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ABSTRACT. A new numerical implementation is proposed for a wave–ice interaction model. It is
applied to an idealized transect geometry. Wave attenuation due to ice floes and wave-induced ice
fracture are both included in the model. The new method alleviates the need for subgrid spatial or
temporal discretizations, thereby facilitating future integration of wave–ice interactions into large-scale
coupled models.
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INTRODUCTION
Ocean surface waves have been observed to penetrate tens
and, at times, hundreds of kilometres into the sea-ice-
covered ocean (Kohout and others, 2014). The waves cause
the ice to bend and flex. The ice can only endure a certain
degree of flexure before it fractures into floes with diameters
on the order of local wavelengths (Langhorne and others,
1998). In this way, waves regulate maximum floe sizes.
Simultaneously, the presence of ice cover attenuates the
waves. Waves therefore retain the intensity to fracture the
ice for a finite distance only. Moreover, ice cover filters
the wave spectrum preferentially towards low frequencies,
so that wavelengths and, consequently, maximum floe sizes
generally increase with distance travelled (Squire and
Moore, 1980), until winds, currents and further waves
reconfigure the simple arrangement.
Wave attenuation is typically modelled as an accumu-

lation of partial wave reflections and transmissions by floes
(see Bennetts and Squire, 2012, and references therein).
Comparatively few fracture models exist. Those that do exist
are based on wave-induced flexural motion of the ice,
resulting in strains that exceed a threshold (e.g. Langhorne
and others, 2001).
Until recently, wave attenuation and ice fracture models

have been independent of one another. Attenuation models
consider the floe size distribution to be known. Fracture
models consider the distribution of wave energy to be
known. However, wave attenuation and ice fracture are
coupled via the floe size distribution. The rate of wave
attenuation depends on the floe size distribution, which is
regulated by wave-induced fracture. Fracture depends on the
local wave energy, which is controlled by wave attenuation
imposed by the ice cover (Kohout and Meylan, 2008).
Dumont and others (2011) and Williams and others

(2013a,b) developed a wave–ice interaction model (WIM),
in which wave attenuation and ice fracture are coupled
processes. The WIM predicts the distribution of wave energy
and the resulting floe size distribution simultaneously, given
an incident wave forcing from the open ocean and
properties of the ice cover.

Dumont and others (2011) and Williams and others
(2013a,b) designed the WIM to link wave and sea-ice model
components of large-scale operational ice–ocean forecast-
ing models. The WIM is nested in regions of operational
interest in the large-scale models using refined spatial and
temporal grids. The WIM then provides prognostic informa-
tion regarding the floe size distribution and wave activity in
the ice-covered ocean, potentially leading to more accurate
forecasts for the safety of offshore engineering activities.
More generally, the WIM provides an opportunity to

integrate prognostic wave and floe size information into
oceanic general circulation models (OGCMs) used for
climate studies, and here considered to contain wave and
sea-ice model components. The information will improve
the accuracy of existing models of floe-size-dependent
processes in the vicinity of the ice edge, such as form drag
(Tsamados and others, 2014), and promote development of
new models of wave- and floe-size-dependent processes,
such as accelerated melt of floes due to wave overwash
(Massom and Stammerjohn, 2010).
Subgridding incurs a large computational cost. It is there-

fore not an appropriate method to implement the WIM on
circumpolar or global scales. An alternative numerical
implementation is proposed here, for a modified version of
the WIM. The new method does not involve subgrid spatial
or temporal discretizations. Instead, the floe size distribution
and the rate of attenuation are balanced in the cell.
Application of the new scheme to an idealized version of

the modified WIM is presented. Results are validated by
comparison to results produced by the method of Williams
and others (2013b).

