2, then q ~£ 4, so

If n > 2, then

1*1
\G\

Cases 4, 5, 6 and 8 are handled similarly. For case 7, we note that by the 2-transitivity
of G on clcix), which has order q2, we have q2 — 1 divides |Cc(x)|. In this case, we
have |CG(a:)(oo)| = 120. Combining these gives |CG(a:)| ^ 120r where r - 2,1,3,7,29

\F\ 1
for q — 9,11,19,29,59 respectively. We calculate {—•• < — in all cases. Therefore, if

\G\ 12
\F\ 1
j—- ^ —, then G is solvable. By considering the solvable group G = TL{\,q), we have
\G\ 12
—\ = , which can be made arbitrarily close to 1 by choosing q sufficiently large. D
\G\ q - l
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