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Abstract

We investigated postprandial changes in transcript abundance following a single satiating meal in juvenile Atlantic salmon (Salmo salar L.)

(about 70 g body mass) following fasting for 1 week at 128C. The expression of twenty-three growth-related genes was determined in fast

myotomal muscle using quantitative real-time PCR at the following postprandial time points: 212, 0, 1, 3, 6, 12, 24, 48 and 96 h. The gut

was fullest 1–6 h after feeding and emptied within 48–96 h. IGF-I, MyoD1c, MRF4 and myf5 transcripts were sharply up-regulated within

1 h of refeeding and are promising candidate genes involved in a fast-response signalling system that regulates fish myotomal muscle

growth. These genes clustered together with MyoD1b and suggest a coordinated regulation to favour resumption of myogenesis as an

early response to feeding. Insulin-like growth factor (IGF)-II and the ubiquitin ligase MAFbx/atrogin-1 were initially down-regulated

but restored to initial values after 12 h. It is also suggested that local production of IGF-I within the muscle might suppress catabolic path-

ways depressing MAFbx/atrogin-1.
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The natural life cycle of many fish species often includes long

periods of low winter temperatures and restricted feeding

opportunities or prey availability that lead to a depletion

of energy reserves and a reduction in growth rate(1). The res-

toration of adequate nutrition or favourable environmental

conditions results in rapid weight gain and compensatory

growth relative to continuously fed controls. Compensatory

growth occurs at various stages in salmonid fish and is an

important adaptation that allows fish to remain on target

in a fluctuating and unpredictable environment(2–5). From a

practical point of view, the compensatory strategy is of great

interest to the aquaculture industry because feeding pro-

grammes can be designed to improve food conversion and

growth rates, thereby minimising production costs(1).

Periods of nutrient restriction are associated with changes

in metabolism to provide cellular energy via catabolic pro-

cesses(3). In carnivorous fish, nutrient restriction enhances

the release of amino acids from muscle fibres which are

used by hepatocytes as the main gluconeogenic precursors(6).

During refeeding and compensatory growth an accelerated

turnover takes place resulting in an increased protein synthesis:

degradation ratio(3,7). In salmon, the main mechanism under-

lying compensatory growth after a nutrient-restriction period

is an increase of feed intake rates(2). Food contains ligands

for retinoic acid receptors, PPAR, vitamin D receptors

and other nuclear transcription factor receptors and can

directly affect signal transduction pathways(8,9). Branched-

chain amino acids, particularly leucine, have a major role in

stimulating protein synthesis(10). These phenomena seem to

be the result of endocrine alterations, although in most species

it is difficult to detect differences in the endocrine status

between animals undergoing compensatory growth and con-

trol animals(11). In fish, recent molecular tools enable us to

gain deeper insight into how growth responses are regulated

by dietary factors(12,13). In Atlantic salmon(14) and rainbow

trout(15) a genomic approach was used to identify nutritionally

regulated genes involved in muscle growth and revealed

a complex response. The principal groups of up-regulated

transcripts post-refeeding were genes involved in transcrip-

tion, ribosomal biogenesis, translation, chaperone activity,
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ATP production, cell division and muscle remodelling. These

genes possibly play a role in the stimulation of myogenesis

during the transition from a catabolic to anabolic state in

skeletal muscle.