MODEL DESCRIPTION
Consider a transect of the ocean surface containing ice
cover. Points on the transect are defined by the coordinate
x 2 ð0, LÞ. The transect represents a single cell in an OGCM.
The time frame under consideration, t 2 ð0, TÞ, is equivalent
to a single time step in the OGCM. For climate models
L � 50 km and T � 1hour. The sea-ice model component of
the OGCM is assumed to provide an average ice thickness,
h, and concentration of the ice cover, c. (Contemporary
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sea-ice models distribute ice thickness over multiple
categories.) The average ice thickness h ¼ 0:5m and
concentration c ¼ 0:75 are prescribed for the idealized
model results presented later.
Let the wave energy density spectrum at point x and time

t be denoted Sð!; x, tÞ, where ! is angular frequency. The
domain x 2 ð0, LÞ is considered to be free of waves initially.
An incident wave spectrum is prescribed at the left-hand
end of the domain, x ¼ 0. Incident wave forcing is steady
over the time interval considered.
The incident spectrum is transported through the transect

according to the energy-balance equation
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The quantity cg is the group velocity of the waves. Williams
and others (2013b) provide numerical evidence that ice
fracture predicted by the WIM is insensitive to wave
dispersion. Although the finding is not conclusive, for
simplicity dispersion is neglected for the present application,
i.e. a constant value of cg is used in the transport equation.
Further, it is assumed that the wave spectrum travels the
length of the transect in the time frame, i.e. cg ¼ L=T, thus
alleviating the need to specify a value for cg.
The quantity �ð!; x, tÞ is the attenuation coefficient, i.e.

the exponential attenuation rate of wave energy per meter.
The expression � ¼ ca=hdi is used here, where d denotes
floe diameter, h�i denotes the mean of the included quantity
and að!, hÞ is the attenuation rate per floe, calculated using
the model of Bennetts and Squire (2012). The attenuation
coefficient therefore depends on ice thickness and concen-
tration. It also depends on the floe size distribution, which is
calculated by the WIM. The floe size distribution is defined
by its probability density function pðd; x, tÞ. The floe size
distribution, and hence the attenuation coefficient, vary
suddenly in time if wave-induced ice fracture occurs. The
occurrence of fracture, in turn, depends on the wave energy
spectrum. Calculation of the wave energy spectrum, S, and
the floe size distribution, p, are therefore coupled via the
attenuation coefficient.
In order to isolate wave–ice interactions, the above

version of the transport equation (1) neglects nonlinear
transfer of wave energy between frequencies, wave energy
input due to winds, long-range attenuation of swell, and
attenuation due to wave breaking and whitecapping. To the
authors’ knowledge, the importance of these processes in
the ice-covered ocean is not yet known. The fracture model
derived by Williams and others (2013a) is used. The model
is based on strains imposed on the ice cover by wave
motion, in which the ice is modelled as a thin-elastic beam.
The fracture condition is

E � Ec ¼ "c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2=logðPcÞ
q

, ð2Þ

where E ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
m0½"�

p
is the strain imposed on the ice by the

waves. The quantity m0 is the zeroth moment of strain. The
nth moment of strain is defined as

mn½"� ¼
h2
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where � is the ice-coupled wavenumber (Williams and
others, 2013a). The quantity "c ¼ �c=Y� is the fracture limit
of the ice, where �c is the flexural strength of the ice, Y� is

the effective Young’s modulus of the ice and Pc is a chosen
critical probability.
The expression �c ¼ 1:76 exp ð� 5:88

ffiffiffiffiffi
�b
p
ÞMPa is used

for the flexural strength, in which �b denotes brine volume
fraction. Timco and O’Brien (1994) used 939 flexural
strength measurements to derive the expression. (The root
brine volume fraction ranged from 0.15 to 0.5, approxi-
mately, for those measurements obtained in situ using
cantilever beams.)
The expression Y� ¼ f10ð1 � 3:51�bÞ � 1gGPa, as de-

rived by Williams and others (2013a), is used for the
effective Young’s modulus. (Williams and others noted that
in situ measurements on large samples of sea ice often
produce smaller values of the effective Young’s modulus.)
The critical probability limit for a narrow-band spectrum,

