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0. Introduction. Let X be a Klein surface [1], that is, X is a surface with boundary dX
together with a dianalytic structure on X. A homeomorphism / : X->X of X onto itself
that is dianalytic will be called an automorphism of X.

In a recent paper [8] we showed that a compact Klein surface of (algebraic) genus g ^ 2,
with non-empty boundary, cannot have more than \2{g— 1) automorphisms. We also showed
that the bound \2(g— 1) is attained, by exhibiting some surfaces of low genus (g = 2, 3, 5)
together with their automorphism groups. The corresponding bound for Riemann surfaces
is quite well known; Hurwitz showed that a compact Riemann surface of genus g ^ 2 has
at most 84(#—1) (orientation-preserving) automorphisms.

Here we study those groups that act as a group of \2{g — \) automorphisms of a compact
Klein surface with boundary of genus g ^ 2. Our main result is a characterization of these
groups in terms of their presentations. We call these finite groups M*-groups. It is easy to
find examples of M*-groups. In fact, by using known results about normal subgroups of the
modular group, we are able to find an infinite family of A/*-groups. Consequently the bound
\2{g— 1) is attained for infinitely many values of the genus g.

In the final section of the paper we show how to obtain other infinite families for which
the bound \2{g— lj is achieved, without use of results about the modular group. To obtain
an infinite family we only need a single Klein surface with boundary that has \2{g—\) auto-
morphisms. Some of the infinite families we get in this manner consist of orientable surfaces;
others consist of non-orientable surfaces.

1. Compact Klein surfaces and NEC groups. Let A' be a compact Klein surface, and
let E be the field of all meromorphic functions on X. E is an algebraic function field in one
variable over R [1, p. 102] and as such has an algebraic genus g. This is the non-negative integer
that makes the algebraic version of the Riemann-Roch Theorem work [2, p. 22]. We will refer
to g simply as the genus of the compact Klein surface X. In case Xh a Riemann surface, g is
equal to the topological genus of X.

Now let (Xc, n, a) be the complex double of X [1, pp. 37-41], that is, Xc is a compact
Riemann surface, n: Xc -> X is an unramified 2-sheeted covering of X, and a is the unique
antianalytic involution of Xc such that n = n°o. If F is the field of meromorphic functions
on Xc) then F = E(i) and by a well-known classical result [2, p. 99], the genus of X is equal
to the genus of Xc.

If X and Y are Klein surfaces, then a morphism [1, p. 17] is a continuous m a p / : X-* Y,
v/ithf(dX) c dY and the following local behavior. For every pointpeX there exist dianalytic
charts (U, z) and (V, w) at/? and/(j>) respectively such thatf(U) c F a n d / ^ = w'1 oyoFoz,
where Fis an analytic function on z(U) and q> is the folding map, cp(x+yi) = x+ \y\i.
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2 COY L. MAY

To study automorphism groups of Klein surfaces with boundary, we use the theory of
non-euclidean crystallographic (NEC) groups, as developed by Wilkie [11] and Macbeath [7].
Singerman [10] used NEC groups to obtain results about automorphism groups of non-
orientable Klein surfaces without boundary.

Let H = {ze C | Im(z) > 0} denote the open upper half-plane and Q the group of auto-
morphisms of H. The elements of fl are transformations of one of two types:

ad-bc = l, a,b,c,d real; (1.1)

ad-bc=-\, a,b,c,d real. (1.2)

cz+a

az-h b

Those of type (1.1) preserve orientation and form a subgroup Sl+ of index 2 in SI. The only
transformations of type (1.2) that have fixed points in H are reflections (in case a+d — 0).
Reflections are of order two and have a circle of fixed points in H.

An NEC group is a subgroup of Cl that acts discontinuously on H. An NEC group
contained in Q+ is called a Fuchsian group. If F is an NEC group containing orientation-
reversing elements, then F has a subgroup F+ = FnQ + of index two.

