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Equations to describe gas production profiles, obtained using manual or automated systems forin
vitro fermentation of ruminant feeds, were derived from first principles by considering a simple
three-pool scheme. The pools represented were the potentially degradable and undegradable feed
fractions, and accumulated gases. The equations derived and investigated mathematically were
the generalized Mitscherlich, generalized Michaelis–Menten, Gompertz, and logistic. They were
obtained by allowing the fractional rate of degradation to vary with time. The equations permit
the extent of ruminal degradation (hence the supply of microbial protein to the duodenum) to be
evaluated, thus linking the gas production technique to animal production.

Rumen: Gas production: Mathematical models

The development of new gas production methods
(Theodorouet al. 1994) and the automation of existing
ones (Beuvinket al. 1992) have led to the urgent need for
suitable mathematical models to describe and interpret
cumulative gas production profiles. These profiles vary in
shape from steep diminishing returns to highly sigmoidal,
thereby creating a difficulty in the choice of an appropriate
model. The slope of the profile tends to be zero in the early
stage of fermentation, as there is little or no gas production,
giving rise to a lag phase. Thereafter, a steady increase is
observed until substrate depletion causes the profile to
approach an upper asymptote. Ideally, a function is required
which is capable of modelling both a range of shapes with
no inflexion point and a range of sigmoidal shapes in which
the inflexion point is variable.

Several models, e.g. Mitscherlich, Michaelis–Menten
and Gompertz equations, have been proposed for this
purpose (Krishnamoorthyet al. 1991; Merry et al. 1991;
Franceet al. 1993; Beuvink & Kogut, 1993; Blu¨mmel &
Orskov, 1993; Schofieldet al. 1994; Grootet al. 1996),
sometimes blending empiricism with a more mechanistic
view based on a compartmental scheme. However, there
appears to be a lack of appreciation of the relationship of the
various models to each other and to more general models.

Crucially, the models generally fail to establish the link
between gas productionin vitro and extent of degradation in
the rumen.

The objectives of the present paper are to present a
unifying analysis of this area, pointing out compartmental
interpretations of some of the candidate models, and to link
the gas production technique to animal performance by
deriving an expression for the extent of ruminal degradation
for each model. The models are presented under the
headings of the generalized Mitscherlich, generalized
Michaelis–Menten, and standard growth functions. Mathe-
matically, the approach adopted is to provide a diagram
relevant to each model, translate the diagram to mathe-
matics, solve the mathematics, and illustrate the resultant
algebraic solution. The models derived herein have been
evaluated in a companion paper by fitting them to gas
production profiles obtained using a diverse range of
ruminant feeds (Dhanoaet al. 2000).

Generalized Mitscherlich

Although aspects of the derivation presented in this section
have been reported previously (Franceet al. 1993), the
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complete analysis is given hereab initio in an attempt to
establish a framework for considering the other models.

Consider an amount (g DM) of a particular feed or feed
component, such as plant leaf, plant stem or total organic
matter (OM), placed in a culture bottle at time zero, and let
the component comprise a degradable fraction S and an
undegradable fraction U. Degradation occurs at a fractional
ratem (/h) and a discrete lag T (h) is assumed to occur before
degradation commences. The three-pool scheme is shown in
Fig. 1. The dynamic behaviour of the two feed-component
fractions (both pools in g) is described by the differential
equations:

dS=dt 5 0; 0 < t , T ð1aÞ

5 2 mS; t > T; ð1bÞ
and

dU=dt ¼ 0; t > 0: (2)

In this case the fractional rate of degradationm is
postulated to vary with time t as follows:

m 5 b1 c=ð2Î tÞ; t > T; (3)

where b (/h) and c (h−1/2) are constants. The conditions b> 0,
c> −2bÎ T have to be satisfied asm cannot be negative.
Equation 3 permits the fractional degradation rate to remain
constant, or to decline or increase asymptotically with time.
It is possible to provide a tentative interpretation of equation
3 (Franceet al. 1996). Many diffusion processes exhibit a
square root time dependence. For instance, the distance
diffused in time t is Î ð4DtÞ, where D is the diffusion
constant. The diffusion of a growth activator into a growth-
producing region, after a lag time, (and by analogy the
degradation by microbial enzymes of plant cell-wall material
in the rumen) could lead to an activation equation similar
to 3.

On substituting form using equation 3 and integrating,
equations 1 and 2 yield:

S5 S0; 0 < t , T ð4aÞ

5 S0e2 ½bðt 2 TÞ 1 cðÎ t 2 Î TÞÿ; t > T; ð4bÞ
and

U 5 U0; t > 0; (5)

where S0 and U0 are the zero-time quantities of the degrad-
able and undegradable fractions of the feed component
respectively.