Pc ¼ expð� 1Þ, is used. Williams and others (2013b) con-
ducted a numerical study of the sensitivity of ice fracture to
the value of the critical probability.
Fracture occurs if inequality (2) is satisfied. If fracture

occurs, the maximum floe diameter is set to be equal to half
of the dominant wavelength, i.e. dmx ¼ �=2. The dominant
wavelength is calculated from the dispersion relation for the
ice-covered ocean (e.g. Bennetts and Squire, 2011), using
the dominant wave period

� ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0½��

m2½��

s

, where mn½�� ¼

Z 1

0
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is the nth spectral moment of the surface elevation � (WMO,
1998). The maximum floe diameter parameterizes the floe
size distribution. The floe size distribution is otherwise
specified. A truncated power-law floe size distribution is
used. The corresponding probability density function is

pðdÞ ¼
�d�mnd� ð�þ1Þ

1 � ðdmn=dmxÞ�
if d 2 ½dmn,dmx�,

0 if d =2 ½dmn,dmx�,

8
<

:
ð5Þ

where dmn ¼ 20m is a chosen minimum floe diameter and
� ¼ 2þ log2ð0:9Þ is the chosen exponent (Dumont and
others, 2011; Toyota and others, 2011; Williams and others,
2013a).
Williams and others (2013b) used numerical results to

show that WIM ice-fracture predictions are insensitive to the
proportion of wave energy lost to ice fracture, if >30% of
wave energy is lost to fracture. Experimental data do not exist
to support or refute the assumption. It is therefore assumed
that all wave energy is lost, i.e. steady-state conditions apply.

NUMERICAL IMPLEMENTATION
Method of Williams and others (2013b)
Williams and others (2013b) applied spatial, temporal and
spectral discretizations to the WIM. For each time step the
following sequence of executions is applied:

1. Advection: The discretized wave spectrum is mapped to
an intermediate spectrum by solving the energy-balance
equation (1) without attenuation, i.e. � ¼ 0.

2. Attenuation: The intermediate wave spectrum is attenu-
ated according to the properties of the ice it has just
travelled through.

3. Fracture: In each cell, fracture condition (2) is applied. If
the wave spectrum in a given cell is sufficient to cause
fracture, the maximum floe diameter in the cell is set to
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half of the dominant wavelength. However, if the
dominant wavelength is greater than the existing max-
imum diameter, no change is made.

Williams and others (2013b) set the initial maximum
diameters to a large value �500m, in cells where the
maximum floe diameter is not otherwise initialized.

New method without spatial or temporal
discretizations
An ice cover acts as a low-pass filter to waves, i.e. the
attenuation rate decreases as frequency decreases/period
increases. Consequently, the wave spectrum increasingly
skews towards low frequencies the farther it propagates into
the ice-covered ocean, and the associated wavelength
becomes larger. The maximum floe diameter thus increases
with distance away from the ice edge in the wave-induced
fracture region.
The low-pass filter observation is the basis of an alter-

native numerical implementation of the WIM proposed
below, which does not require spatial or temporal discretiza-
tions. The observation is translated to the assumption that the
maximum floe diameter is due to ice fracture at the far end of
the transect, x ¼ L, or the farthest distance into the transect for
which the wave spectrum is capable of causing fracture.
The problem reduces to (1) determining if the wave

spectrum at x ¼ L is sufficient to cause ice fracture, and, if
not, (2) determining the farthest point into the transect at
which the wave spectrum is capable of causing ice fracture.
However, the wave spectrum and the maximum floe
diameter must be calculated simultaneously, because they
are coupled via the attenuation coefficient.
Suppose a trial value is specified for the maximum floe

diameter, and hence the attenuation coefficient is known.
The wave spectrum at x ¼ L is then obtained directly from the
energy-balance equation (1). The associated strain, ELðdmxÞ,
andwavelength, �LðdmxÞ, at x ¼ L are calculated as described
at the end of Section 2. Three scenarios are possible:

1. the maximum floe diameter is less than half the
wavelength;

2. the maximum floe diameter is greater than half the
wavelength; and

3. the maximum floe diameter is equal to half the
wavelength.