Let F be an NEC group such that the quotient space H/F is compact. A fundamental
region for F is defined in the same way as for Fuchsian groups. We will denote the non-
euclidean area of a fundamental region F by n(F). Many of the basic results about funda-
mental regions for Fuchsian groups continue to hold for fundamental regions for NEC
groups. In particular, if F' is a subgroup of finite index in F and F, F' are fundamental
regions for F, F' respectively, then

An NEC group F will be called a surface group if the quotient space X = H/T is compact
and the quotient map p : H-* X is unramified. F will be called a bordered surface group if
further dX # 0 . Let xsH. It is easy to see that p(x) e dX if and only if there exists a reflection
reF such that r(x) = x. Thus bordered surface groups contain reflections, but no other
elements of finite order.

Now we recall two important results about the relationship between Klein surfaces and
NEC groups.

THEOREM A. Let F be an NEC group. Then the quotient space HjT has a unique dianalytic
structure such that the quotient map p : H-* H/F is a morphism of Klein surfaces.

Proof. Since F acts discontinuously on H, this follows immediately from a result of
Ailing and Greenleaf [1, p. 52].

THEOREM B. Let X be a compact Klein surface with boundary of genus g^2. Then X
can be represented in the form H/T, where F is a bordered surface group. IfF is a fundamental
region for F, then
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For a proof, see [9]. A good reference for the corresponding result about Riemann
surfaces is [6, p. 66].

2. Induced mappings on the quotient space. This section was inspired by the treatment
of the Riemann surface case in [6, pp. 59-63]. Also see [5].

For any Klein surface Y, let Aut(K) denote the group of automorphisms of Y. Tf Y
is orientable, let Aut+ (Y) denote the subgroup of orientation-preserving automorphisms.

Let F be a bordered surface group. Let X = H/T be the quotient space, p : H-* X the
quotient map. X is a compact Klein surface with boundary, by Theorem A.

A transformation / e f i is said to be T-admissible in case the following condition holds:

p(x) = p(y) if and only if p(f(x)) = p(f(y)).

I f / i s F-admissibie, then we can define a m a p / * : X ^ X by

It is easy to check t ha t / * is an automorphism of X.
Let A(H, F) denote the group of F-admissible automorphisms of H. Clearly F c A(H, F).

Let N(F) denote the normalizer of F in Q. It is not hard to see that A'(F) c A{H, F) (see
[6, p. 60]).

Now the quotient space / / / F + is a compact Riemann surface. Let q : H-> H/F + be
the quotient map. Then the group of order two C2 = F/F+ acts on H/F+ to exhibit H/F+

as an unramified double cover of X = HjF. If n : HjF+ -»H/F denotes the quotient map,
the following diagram commutes.

HIT

There is one point in the fiber n~l(x) if xedX; otherwise there are two. L e t / e F — F + .
Since feN(r+) <=. A{H, F + ) , we can define an automorphism a of / / / F + by

a is an orientation-reversing automorphism of order 2 and noa = n. Thus we see that
( / / /F+ , 7i, a) is the complex double of X = HjF. Now let Xc denote 7//F+. We will use the
complex double to establish the algebraic relationship between F and A(H, F) within Q.
We have a group homomorphism p* : A(H, F) -> Aut(A') defined by p*(f) = / * . We have
a similar homomorphism q* : A(H, F + )

PROPOSITION 1. F = kernel p* and A(H, F) = N(F).

Proof. Clearly F c: kernel/?*. L e t / e kernel/?* such t h a t / i s analytic. Then p=p°f,
i.e. n<>q = noqof. Since (A^, 7r, <r) is the complex double of X, for each xeH either

https://doi.org/10.1017/S0017089500002950 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002950


4 COY L. MAY

q(x) = q of(x) or (j o q(x) — q °f(x). Suppose there exists a point y e H such that q{y) # q»f(y).
Then we can find an open set U about y such that a°q = qof on U. Hence/is antianalytic
on U, a contradiction. Therefore q = q°f, and fekernelq*. Since / i s analytic, we have
/<=r+ [6, p. 60].