If the rate of gas production in the culture bottle is
assumed to be directly proportional to the rate of

degradation of feed component, then:

dG=dt5 ¹ YdS=dt; (6)

where G (ml) denotes total gas accumulation to time t and Y
(ml/g degradable DM) is a constant yield factor. The
negative sign is introduced into equation 6 because G and
S vary in opposite senses, in that G accumulates as S
depletes. Using equation 1b to substitute for dS/dt in
equation 6 then differentiating leads to:

d2G=dt2 5 YSðdm=dt2 m2Þ; t > T: (7)

A point of inflexion exists when d2G/dt2 equals zero, i.e.

dm=dt5 m2: (8)

Total gas accumulation to time t is given by integrating
equation 6:

G5 YðS0 2 SÞ: (9)

Using equation 4b to substitute for S gives a generalization
of the Mitscherlich:

G5 YS0{1 2 e2 ½bðt 2 TÞ 1 cðÎ t 2 Î TÞÿ} ; t > T: (10)

A range of values of c is considered in Fig. 2 which shows
the general behaviour of this cumulative gas production
equation, whose form can give rise to a variable inflexion
point (Franceet al. 1996).

A point of inflexion exists if:

2 c=ð4Î T3Þ > ½b1 c=ð2Î TÞÿ2 (11)

The condition is obtained from equation 8 using equation 3
for m. This leads to:

Î ð 2 cÞ > { Î ½1=ð2Î TÞ 1 4bÎ Tÿ 2 1=ðÎ 2T1=4Þ} =Î 2; (12)

which, for the parameter values used in Fig. 2, gives
−0⋅6< c< −0⋅29 for an inflexion point. Thus, in Fig. 2,
−0⋅6< c< −0⋅29 gives sigmoidal accumulation, whereas
−0⋅29, c, ` gives non-sigmoidal accumulation. The
values −0⋅6 and −0⋅29 are not invariant, but vary with
the choice of the other parameters. The inflexion points
for the curves shown in Fig. 2 occur at 22⋅8 and 23⋅7 h for c
equals−0⋅6 and−0⋅4/h−1/2 respectively. Equation 12 shows
there is no inflexion point for positive c.

144 J. Franceet al.

Fig. 1. The three-pool scheme for feed degradation. The pools are:
degradable substrate S (g), undegradable substrate U (g) and
accumulated gases G (ml). The fractional degradation rate m (/ h)
varies over time and a discrete lag is assumed to occur before
degradation commences.

Fig. 2. The range of behaviour of the generalized Mitscherlich
model with Y =500 ml/g, S0 =0⋅6 g, b =0⋅1/h and T =9 h. The units
of c are /h−1/2. (——), c = −0⋅60; (- - - -), c = −0⋅40; (– – –), c = −0⋅10;
(– ⋅ – ⋅ ), c =0⋅10; (– ⋅ ⋅ –), c =0⋅50.
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We define tp (h) as the time (from incubation) needed for
proportion p of the degradable fraction S0 to disappear (i.e.
be degraded). Equation 4b can be re-arranged to give:

bt1 cÎ t 2 ½bT1 cÎ T 2 lnðS=S0Þÿ 5 0: (13)

The p-time calculation is obtained from the root of this
equation and given by:

tp 5 ½ð 2 c=21 Î {c2=41 b½bT1 cÎ T 2 lnð12 pÞÿ} Þ=bÿ2

(14)

for positive b (the other root leads to biologically inadmis-
sible p-time values). The value of tp will always exceed the
lag T. Now p may have any value in the range 0–100 using a
percentage scale. For comparison of different feeds based on
gas pool size, a value consistent with the recording period is
desirable. The time, t95, taken for gas accumulation to reach
95 % of its asymptotic value may provide such an index (say
G95) that can be used to rank different substrates. Another
useful value is t50, the half-life of the degradable fraction. The
half-lives for the curves illustrated in Fig. 2 are 31⋅7, 23⋅2,
17⋅1, 15⋅1 and 12⋅9 h for c equal to−0⋅6, −0⋅4, −0⋅1,
0⋅1 and 0⋅5/h−1/2 respectively. Some workers may prefer
to use other values, e.g. t25, t75 or the difference t75− t25.

In the rumen proper, feed is subjected to passage and thus
the dynamics of the two feed-component fractions obey the
following differential equations:

dS=dt 5 2 kS; 0 < t , T ð15aÞ

5 2 ðm 1 kÞS; t > T; ð15bÞ

and
dU=dt5 2 kU; t > 0 (16)

where k (/ h) is the passage rate constant. On using equation
3 to substitute form, their solution is:

S5 S0e2 kt; 0 < t , T ð17aÞ

5 S0e2 ½ðb1 kÞðt 2 TÞ 1 cðÎ t 2 Î TÞ 1 kTÿ; t > T; ð17bÞ

and

U 5 U0e2 kt; t > 0: (18)

The extent of degradation in the rumen is given by the
equation:

E5

Z `

T
mSdt=ðS0 1 U0Þ: (19)

The instantaneous rate of degradation in the rumen at time t
(.T) is mS, so the total amount degraded will be the integral
over all this time, and the extent of degradation is defined as
the total amount degraded divided by the amount entering,
which gives equation 19. Using equations 3 and 17b to
substitute form and S respectively in equation 19, then:

E5 S0I=ðS0 1 U0Þ; (20)

where:

I 5

Z `

T
½b1 c=ð2Î tÞÿe2 ½ðb1 kÞðt 2 TÞ 1 cðÎ t 2 Î TÞ 1 kTÿdt: (21)

The integral I is non-analytical (i.e. cannot be integrated to
yield an algebraic equation) and has to be evaluated
numerically. Obviously, E and I are dimensionless.