Several in vivo and in vitro studies evaluated the impact of

feeding protocols on muscle growth. Using a candidate gene

approach, it was observed that switching onto fast growth

induced by a fasting–refeeding schedule involves the local

up-regulation of several components of the insulin-like

growth factor (IGF) system, a major hormone axis regulating

the cellular dynamics of muscle growth(16–19). The role of

plasma IGF-I during compensatory growth is not clear and

must be explained in connection with changes of its binding

proteins, which act on the phosphoinositide-3-kinase/Akt/

mammalian-target-of-rapamycin (PI3K/Akt/mTOR) path-

way(20,21). The autocrine IGF-II transcription required for skel-

etal myocyte differentiation is regulated by mTOR and the

availability of amino acids(22,23). Thus the mTOR–IGF axis

provides a molecular link between nutritional levels and pro-

tein synthesis leading to muscle fibre hypertrophy. In salmo-

nids, fasting decreased the expression and plasma levels of

IGF, and up-regulated IGF-I binding, whereas the plasma

level of growth hormone was shown to increase(24,25). Switch-

ing to fast growth in Atlantic salmon muscle involved the up-

regulation of IGF-I, IGF binding protein (IGFBP)-5·2 and

IGFBP-4(19), whereas 1 d of refeeding completely restored

plasma growth hormone levels in rainbow trout(24). IGF-I

induced the activation of the PI3K/Akt pathway, which

causes an increase in protein translation via activation of

p70S6K and inhibition of 4E-BP (also known as PHAS-1)(24).

In cell lines, it was recently shown that in addition to its hyper-

trophic effects, Akt can dominantly inhibit induction of the

atrophy genes the muscle-specific E3 ubiquitin ligases,

MuRF1 (muscle RING finger protein 1) and MAFbx/atrogin-1

(muscle atrophy F box), by phosphorylating and thereby inhi-

biting the function of the forkhead box O (FOXO) family of

transcription factors(26,27).

The genetic networks mobilised in muscle following recov-

ery from fasting are likely to be dependent on nutrient avail-

ability. The experimental protocols employed to investigate

compensatory growth often involve prolonged fasting fol-

lowed by continuous refeeding with transcript abundance

monitored over several days or weeks(14,17,28,29). In contrast,

a single satiating meal design allows the evolution and

decay of transcriptional responses to nutrient input to be stu-

died with relatively high temporal resolution. Using this

approach the aim of the present study on Atlantic salmon

was to investigate the transcript abundance of muscle

growth-related genes to changes in nutrient supply. The

expression of genes involved in myogenesis (muscle regulat-

ory factors (MRF) and paired box protein 7 (Pax7)), growth

signalling (the IGF system), myofibrillar protein degradation

and synthesis pathways (the PI3K/AKT/mTOR pathway and

the muscle-specific E3 ubiquitin ligases) and metabolic

genes (CrebA) shown to be critical modulators of fish myoto-

mal muscle growth were analysed using quantitative real-time

PCR (qPCR).

Materials and methods

Experimental conditions and sampling

All experiments were approved by the Animal Welfare Com-

mittee of the University of St Andrews and fish were humanely

killed following Schedule 1 of the Animals (Scientific Pro-

cedures) Act 1986 (Home Office Code of Practice, H. M.

Stationery Office: London, January 1997).

Two homogeneous groups of Atlantic salmon (Salmo

salar L.) juveniles (average body weight 70 g) were reared in

duplicate tanks (500 litres; thirty fish per tank). Each tank

was supplied with fresh water with an average water tempera-

ture of 128C and dissolved oxygen .80 %. Fish were exposed

to an artificial photoperiod of 12 h light–12 h dark (08.00 to

20.00 hours) and provided a commercial salmon feed

(EWOS Innovation) during 3 weeks (1·5 % body weight).

Fish were then fasted for 1 week, and fed a single meal distrib-

uted to all fish to visual satiation.

Sampling of fish occurred at 212 and 0 h (before the meal),

and at 1, 3, 6, 12, 24, 48 and 96 h (following the single meal),

with seven fish sampled at each time point and individual

mass and fork lengths measured. The intestine and stomach

content was determined for each fish and photographs were

taken. Fast muscle was then dissected from the dorsal myo-

tome and snap-frozen in liquid N2. Samples were kept at

2808C until analysed.