If /zekernel/?* and h is antianalytic, then choose keF-T+. k°h is analytic and
fco//ekernel.P*. Hence k°heT* and heF. Therefore T — kernel/)*.

Now T is normal in A(H, F). Thus A(H, T) c N(T). We have already noted that
N(T) c= A(H, T).

PROPOSITION 2. p* : A(H, T) -* Aut(Z) is surjective.

Proof. Let/eAut(X). There exists a unique map/eAut+ {Xc) such that the following
diagram commutes.

Moreover, cro/oa = / a n d / = h implies tha t /= h [1, p. 79].
There is an analytic map 6eA(H, T+) such that q*(9) =JeAut+(Xc) [6, p. 63]. Now

Jo q = q o 0. It is easy to check that 0 is F-admissible, so that we have an automorphism
p*(ff) = 0*EAut(X). As before there is a unique map 0*eAut+ (XC) such that nod* = 0*on.
But if q(x) eXc, n o?(q(x)) = n °q° 6(x) = p o 9(x) = 6*<>p(x) = 0*o n(q(x)). Hence / = 8*
a n d / = 0*, that is,p*(0) =f. Thus/?* is surjective.

Propositions 1 and 2 have the following important consequence.

PROPOSITION 3. Let T be a bordered surface group. G is a group of automorphisms of the
Klein surface HjT if and only ifG £ A/r, where A is an NEC group such that F c A c N(T).

The corresponding result about Riemann surfaces is similar and well known.

3. Large groups of automorphisms. The closed disc D is a compact Klein surface of
genus 0; D has (up to isomorphism) a unique dianalytic structure [1, p. 60].

Let G be a group of automorphisms of a compact Klein surface X of genus g 2: 2 with
non-empty boundary. Then the quotient space $ = X/G has a unique dianalytic structure
such that the quotient map n : X-y® is a morphism of Klein surfaces. Moreover, n is a
ramified /--sheeted covering of <£, where r = | G | (see [8] and [1, p. 52]).

Using a form of the Hurwitz ramification formula, we showed that |G| ^ I2(g — l).
Also, | G | = 12(#-1) if and only if the quotient space $ is the disc D, and the quotient map
7t: X-> D is ramified above precisely 4 points of the boundary 3D, the ramification indices kt

in the fibers above these 4 points being k1 = k2 = k3 = 2, kA = 3 [8].
Let F be a four-sided non-euclidean polygon with angles \n, \n, \n, and $n. Let /4 be

the NEC group generated by the reflections Rx, R2, R2, R4 in the sides of the polygon F.
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Then A has the following presentation [3, p 55]:

generators Ru R2, R3, R4,
and relations S- (2)

(R , )2 = (R2)
2 = (R3)

2 = (R4)
2 = (R^)2 = (R2R3)2 = (R3R*)2 = O W 3 = l.J

The polygon Fis a fundamental region for the group A, of course, and by the Gauss-Bonnet
Theorem [6, p. 21],

Now suppose that a bordered surface group F is a normal subgroup of finite index in A.
Then AjT is a group of automorphisms of the compact Klein surface Y = H/F. If Y is of
genus g, then

Thus we obtain a large automorphism group whenever we find a finite group G and a homo-
morphism cp : A^G onto (7 such that kernel q> is a bordered surface group.

Before proceeding we need a definition.

DEFINITION. A finite group G will be called an M*-group in case G is generated by three
distinct elements t, u, v of order two which satisfy the relations

(ft!)* = (ft,)3 = 1. (3)

Now we are ready to prove one of our main results.

THEOREM 1. G is a group of \2{g— 1) automorphisms of a compact Klein surface of genus
g^2 with non-empty boundary if and only ifG is an M*-group.

