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Abstract. The problem of relativistic equations of motion for extended 
celestial bodies in the first post-Newtonian approximation is reviewed. It is 
argued that the problems dealing with kinematical aspects have been solved 
in a satisfactory way, but more work has to be done on the dynamical side. 
Concepts like angular velocity, moments of inertia, Tisserand axes etc. still 
have to be introduced in a rigorous manner at the 1PN level. 

Usually, relativistic equations of motion (EOM) for massive celestial 
bodies are treated within the so-called post-Newtonian framework, based 
on a formal expansion of the form 

EOM = (EOM)Newton + £ 2 ( E O M ) 1 P N + e 4 ( E O M ) 2 P N + . . . , (1) 

Here, ν denotes a typical orbital velocity of celestial bodies, M a typical 
mass and R some characteristic distance between the bodies. In the solar 
system, e2 < 10~ 5 and for most purposes the first post-Newtonian approxi-
mation will be sufficient. Now, the problem of celestial mechanical equations 
of motion can be divided into two parts: a kinematical part and a dynami-
cal one. The kinematical problems are related with the theory of relativistic 
astronomical reference frames. These problems have been solved in a sat-
isfactory manner by Brumberg, Kopejkin and Klioner (see,e.g., Brumberg 
1991 and references cited therein) and by Damour, Soffel and Xu (1991, 
1992, 1993, 1994; DSX I-IV). The dynamical part deals with the physical 
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interaction of the gravitating bodies. Some basic problems have been solved 
by Damour, Soffel and Xu in the first post-Newtonian approximation. How-
ever, some problems still remain unsolved. These will be mentioned below. 

In relativity, the local equations of motion that can be written as 

0 = (3) 

form the basis for any derivations of global equations of motion, e.gf., for the 
center-of-mass of a body. Here, V| , denotes the covariant derivative and Τμν 

is the energy-momentum tensor of matter. To Newtonian order, in inertial 
Cartesian coordinates, (ct,x%) equations (3) take the form 

and 

_ + _ ^ + i , j = , _ ( 5 ) 

Here, ρ is the matter density, ν the coordinate velocity of some material 
element, U is the Newtonian potential and f«? the stress-tensor of mat-
ter. Going to higher and higher accuracies, the definition of quantities like 
center-of-mass, mass-moments, spin-moments and the derivation of useful 
equations of motion will become increasingly more complicated. For that 
reason, there is some chance that in the (far) future the local equations of 
motion (3) might be the only useful ones in which case they would have 
to be solved by means of techniques from numerical relativity after having 
specified the visco-elastic properties of matter (i .e. , the energy-momentum 
tensor) in a relativistic framework. 

Damour, Soffel and Xu have demonstrated that global Laws of Motion 
( L O M ) can be derived in the first post-Newtonian approximation without 
specification of the energy-momentum tensor. Let us consider a system of N. 
weakly self-gravitating, rotating bodies of arbitrary shape and composition 
gravitationally interacting with each other. To describe the time evolution 
of such a system, we introduce Ν + 1 different coordinate systems, 

— one global coordinate system χμ = (ct,x%) and 

— one local coordinate system X% = (cT,Xa)A, for each of the bodies, 
comoving with body A. 

It is assumed that the global chart extends to spatial infinity. For celestial 
mechanical problems related with the solar system it will be a barycentric 
coordinate system. Among the local ones, one will be a geocentric frame, 
moving with the Earth. Now, in the DSX-formalism, the gravitational in-
teraction is described by two potentials (w,W{) in the global frame and 
(Wj Wa) in one of the local frames. In Newton's theory of gravity, there is 
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only one scalar potential, the Newtonian potential U. To lowest order, the 

scalar potential w or W agrees with U but it also has terms proportional 

to c " 2 . w is also called the gravitoelectric potential describing the gravita-

tional action of a static matter distribution. On the other hand, the vector 

potential wl (or Wa) describes the gravitational effect of moving matter 

{e.g., rotating bodies), i.e., gravitomagnetic effects. It has no Newtonian 

analogue. 

Let us consider the environment of a body (A) such as the Earth in its 

own local frame. In a special representation, one finds that the equations 

satisfied by the potentials Wa = (W, Wa) are linear and there is a unique 

split of the potentials into two pieces: 

Wa = W++Wa. (6) 

Here, the self-part of the potentials, W + , describes the gravitational action 

of body (A) itself. It can be characterized by two sets of multipole moments, 

called ML and SL- Here, L denotes a Cartesian multi-index, L = i\i<i ...i\ 

and each index ij takes the values (1 ,2 ,3 ) = (x, y, z), so we face components 

like M X X , or M X X Y Y Z etc. The M c ' s are called mass-multipole moments, SL 

are the spin-moments of body (A). Both, ML and SL are so-called STF 

(symmetric and trace-free) tensors which are the Cartesian analogues of 

coefficients in an expansion in terms of spherical harmonics. ML general-

izes the usual Newtonian potential coefficients C\M and S\M to the first 

post-Newtonian level. S% represents the total angular momentum (spin) of 

body (A). ML and 5 L , as functions of local coordinate time T, are fully 

determined by integrals over the densities 

Σ = y =P + 0(c-2); Σ° = ί - = ρ υ α + 0(β-% (7) 

i.e., they can formally be obtained without specification of the energy-

momentum tensor of matter. 