RNA extraction and cDNA synthesis

Total RNA was extracted by the addition of 100 mg of salmon

muscle to Lysing matrix D (Qbiogene) with 1 ml TRI reagent

(Sigma) and homogenised for 40 s using a Fast Prep instru-

ment (Qbiogene). Total RNA was quantified based on absor-

bance at 260 nm using a NanoDrop spectrophotometer

(ThermoFisher Scientific) and its integrity was confirmed

by agarose gel electrophoresis on a 1·2 % gel (w/v) after

3–5 min denaturation at 658C. Genomic DNA contamination

was removed and first-strand cDNA was synthesised from

1mg total RNA with the QuantiTect reverse transcription kit

(Qiagen) following the manufacturer’s instructions.

Quantitative real-time PCR

The following procedures were performed in order to comply

with the Minimum Information for Publication of Quantitative

Real-Time PCR experiments MIQE guidelines(30).

Several muscle growth-related genes (Table 1) (IGF-I, IGF-

II, IGF-IRa, IGF-IRb, IFG-IIR, IGFBP-2·1, IGFBP-4, IGFBP-5·1,

IGFBP-5·2, IGFBP-6, IGFBP-rP1, Myogenin, MyoD1a,

MyoD1b, MyoD1c, myf5 (myogenic factor 5), MRF4 (also

known as myogenic factor 6; myf6), the E3 ubiquitin

ligases MuRF1 and MAFbx/atrogin-1, fibroblast growth

factor 2 (FGF2), CrebA, MEF2A, Pax7 and five reference

genes, HPRT1 (hypoxanthine phosphoribosyltransferase 1),

elongation factor 1-a (EF1-a), 60S ribosomal protein L13

(rpl13), 40S ribosomal protein S29 (rps29), beta-actin and

RNA polymerase II) were selected, and primers were designed

to have a melting temperature (Tm) of 608C as previously

Expression of growth-related genes 2149
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Table 1. Summary of parameters for quantitative real-time PCR (qPCR)