Proof. Sufficiency. Suppose G is an M*-group with generators t, u, v of order two that
satisfy the relations (3). Define a homomorphism <p : A -+ G onto G by q>(Rx) = t, cp(R2) = u,
<p(R3) = 1, <p(R4) = v. Let F = kernel (p. Then i?3eF, and using a result of Macbeath [7,
p. 1198], it is easy to see that any element of finite order in F is conjugate to R3 and thus is
a reflection. Therefore F is a bordered surface group. Now G is a group of automorphisms
of the Klein surface Y = H/T, and if Y is of genus g, \ G \ = 12(g-1).

Necessity. Suppose G is a group of \2{g— 1) automorphisms of a compact Klein surface
X of genus g ^ 2 with non-empty boundary. By Theorem B, we can represent X in the form
X = HIT, where F is a bordered surface group. Let p : H-* X be the quotient map. Since
I G\ = 12(^—1) the quotient space XjG is the disc D and the quotient map n : X->D is
ramified above exactly 4 points of dD, the ramification indices being 2, 2, 2, 3.

By Proposition 3, there exists an NEC group B, where F c 5 c Â CF), and a homo-
morphism <p : B-> G onto G such that kernel q> = F. Let Y = H\B and let q : H-> Y be the
quotient map. It is easy to check that the m a p / : Y^D defined by f(q(x)) = n(p(x)) is a
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dianalytic isomorphism. Thus the quotient space HjB is the disc D, and the following diagram
commutes.

H

D

The map/; is unramified. Therefore q is ramified above precisely the same points of D that
n is, and the ramification indices above these points must also be the same. Then it follows
from Wilkie's results [11, p. 96] that, after a simple elimination of redundant generators,
the group B has the presentation (2).

Now r is a bordered surface group, so that F contains a reflection. Since F is normal
in B, it follows that one of the Rt is in F [7, p. 1198]. Suppose i ^ e F = kernel <p. Since
i?4 = (R4Ri)3 = 1, i?4.eF as well. Then R^Ri is an analytic element of finite order in the
surface group F, a contradiction. Hence /?, £F. Similarly /?4£F.

Suppose R3eT. Let t — cp(Ri), u = (p(R2), and v = (p(R^). Then t, u, v generate G and
satisfy the relations (3). Hence G is an Af*-group.

If R2^T, then let t = q>(R^), u = <p(R3), and v = (p(Rt). Again we see that G is an
M*-group. This concludes the proof.

The proof indicates the relationship between [8] and the work of Wilkie [11].

4. M*-groups. Let F be the extended modular group, the subgroup of Q consisting of
all transformations of types (1.1) and (1.2) where a,b,c,d are integers. Then F + is the
usual modular group. The group F is generated by the transformations T, U, V where
T(z) = 1/z, U(z) = - z , and V(z) = - z / (z +1). They satisfy the relations

T2 = U2 = V2 = (TU)2 = (TV)3 = 1,

and these relations actually define F [3, pp. 85-86]. Immediately we see that M*-groups
are finite quotient groups of F. On the other hand, suppose K is any normal subgroup of F
of finite index larger than 6. It can be checked that T, U, V, TU, and TV are not in K. There-
fore T/K is an M*-group.

For each integer q ^ 2, let Yq be the principal congruence subgroup of level q, consisting
of all transformations (1.1) of F + such that a = d=±l (mod^r), and b = c = O(mod^).
Let n = [F+ : Tq] be the index of r , in F + . If q = 2, then fi = 6. If q > 2, then

where the product is over the prime divisors of q [4, pp. 8-10]. Now note that Fq is normal
in the big group F. [F : Tq] = 2/t ^ 12. Thus we have the following important result.

THEOREM 2. For each integer q^.2, F/F, is an M*-group.

COROLLARY. There are infinitely many values of the genus g for which there is a compact
Klein surface with boundary with \2(g— 1) automorphisms.
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It is possible to find one topological type of Klein surface with boundary on which
, acts. Consider the quotient space HjTq. For more details on the following, see the

treatment in [4, pp. 6-16]. Let M denote the compactification of HjTq. M is a compact
Riemann surface of genus h, where h = 0 if q = 2, and

24 .
---I if

P
q>2.