Scenario 3 is sought here. In scenario 3 the wavelength and
the maximum floe diameter balance one another, i.e. the
maximum diameter defines a floe size distribution that
attenuates the wave spectrum such that the wavelength at
x ¼ L is consistent with the maximum diameter. The initial
floe diameter is considered to be large. Note that the new
method does not require a specific value to be prescribed for
the initial maximum diameter.
The maximum diameter that balances the wavelength at

x ¼ L is obtained by finding the value of dmx that satisfies the
equation

1
2
�LðdmxÞ ¼ dmx: ð6Þ

However, for this value of dmx, fracture only occurs if the
strain imposed by the wave spectrum on the ice cover at
x ¼ L satisfies the inequality

ELðdmxÞ � Ec: ð7Þ

Equation (6) can be solved numerically using a package
root-finding algorithm (e.g. MATLAB™’s fzero function). A
check of fracture condition (7) is then performed for the
calculated value of dmx.
Figure 1 shows results for a problem in which fracture

occurs at x ¼ L ¼ 100 km. A Bretschneider incident wave
spectrum is used. It is defined by a peak period and a
significant wave height, which is convenient for model
testing. For this problem, the incident peak period is 9.5 s and
the significant wave height is 1m. However, any incident
wave spectrum can be used, including ones derived from
observations or wave models such as WAM or Wavewatch.
Figure 1a shows the difference between the half-

wavelength at x ¼ L and the maximum floe diameter, for a
given maximum floe diameter. The half-wavelength and
maximum floe diameter balance one another at �89.5m.
Figure 1b shows the corresponding strain imposed by the
wave spectrum on the ice cover, as a function of maximum
floe diameter, and the strain threshold, Ec. It confirms that
the wave spectrum is sufficiently intense to fracture the ice
cover when dmx � 89:5m.
The maximum floe diameter is therefore set as

dmx � 89:5m. Figure 5c shows the incident wave spectrum
and the attenuated wave spectrum at x ¼ L. Skew of the
attenuated spectrum towards long periods is clear.
If the fracture condition is not satisfied at x ¼ L, the prob-

lem is extended to search for the greatest distance into the
transect at which the wave spectrum is capable of causing
fracture. The extension is necessary, as wave-induced

Fig. 1. Results for incident wave spectrum with 1m significant wave height and 9.5 s peak period, and transect length L ¼ 100 km. (a) Black
curve represents half-wavelength/maximum-floe-diameter balance function at x ¼ L. Grey curve represents abscissa axis. (b) Solid curve
represents strain imposed on the ice by wave spectrum at x ¼ L, as a function of maximum floe diameter. Broken curve represents the strain
threshold Ec. (c) Incident wave spectrum and attenuated wave spectrum at x ¼ L.
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fracture may be possible for a large proportion of the
transect, despite not being possible for the entire transect.
Let x ¼ l be the greatest distance at which fracture can

occur. The strain imposed on the ice cover by the wave
spectrum at this point, ElðdmxÞ, is such that

ElðdmxÞ ¼ Ec: ð8aÞ

Additionally, the wavelength at x ¼ l,�l, must balance the
maximum diameter, i.e.

1
2
�lðdmxÞ ¼ dmx: ð8bÞ

Equations (8a) and (8b) are to be solved simultaneously for l
and dmx. In practice, the equations are solved numerically as
a set of one-dimensional equations:

1. by solving Eqn (8b) to give the maximum diameter that
balances the wave spectrum, as a function of distance l,
i.e. dmx ¼ dmxðlÞ; and

2. substituting the expression for dmx ¼ dmxðlÞ into Eqn (8a)
and solving for the distance l.