Gene Primer 50 –30 Product size (bp) Temperature (8C) E (%) Accession number

IGF-I f: CCTGTTCGCTAAATCTCACTTC 226 81·8 102 EF432852
r: TACAGCACATCGCACTCTTGA

IGF-II f: GGAAAACACAAGAATGAAGGTCAA 127 82·8 100 EF432854
r: CCACCAGCTCTCCTCCACATA

IGF-IRa f: GGGGCTCTCCTTCTGTCCTA 175 86·0 97·2 EU861008
r: AGAGATAGACGACGCCTCCTA

IGF-IRb f: CCTAAATCTGTAGGAGACCTGGAG 138 83·5 100 EU861006
r: GGTTAGCCACGCCAAATAGATCC

IGF-IIR f: CTTCATCCACGCTCAGCAG 168 84·4 98·95 CX325971
r: ACCCTGGGCCGTGTCTAC

IGFBP-2·1 f: CGGTGAGGAAGGCCACTAAGG 249 85·5 95 EF432858
r: ATATCACAGTTGGGGATGT

IGFBP-4 f: ACTTCCATGCCAAGCAGTGC 164 87·6 104·2 EU861007
r: GGTCCCATCCTCACTCTCTC

IGFBP-5·1 f: ATCACGGAGGACCAACTGC 169 87·1 107·1 EF432862
r: TGCTTGTCAATGGGTAGTGG

IGFBP-5·2 f: TTCTCCAGAGGAAGCTATGTTAG 170 86·6 112·6 EU861009
r: TCAAGGCTGCTGACAGAGTG

IGFBP-6 f: GCTGCGTGCCTCTTCCTCA 159 86·5 87·6 EF432864
r: TTACGGCAGGGTGCCTTTTC

IGFBP-rP1 f: GAAGTGTGTGGCTCCGATG 249 85·0 104·5 EF432866
r: GTTTTCCGCTGGTGACCTTCT

Myogenin f: GTGGAGATCCTGAGGAGTGC 146 85·3 101·1 DQ294029
r: CTCACTCGACGACGAGACC

CrebA f: GGAGTCTGTTTCGCTAAGTCG 168 85·5 100·9 CU073780
r: CGTAGGACCGCTGGATGT

FGF2 f: ATAAGCTTCAACTCCAGGCGACC 230 82·3 91 GE794494
r: AGCATTCATCTGTTGTCCGTCTC

MAFbx/atrogin-1 f: AAAGGAAGCACTAAAGAGCGTC 137 85·0 102·9 DN165813
r: CTGGGACTTGGCAATGAGC

MEF2A f: ACCGGCTACAACACCGAGTA 121 84·8 102 DY713536
r: CCTGGCCCAGTTGATGTT

MuRF1 f: AGGCGGGATCAGAGCTAAC 229 87·5 100·88 DN165465
r: CGACCATTCCAAAGTCCATC

myf5 f: CGCCATCCAGTACATCGAG 213 85·5 100·1 DQ452070
r: TCTCCAGAGCTCACATTCTTAGTAT

MyoD1a f: CCAAATAGTTCCAGACGCAAG 104 81·0 109·3 AJ557148
r: ACAGCGGGACAGGCAGAGG

MyoD1b f: CGGCGAGAACTACTACCCTATGT 172 83·0 101·25 AJ557150
r: GGCACCAGCATTTGGAGTTTC

MyoD1c f: CCCTTCGCTGGAGCACTACAACG 163 84·5 104·4 DQ317527
r: GCTTCTGGCATCAGCATTTGGAG

Pax7 f: GGAACAGTGCCTCGAATGATG 85 84·0 99·15 NM_001123695
r: GGTCCTGCATATTGTCCTTCCA

MRF4 f: CAATGACGAATCAAGAGAGAAGGC 64 80·0 100·9 DQ4799521
r: GACAGGCGAAGAAGGCTGGTGG

EF1-a f: GAATCGGCTATGCCTGGTGAC 141 85·3 102·0 BG933853
r: GGATGATGACCTGAGCGGTG

Rpl13 f: CGCTCCAAGCTCATCCTCTTCCC 79 84·3 94·6 BT043698
r: CCATCTTGAGTTCCTCCTCAGTGC

Rps29 f: GGGTCATCAGCAGCTCTATTGG 167 84·5 99·5 NM_001139600
r: AGTCCAGCTTAACAAAGCCGATG

beta-actin f: TGACCCAGATCATGTTTGAGACC 146 85·5 102·0 G933897
r: CTCGTAGATGGGTACTGTGTGGG

RNA pol II f: CCAATACATGACCAAATATGAAAGG 157 84·8 113·0 BG936649
r: ATGATGATGGGGATCTTCCTGC

HPRT1 f: CCGCCTCAAGAGCTACTGTAAT 255 81·7 99·0 EG866745
r: GTCTGGAACCTCAAACCCTATG

E, PCR efficiency; f, forward; r, reverse; IGF-I, insulin-like growth factor I; IGF-II, insulin-like growth factor II; IGF-IRa, insulin-like growth factor I receptor a; IGF-IRb,
insulin-like growth factor I receptor b; IGF-IIR, insulin-like growth factor II receptor; IGFBP-2·1, insulin-like growth factor binding protein 2 paralogue 1; IGFBP-4,
insulin-like growth factor binding protein 4; IGFBP-5·1, insulin-like growth factor binding protein 5 paralogue 1; IGFBP-5·2, insulin-like growth factor binding protein
2 paralogue 2; IGFBP-6, insulin-like growth factor binding protein 6; IGFBP-rP1, insulin-like growth factor binding protein-related protein 1; CrebA, cyclic AMP
response element binding protein; FGF2, fibroblast growth factor 2; MAFbx, muscle atrophy F box; MEF2A, myocyte enhancer factor 2A; MuRF1, muscle RING
finger protein 1; myf5, myogenic factor 5; MyoD1a, myoblast determination factor 1a; MyoD1b, myoblast determination factor 1b; MyoD1c, myoblast determination
factor 1c; Pax7, paired box protein 7; MRF4, myogenic factor 6; EF1-a, elongation factor 1-a; Rpl13, 60S ribosomal protein L13; Rps29, 40S ribosomal protein
S29; RNA pol II, RNA polymerase II; HPRT1, hypoxanthine phosphoribosyltransferase 1.
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reported by Bower et al.(14,19). Quantification of gene