The quotient group F/F, acts as a group of automorphisms of M. Let A = \i\q. There are
exactly A points of the quotient space M that are images of points equivalent under F + (or
under F) to /oo. These A points form an orbit of the quotient group TjTq. Now remove an
open disc centered about each of these A points, and let X denote the resulting surface. X
inherits an analytic structure from M, and F/F? acts as a group of automorphisms of X.
Topologically X is a sphere with h handles and A holes. Then X is of genus g = 2h+A — 1 [1].
We need to calculate the order of F/F9 in terms of the genus g. From [4, p. 14] we have
the following relation.

120-1) = ji(l-6/«) = /*-6A.

Therefore |F/F,| = 2\i = 2[12(/j- 1) + 6A] = 12[2(A-1) + A] = 12[(2A+A-1)-1] = \2{g-\).
Thus F/Fs acts as an automorphism group of X of maximum possible order.

The values of 2fi, g, h, A are tabulated below for some small values of q.

Q

2

3

4

5

6

2/i

12

24

48

120

144

8

2

3

5

11

13

h

0

0

0

0

1

A

3

4

6

12

12

Q

7

g

9

10

11

in

336

384

648

720

1320

g

29

33

55

61

111

h

3

5

10

13

26

A

24

24

36

36

60

Before proceeding, we give a table of M*-groups of low order that we have found. These
groups are quite familiar, and it is easy enough to check that they are M*-groups. Sn denotes
the symmetric group on n letters, An the alternating group on n letters, and Cn the cyclic
group of order n.

M*-groups of low order

Group

C2*S3

S3xS3

A,
C2*A5
53x54
CjXC2X/l5

Order

12
24
36
48
60

120
144
240

Genus

2
3
4
5
6

11
13
21
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5. Infinite families. In this section we exhibit other infinite families of surfaces for which
the bound \2(g—\) is attained. The technique used is essentially the same as that employed
in [5] and [10].

Suppose F is a bordered surface group such that the quotient space HjF is of genus g
and has \2(g— 1) automorphisms. Then, as in the proof of Theorem 1, there exists an NEC
group B with presentation (2), such that F is a normal subgroup of B and [B : F] = I2(g— 1).

The commutator subgroup F' is a characteristic subgroup of F. The subgroup F " of F
generated by the mth powers of elements of F is also a characteristic subgroup. Fm contains
orientation-reversing elements if and only if m is odd.

For odd m, let Am = FT"'. Am is a characteristic subgroup of F. F is finitely generated
by Wilkie's results [11]. The quotient group F/Am is a finitely generated abelian group in
which every element has finite order. Thus F/Am is a finite abelian group, so that Am is of
finite index in F. Hence Am is a surface group. But F contains reflections, and since m is
odd, so does Am. Thus A,,, is a bordered surface group. Since Am is characteristic in F, Am is
normal in B. Now, as we have seen, H\Am is a compact Klein surface with boundary of genus
g' that has \2{g' — 1) automorphisms. When the topological type of / / /F is known, we can
calculate the genus of each Klein surface H/Am. For example, we have the following.

LEMMA 1. Suppose HjF topologically is a sphere with k holes. Then the genus g' of
H\Am is

g' = {k-2)mk-1 + l.

Further, each surface HjAm is orientable.

Proof. F has the following canonical presentation [11, p. 96]:

generators cu ..., ck,eu ..., ek,

and relations cf = eicief1ci = 1 (i = I , . . . , k), eLe2 • •. ek = 1.

Now c'" = cfeAm for each i. Therefore F/Am has the presentation:

generators eu...,ek,

and relations me, = 0 (i = \, ...,k), ei + e2+ •• • +ek = 0.