The extended method is necessary for a problem identical to
that used above (Fig. 1) but with a 0.8m significant wave
height for the incident spectrum. Figure 2 shows results
produced by the extended method. As in Figure 1, the left-
hand and middle panels show the balance equation and
strains at x ¼ L. The half-wavelength and maximum floe
diameter again balance one another at �89.5m. However,
the wave spectrum at x ¼ L ¼ 100 km is not sufficiently
intense to fracture the ice for dmx � 89:5m (or for any dmx
less than 500m; Fig. 2b). Figure 2c shows the strain balance

equation as a function of distance l. The largest distance at
which the wave spectrum remains sufficiently intense to
fracture the ice is �71.3 km, i.e. wave-induced fracture
occurs over a substantial proportion of the transect.
The two numerical implementations use different inter-

pretations of the floe size distribution. The new method uses
a single maximum floe diameter for the transect, which,
recall, represents a single cell in an OGCM. The floe size
distribution, p, for the entire transect is parameterized by the
maximum floe diameter. In contrast, the method of Williams
and others (2013b) considers the floe size distribution to be a
property of the subcells of the transect, i.e. a maximum floe
diameter is assigned to each subcell. The floe size distri-
bution for the entire transect is generally not of the form p.
Figure 3 compares results produced by the two methods,

for an example problem. Figure 3a shows fracture width,
defined as the distance of the transect over which wave-
induced fracture occurs, as a function of the peak period of
the incident wave spectrum. Figure 3b shows maximum floe
diameter in the fractured region, as a function of peak
period. The length of the transect is set to be very large so
that the fractured region is not truncated. The significant
wave height of the incident spectrum is 1m.
Fracture width and maximum floe diameter both increase

as peak period increases. The increase in fracture width
becomes less rapid as peak period increases. The relation-
ship between maximum floe diameter and peak period is
approximately linear for the interval considered.
Given the different interpretations of the floe size

distribution in the two methods, the agreement in the results
is reassuring. (Slight differences for the predicted fracture

Fig. 2. (a, b) Same as Figure 1 but for 0.8m incident significant wave height. (c) Corresponding strain balance equation as a function of
distance, l. In (b) and (c) grey curves represent abscissa axes.

Fig. 3. Fracture width (a) and maximum floe diameter (b), as functions of incident wave spectrum peak period. Incident wave spectrum
significant wave height is 1m. Circles and curves denote results produced by method of Williams and others (2013b) and new method,
respectively.
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widths can be attributed, in part, to discontinuities resulting
from discretization of the transect in the method of Williams
and others (2013b) – a 5 km cell length was used for the
example.) The results therefore indicate the WIM is
insensitive to precise knowledge of the floe size distribution.

SUMMARY AND DISCUSSION
A new numerical implementation has been applied to a
modified version of the WIM proposed by Williams and
others (2013b). The new method was based on the assump-
tion that the maximum floe diameter occurs at the far end of
the cell. At the far boundary the dominant wavelength is at its
maximum, as the wave attenuation due to ice cover skews
the wave spectrum towards long period waves.
The maximum floe diameter was used to define the floe

size distribution in the cell. A wavelength/maximum-floe-
size equation was posed on the far boundary and solved to
obtain the wave attenuation rate and floe size distribution,
simultaneously. If the wave spectrum was not sufficiently
intense to fracture the ice at the far boundary, the problem
was extended to search for the farthest distance into the cell
at which fracture occurs.
The new method was presented for an idealized transect

geometry. Example results for the width of the fractured ice
region, and maximum floe diameter due to wave-induced
fracture, as functions of peak wave period were given. The
results were compared to results produced by the method of
Williams and others (2013b). The two methods gave almost
identical results. Close agreement was not guaranteed, as
the methods adopt different interpretations of the floe size
distribution.
Integration of the WIM into OGCMs will require, in the

first instance, an extension to two-dimensional (2-D) geom-
etries. The key assumption of the new method, which is that
the maximum floe diameter occurs at the far end of a cell,
can be reinterpreted directly in the 2-D setting. However,
the validity of the key assumption must be tested for
directional wave spectra and multiple thickness categories.
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