expression was performed by qPCR using a Stratagene

MX3005P QPCR system (Stratagene) with SYBR Green

chemistry (Brilliant II SYBR green, Stratagene). The cDNA

were diluted 80 £ before using them as templates for the

qPCR reactions. Each qPCR reaction mixture contained 7·5ml

2 £ Brilliant II SYBR green master mix, 6ml cDNA (80-fold

dilution), 500 nM each primer and RNAse-free water to a

final volume of 15ml. Amplification was performed in dupli-

cate in ninety-six-well plates with the following thermal

cycling conditions: initial activation 958C for 10 min, followed

by forty cycles of 15 s at 958C, 30 s at 608C and 30 s at 728C.

Dissociation analysis of the PCR products was performed by

running a gradient from 60 to 958C to confirm the presence

of a single PCR product. The PCR amplification efficiency of

each primer pair was calculated using LinregPCR 2009

(http://LinRegPCR.HFRC.nl)(31).

Data analysis

Evaluation of expression stability of several potential house-

keeping genes including elongation factor 1-a (EF1-a), 60S

ribosomal protein L13, rpl13, 40S ribosomal protein S13 and

S29 (rps13 and rps29), beta-actin and RNA polymerase II

was done using the statistical application called geNorm

(http://medgen.ugent.be/, jvdesomp/genorm/)(32). Analysis

revealed both rpl13 and RNA polymerase II as the most

stable genes in this experiment. Hence, the reference gene

rpl13 was used for normalisation of qPCR data and QGene

was used for normalisation and calculation of relative

expression data(33).

All data were tested for normality and homogeneity of var-

iances by Kolmogorov–Smirnov and Bartlett tests, and then

submitted to a one-way ANOVA using STATISTICA software

(version 10; StatSoft, Inc.). When the data did not meet the

normality and/or equal variance requirements, a Kruskal–

Wallis one-way ANOVA on ranks was performed instead.

When these tests showed significance, individual means

were compared using Tukey’s honestly significant difference

test or Dunn’s test. Correlation of gene expression was ana-

lysed by the Spearman rank order correlation test. Hierarchical

clustering was performed using Cluster3 software(34).

Results

Fish mass and length ranged between 90–117 g and 20–

23 cm, respectively, and were similar among sampling points

(P,0·05). The gut content of the salmon increased signifi-

cantly 1 h after distributing the meal and remained high for

6 h (Fig. 1). These results confirm that all sampled fish had

ingested food, and the intestine was fully evacuated between

48 and 96 h after the meal.

An up-regulation of several components of the IGF system

was observed immediately after the meal. IGF-I transcripts

increased significantly 1 h after the single meal (P,0·05),

decreasing thereafter (Fig. 2). Expression of IGF-II was

significantly reduced in response to feeding (P,0·05) with

significant down-regulation observed at 3 and 6 h after

the single meal, returning to initial values after 12 h.

Expression levels of IGF-IRb (Fig. 2) and IGF-IIR did not vary

significantly in response to feeding (P.0·05), but IGF-IRa was

minimal 12 h after the single meal. Several IGFBP were detected

in fastmuscle ofAtlantic salmon (Fig. 3). IGFBP-relatedprotein 1

(IGFBP-rP1), IFGBP-2·1 and IGFBP-5·2 expression did not vary

significantly with the single meal. IGFBP-4 and IGFBP-5·1 had

increased expression 1 h after the meal administration, but

then decreased. IGFBP-6 expression decreased 12 h after the

meal, reaching maximal expression levels 48 h postprandially.

IGFBP-6 was significantly correlated with IGF-II (P,0·05).

A positive correlation was found between IGF-I, IGFBP-rP1

and IGFBP-4 expression.