The external part of the potential, Wa describes the inertial forces in 

the local frame and the gravitational effects from the other bodies, i.e., the 

tidal forces. In the DSX-formalism this external part of the potentials is 

available either in closed form as function of the mass- and current-moments 

of the other bodies and of the position and velocity of the origin of the local 

system in the global frame or as expansion in terms of tidal moments, GL 

and HL- In Newton's theory, the magnetic-type moments EL play no role 

and 

^ e w t o n = ^ e x t ( z A ) _ ^ ( / = 1 } ( 8 o ) 

/^Newton _ ^U^JZA) il ^ O\ iQk\ 

Gi*~* - d x i i - d x * ( / - 2 ) · ( 8 δ ) 
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To derive Laws of Motion we first have to relate the origins of the local 

frames with the matter distribution of the bodies. Usually, one chooses the 

origin of the local A-frame to coincide with the center-of mass of body A. 

This can be achieved by means of 

MA = 0. (9) 

With that condition the potentials (W, Wa) are completely fixed and the 

trajectory, e.g., of a satellite can be considered as a geodesic in the metric 

that is determined by the potentials. It is equivalently determined by a 

Lagrangian of the form 

8 2 2 
(10) 

where ν is the satellite's coordinate velocity. This leads to an equation of 

the form 

Χ" = fseU + /tidal + /mixed- ( H ) 

Here, f"e]£ is an acceleration resulting from the action of body (A) itself and 

/tidal r e s u ^ s from the action of the other bodies. In the DSX-formalism, 

/ώί = W + + ( c - 2 - terms) 

(12) 

= ΟΣι>ο ^MUdLaR-1) + ( c - 2 - terms) 

has been obtained fully to post-Newtonian order in terms of ML and SL of 

body (A), 

/tidal = Σ 1 T G ^ + ( c ~ 2 - t e r m s ) ( W ) 

completely to PN-order in terms of GL and HL or in closed, i.e., non-

expanded form. Similarly, the mixed acceleration 

/£ixed = -4r (WW+,a + W+W,a) (14) 

is completely available to post-Newtonian accuracy. In DSX IV, we have 

also derived post-Newtonian satellite Laws of Motion in the global barycen-

tric frame which might be useful for high flying satellites or for comparisons 

with previous results from other authors. 

General translational post-Newtonian Laws of Motion for a system of 

massive bodies have been derived from relation (9) . More specifically, using 

(15) 
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and the local equations of motion one finds 

d2Ma = 

l>0 

0 = = Σ JXMLGL* + ( c " 2 - terms). (16) 

Since 

G a = + W,a\x«=o + ( c " 2 - terms) 

equation (16) can be solved for the desired acceleration of the center-of-
mass of body (A). In this way, Laws of Motion in the form 

= ̂ ,αΙ*·=ο + ( c - 2 - terms) (17) 

have been derived to PN accuracy. For more details, the reader is referred 
to DSX II. In the case of pure mass-monopoles (i .e. , only the masses of 
bodies different from zero), one recovers the usual Einstein-Infeld-Hoffmann 
equations of motion. 

The problem of rotational motion is even more complex than the trans-
lational case. The reason for that being that the spin of a body does not 
enter the Newtonian potential so only the Newtonian expression for the 
spin enters the post-Newtonian potentials. A post-Newtonian theory of the 
spin of a body therefore has to deal with gravitational potentials to 2PN-
order. In DSX III, we gave a definition of a post-Newtonian spin of body 
( A ) , SJA\ in the ΑΓ-body case such that the resulting torque can be ex-
pressed entirely in terms of the moments ( M L , SL] G L , HL) in the A-frame. 
The resulting Law of rotational motion is of the form 

^ j f - = tiab Σ/>0 TJ {MaLGbL + ^ { ^ ^ O L ^ L ) 

(18) 

+further( c"~2 - terms). 

For a body with only mass-monopole and spin-dipole this equation reduces 
to 

d S ( A ) - 1 ς π m q ï 

Now, the local frame can be oriented in space such that Hi, = 0 and the 
torque in (19) vanishes. In that case, the local frame is called dynami-
cally non-rotating and the axes to the spatial coordinate line are Fermi-
transported along the central worldline (DSX III). 

So far, we were just talking about Laws of Motion rather than about 
Equations of Motion, the reason being that the various quantities ML and 
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SL have not been specified as functions of time in the general case. Note 
that these multipole moments physically are determined by the visco-elastic 
properties of matter. To close the whole system of equations, one has to 
introduce specific models for the time behaviour of the various multipole 
moments. One might, e.gf., start with "rigid models" with 

= eadcil
cMdb + ebcdil

cMad etc. (20) 

and 

So = icdn
d, ( 2 i ) 

where Ω° is some time dependent vectorial function, but there is indeed 
the problem if such an ansatz is consistent and compatible with Einstein's 
field equations. It is known (Thorne and Gürsel 1983) that for one isolated 
body everything is fine if one restricts to first-order terms in Ω. In that 
case, problems related with Lorentz-contraction effects will not show up. 
To higher order in Ω, equations (20) and (21) are only compatible with 
the field equations for stationary bodies which do not precess and show no 
nutation. 

One can say that concepts like angular velocity, figure axes, Tisserand 
axes, etc., still present basic problems in the gravitational JV-body problem. 
A good way to proceed has been outlined by Klioner (1996): he introduces 
some rotating local frame by the action of some vectorial function Ω*(Τ) and 
then formally specifies the rotating frame by requiring that the resulting 
rotational equations of motion take a particularly simple form. More work 
is needed, however, to put these ideas into a more rigorous form. 
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