Clearly F/Am ^(Cmf~\ so that [F :Ani] = m*'1. The genus of the Klein surface HjF is
(k — 1). Both F and Am are bordered surface groups. Therefore

Let X = HIT and Y= ///A,,,, and let p : # - > X and q : H-> Y be the quotient maps.
Then G = F/Am is a group of automorphisms of Y. As in the proof of Theorem 1, the quotient
space YjG is dianalytically isomorphic to X. If n : Y-* X denotes the quotient map, then
p-noq. n is an unramified mk~^sheeted covering of X, since \G\= m*1"1 [8]. Suppose
Tr(q(x)) = p(x)edX. Then there is a reflection reF with r(x) = A-. But reAm as well, since m
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is odd, so that q(x)edY. Thus n~~1(dX) = 8Y, that is, 7 i s not folded along dX. Hence we
can lift the orientation of X to define an orientation of Y.

THEOREM 3. There is a compact orientable Klein surface of genus g with non-empty boundary
that has 12(^—1) automorphisms for each of the following values of g:

g=.m2 + l, g = 2m3 + h g = 4m5 + l, g = 10m11 + l,

where m is any positive odd integer.

Proof. Lemma 1 applies to 4 examples of the previous section (see the first table with
^ = 2,3,4,5).

To find infinite families of non-orientable surfaces, we first need examples of non-
orientable surfaces with 12(g—\) automorphisms.

EXAMPLE. Let A' be a sphere with 12 holes, with the holes centered around the vertices
of an inscribed regular icosahedron. X is an orientable Klein surface of genus 11. X has a
group of automorphisms isomorphic to the complete symmetry group (including reflections)
of the regular icosahedron, which is C2'xA5. Let x:X->X be the antipodal map. The
quotient space W — X\i is a real projective plane with 6 holes, a non-orientable Klein surface
of genus 6. W has an automorphism group isomorphic to A5. Thus W has 60 = 12(6—1)
automorphisms.

A similar example in [8] gives a non-orientable Klein surface of genus 3, topologicaliy
a real projective plane with 3 holes, that has 24 automorphisms.

LEMMA 2. Suppose HjT topologicaliy is a real projective plane with k holes. Then the
genus g' ofH/Am is

g' = (lc-l)mk + L

Further, each surface H/Am is non-orientable.

Proof, T has the following canonical presentation [11, p. 101]:

g e n e r a t o r s c , , . . . , c k , e y , . . . , e k , d ,

a n d r e l a t i o n s cf — I (i = } , . . . , k), e i c i e f 1 c i = l ( » ' = 1 , . . . , k ) , d 2 e L . . . e k = 1 .

Then F/Am has the following presentation:

g e n e r a t o r s elt ...,ek, 3,

and relations 2ct+ex+ ... +ek = 0, m3 = 0, met = 0 (i = l , . . . , k ) .

Thus F/Am s (CJ* and [ r : AJ = mk. The genus of the Klein surface HjT is k. Therefore

k r r . -, 2n(g'-\)

and £' = ( * - l ) m * + l .
Now, as in the proof of Lemma 1, let X = HIT, Y = H/Am, and G = T/Am. The quotient

space YjG is the Klein surface X. If n : Y-* X denotes the quotient map, then n is an unrami-
fied /n*-sheeted covering of X and 7r"1(3J) = dY. Suppose Y is orientable. Then let
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(A"o, v, T) be the orienting double of X [1, pp. 42-43], that is, Xo is a compact orientable Klein
surface with boundary, v: Xo -»X is an unramified 2-sheeted covering of X, and T is the
unique antianalytic involution of Xo such that v»t = v. Since n'^idX) = dY, there exists
a unique analytic m a p / : Y-*X0 such that the following diagram commutes [1, p. 42].

Then / i s an r-sheeted covering of Xo for some integer r, and 2r = mk. But mk is odd, a con-
tradiction. Therefore Y is non-orientable.

THEOREM 4. TAere w a compact non-orientable Klein surface of genus g with non-empty
boundary that has 12(^—1) automorphisms for each of the following values of g:

g = 2mi + \, g=5m6 + l,

where m is any odd positive integer.
We are working (with Newcomb Greenleaf) on other techniques for finding infinite

families of surfaces for which the bound I2(g— 1) is attained. A sequel is planned.
Thanks are due the referee for calling our attention to the relationship of the extended

modular group to M*-groups.
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