Expression of MRF revealed that MRF4 and myf5 expression

were significantly correlated with the gut content of the fish

(P,0·05). These two genes were up-regulated until 3 h after

the single meal, returning to initial values 6 h after feeding

(Fig. 4), and their expression clustered together when com-

pared with other genes (Fig. 5). The three paralogues of

MyoD1 responded differently to the meal distribution. MyoD1a

showed no variation following the meal, whereas MyoD1b and

MyoD1c peaked 1h after feeding a single meal, although without

statistical significance in the case of MyoD1b. MyoD1c mRNA

expression correlated with gut content (P,0·05) and clustered

together with IGF-I (Fig. 5). Myogenin expression was not signifi-

cantly affected by feeding, although a slight decrease was

observed after feeding.

The ubiquitin ligase MAFbx/atrogin-1 mRNA levels were

significantly down-regulated until 12 h after feeding, returning
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Fig. 1. (A) Gut content (g) of fish sampled before (T–24 and T0) and several

hours (T1–T96) after feeding a single meal to satiation. Values are means

(seven fish per sample), with their standard errors represented by vertical

bars. a,b,cMean values with unlike letters were significantly different

(P,0·05). (B) Photographs of gut and intestine, which were dissected to

ensure the presence of food in the stomach and to follow their fullness during

the course of the single meal experiment. Scale bar ¼ 2 cm.
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to levels observed in fasted fish by 24 h (Fig. 4). MuRF1

expression was initially up-regulated at 1 h, before being

down-regulated at 3 and 12 h postprandially. MAFbx/atrogin-

1 expression was positively correlated (R 0·66) with IGF-II.

FGF2, CrebA and Pax7 expression was not significantly

affected by the single meal distribution.

Discussion

Nutrient availability is amongst the most important environ-

mental variable altering muscle growth. The genetic network

that is mobilised in the stimulation of myogenesis during the

transition from a catabolic to anabolic state in skeletal

muscle has not been exhaustively described, but seems to

be a nutrient-sensing pathway(12,13,15,35). The present study

was designed to explore the postprandial regulation of

growth-related genes shortly after feeding a single meal.

The effects of fasting and subsequent continuous refeeding

protocols following transcript abundance over time have been

studied in several fish species such as Atlantic salmon(14,36),

rainbow trout(17,25), Atlantic halibut(29), sea bass(28) and seab-

ream(37). However, the only study describing early transcrip-

tional changes during the postprandial period was recently

performed in zebrafish(38). The present results indicated that

a single meal affects the expression of several growth-related

genes in Atlantic salmon juveniles shortly after ingestion, con-

firming data in zebrafish(38). A 3·5-fold increase of IGF-I mRNA

expression was observed 1 h after refeeding, indicating a fast

response to nutrient availability. An increased expression of

IGF-I in fast skeletal muscle was registered 3–4 d after refeed-

ing in Atlantic salmon(19) and rainbow trout(17), and after

1 week in sea bass(28), although no earlier point was analysed.

Duan, Plisetskaya(36) also reported a significant increase in

hepatic IGF-I mRNA levels in salmon after refeeding,

suggesting an endocrine/autocrine/paracrine growth stimu-

lation of myotomal muscle induced by food intake. In myo-

genic cell culture, Atlantic salmon IGF-I mRNA levels

increase in response to IGF and amino acid stimulation. Seiliez

et al.(21) showed that in rainbow trout insulin levels peak 0·5 h

after feeding, whereas increased amino acid levels were

observed after 2·5 h. Based on this, the increased IGF-I

mRNA levels we observed 1 h postprandially are likely to be

in response to hormonal stimulation. IGF-I regulates many

anabolic pathways in skeletal muscle, stimulating cell prolifer-

ation and differentiation(39) and myocyte hypertrophy(40)

through the subsequent activation of the PI3K/AKT/mTOR

pathway and prevention of atrophy mediators(41).

IGF-I exerts its effects on cells through binding to IGF-IR.

The expression of IGF-IRa was minimal 12 h after refeeding,

whereas IGF-IRb was not significantly affected by feeding,
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which is consistent with previous results in Atlantic salmon(19).

In trout, IGF-IRa was shown to be maximal in fasted fish and

declined after refeeding, but no changes were reported in IGF-

IRb (17). Montserrat et al.(25) pointed towards a different regu-

lation of these two genes by nutritional status, with isoform a

responding to refeeding and isoform b responding to fasting.

During periods of nutrient restriction, sensitivity to IGF-I

seems to be increased in muscle by increasing the abundance

of IGF-IRa.

The expression of several IGFBP in response to a single

meal followed distinct patterns. IGFBP-rP1, IGFBP-2·1 and

IGFBP-5·2 expression did not vary significantly up to 96 h

after feeding the single meal. Although IGFBP-rP1 did not

seem to be modulated by feeding, its expression was posi-

tively correlated with that of IGF-I, confirming previous results

in Atlantic salmon(19) and trout(24). In a previous study with

salmon starved for 22 d and refed to satiation thereafter,

IGFBP-2·1 was significantly down-regulated from 14 d

onwards, which was attributed to an increased availability

of IGF-I to the IGF-I receptor(19). IGFBP-4 showed maximal

expression 1 h after feeding and like IGFBP-rP1, was

significantly correlated with IGF-I expression, suggesting a

coordinated regulation of these genes towards resumption of

myogenesis soon after refeeding. IGFBP-6 was significantly

correlated with IGF-II, but not with IGF-I. As mammalian

IGFBP-6 has a 10- to 100-fold higher affinity for IGF-II than

IGF-I(42), the present results suggest a role for Atlantic

salmon IGFBP-6 in IGF-II regulation. Amaral & Johnston(38)

pointed to lineage-specific differences in IFGBP function

and regulation among teleosts, suggested by the apparent

lack of IGFBP-4 in zebrafish, so caution is needed when com-

paring results between different fish species.

The role of IGF-II in fish metabolism is unclear, but it seems

to be implicated in the autocrine/paracrine regulation of

growth(23,25). In the present study, IGF-II mRNA expression

showed a dramatic decrease in muscle of refed salmon until

6 h after feeding, but levels were restored 12 h postprandially.

Likewise, Bower et al.(19) reported a significant decrease of

IGF-II expression in a time-dependent fashion after at least

7 d continuous feeding. Hevrøy et al.(43) reported an up-

regulation of IGF-II in the muscle of fish fed high lysine

levels, suggesting a role as an anabolic stimulatory agent. In

juvenile rainbow trout, IGF-II mRNA levels in myotomal

muscle tissue increased 34 d after refeeding(17), but in a
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different study Montserrat et al.(25) could not observe any

effect of fasting or refeeding on IGF-II mRNA expression.

These distinct responses could be due to distinct developmen-

tal stages and/or nutritional status of the fish.

The expression of several MRF has been reported to be

modulated by the nutritional status of the fish. The three

paralogues of MyoD1 responded differently to the meal distri-

bution. MyoD1a showed no variation following the meal,

whereas MyoD1b and MyoD1c peaked 1 h after feeding a

single meal. The up-regulation of MyoD1c following the

single meal was positively correlated with IGF-I. No clear

change in either MyoD isoform could be observed during

compensatory growth in trout(25), but amino acid withdrawal

led to a down-regulation of both MyoD1b and MyoD1c in

salmon myogenic cells culture, and increased levels of Pax7

mRNA, suggesting that serum and amino acid withdrawal
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leads to cell cycle arrest and the production of quiescent

cells(44).

MRF4 and myf5 showed a dramatic and simultaneous up-

regulation immediately after feeding a single meal. MRF4

and myf5 are closely linked genes that clustered together

(Fig. 5). Myf5 is the first MRF to be expressed during embryo-

nic development and is considered a specification factor that

determines the muscular lineage, whereas MRF4 functions

later and can be considered as both a specification and a

differentiation factor(45). An early peak in myf5 expression

was correlated with increased MyoD1b transcript abundance

during the maturation of an Atlantic salmon primary myogenic

cell culture(44), and so it is interesting that we see myf5 and

MyoD1b clustering together (Fig. 5). To our knowledge

there are few studies reporting the nutritional modulation of

myf5 and MRF4 in fish, but the present results point towards

a possible nutritional regulation of muscle fibre number.

Lower growth due to high dietary lipid levels in Senegalese

sole was associated with reduced expression of muscle

MRF4, but not myf5 (46).

In the present study no modulation of Pax7 or FGF2 was

observed in refeeding, although Chauvigné et al.(17) indicated

FGF2 was a critical modulator of trout myotomal muscle

growth 4 d after refeeding. Expression of the muscle-specific

gene Myogenin decreased soon after a single meal but without

statistical significance (P.0·05). Similarly, Bower et al.(19)

described a Myogenin reduction in response to feeding. In

rainbow trout, Myogenin mRNA was unchanged 4 d after

refeeding, but increased significantly after 12 d(17). However,

increased Myogenin expression was reported in trout during

feed restriction, suggesting a role in muscle maintenance(25).

The genes regulated by atrophy include the E3 ubiquitin

ligase MAFbx/atrogin-1 and MuRF1 that are up-regulated

during catabolism and atrophy and down-regulated during

fibre hypertrophy. Fasted individuals showed increased

expression of MAFbx/atrogin-1 and MuRF1 and both genes

were strongly down-regulated after feeding in Atlantic

salmon(14,47) and zebrafish(38). The present results showed

that a single meal was capable of promoting MAFbx/atrogin-1

depression, though its effect on MuRF1 was less clear. The

increased expression observed 1 h postprandially for MuRF1

at first glance is puzzling. However, it is noteworthy that

during the fasting period, fish were inactive, but became

active once feed was distributed in the tank. This sudden

increase in activity could lead to depletions in muscle glucose

reserves, leading to metabolic stress in the muscle, and MuRF1

is known to regulate responses to metabolic stress in muscle

of mice(48). MAFbx/atrogin-1 is regulated by both IGF

signalling and amino acid availability(47), and the expression

patterns we observed following a single meal is consistent

with this. In trout, circulating amino acids remained high

from 2·5 to 12 h following feeding and returned to those of

a fasted state by 24 h(21) and the expression profile we obser-

ved for MAFbx/atrogin-1 is inversely proportional to this.

The decrease in MAFbx/atrogin-1 expression (within 1 h)

suggests that hormonal stimulation of the AKT/mTOR pathway
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postprandial times (224 to 96 h). Yellow and blue shading represents the maximal (Max) and lowest (Min) transcript abundance, respectively. IGFBP-2·1, insulin-

like growth factor binding protein 2 paralogue 1; IGFBP-5·1, insulin-like growth factor binding protein 5 paralogue 1; IGF-II, insulin-like growth factor II; MEF2A,
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growth factor I receptor b; IGFBP-rP1, insulin-like growth factor binding protein-related protein 1; IGFBP-4, insulin-like growth factor binding protein 4; Pax7, paired
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via endocrine signalling or through local production of IGF-I is

responsible for this rapid transcriptional response that could

result in increased protein synthesis. Recent findings demon-

strated that MAFbx/atrogin-1 contributed to muscle wasting

by down-regulating protein synthesis whereas MuRF1 is

mostly involved in the breakdown of myofibrillar proteins(49).

In conclusion, the present results show that the transcription

of several growth-related genes in the fast skeletal muscle of

Atlantic salmon responds quickly to a single meal. In

muscle, our observations indicate that refeeding induced a

coordinated regulation of several genes involved in a strong

resumption of myogenesis with feeding. IGF-I, MyoD1c,

MRF4 and myf5 transcripts in muscle were sharply up-regu-

lated in response to refeeding, being promising candidate

genes involved in a cellular-level signalling system that regu-

lates fish myotomal muscle growth. It is also suggested that

local production of IGF-I within the muscle might suppress

catabolic pathways depressing MAFbx/atrogin-1.
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