Thus, values of S0 and U0 (obtained from the gas
production technique by measuring the zero-time degrad-
able and undegradable fractions), and estimates of b, c, and
T (obtained by fitting equation 10 to the cumulative gas
production data), used in conjunction with an estimate of the
rate of passage k (obtained using digesta-flow markers and
either faecal or ruminal sampling), permit evaluation of the
extent of ruminal degradation of a feed or feed component
by applying equations 20 and 21 (Dhanoaet al. 2000). The
yield factor Y can also be obtained from fitting equation 10
given S0.

Special case

If the fractional degradation ratem is constant then para-
meter c is zero,m equals b, and the gas production equation
becomes:

G5 YS0½12 e2 mðt 2 TÞÿ; t > T: (22)

Equation 22 is an example of the well-known Mitscherlich
function which has enjoyed widespread usage amongst
ruminant nutritionists in the analysis ofin situ digestion
data (Ørskov & McDonald, 1979). A range of values form is
shown in Fig. 3 which illustrates the general behaviour of
this equation. The rate of accumulation decreases continu-
ally and there is no point of inflexion. This can be seen from
the second differential (equation 7), which can only be zero
when S is exhausted asm is a positive constant.

For this special case (c=0, m =b), the integral I (equation
21) is analytical. Integrating equation 21 gives:

E5 S0e2 kTm=½ðm 1 kÞðS0 1 U0Þÿ: (23)

Thus the extent of degradation in the rumen can now be
evaluated using a simple algebraic expression.

Generalized Michaelis–Menten

The scheme is shown in Fig. 1. In this case the fractional
degradation ratem varies with time t as:

m 5 cðt 2 TÞc2 1=½ðt 2 TÞc 1 Kcÿ; t > T; (24)
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Fig. 3. The range of behaviour of the simple Mitscherlich model
with Y =500 ml/g, S0 =0⋅6 g, and T =9 h. The units of m are /h.
(——), m =0⋅50; (- - - -), m =0⋅10; (– – –), m =0⋅05; (– ⋅ – ⋅ ), m =0⋅02;
(– - - –), m =0⋅01.
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where c (dimensionless) and K (h) are positive constants.
The conditions c. 0, K . 0 have to be satisfied asm cannot
be negative. K is the time after lag time T when half the
amount of substrate is degraded (equation 25b). Equation 24
permits the fractional degradation rate to decrease continu-
ally (c< 1), or to increase to reach a maximum and then
decrease again (c. 1).

The dynamics of the two feed-component fractions are
given by equations 1 and 2. On substituting form using
equation 24 and integrating, equations 1 and 2 now yield:

S5 S0; 0 < t , T ð25aÞ

5 S0Kc=½ðt 2 TÞc 1 Kcÿ; t > T; ð25bÞ
and

U 5 U0; t > 0: (26)

Equation 9 applies, assuming the rate of gas production is
directly proportional to the rate of degradation of feed
component, giving:

G5 YS0ðt 2 TÞc=½ðt 2 TÞc 1 Kcÿ; t > T: (27)

A range of values of c is illustrated in Fig. 4 that shows the
general behaviour of this equation, which has a variable
point of inflexion when c. 1.

The point of inflexion satisfies equation 8 which yields
the condition:

ðc2 1ÞKc 2 ðc1 1Þðt 2 TÞc 5 0: (28)

If the point of inflexion occurs at time t* (.T), then t* is
given by:

t¬ 5 T 1 K½ðc2 1Þ=ðc1 1Þÿ1=c; c . 1: (29)

The inflexion points for the curves shown in Fig. 4 occur at
23⋅4, 32⋅1 and 33⋅5 h for c equals 2, 5 and 10 respectively.
The time from incubation needed for proportion p of S0 to
disappear is found using equation 25b and is:

tp 5 T 1 K½p=ð12 pÞÿ1=c: (30)

The half-lives for the curves in Fig. 4 are all 34⋅0 h.
In the rumen, where feed is also subject to passage, the

two feed-component fractions obey differential equations

15 and 16. Using equation 24 to substitute form, their
solution is:

S5 S0e2 kt; 0 < t , T ð31aÞ

5 S0Kce2 kt=½ðt 2 TÞc 1 Kcÿ; t > T; ð31bÞ
and

U 5 U0e2 kt; t > 0: (32)

The extent of degradation in the rumen is given by equations
19 and 20 with:

I 5 cKc
Z `

T
{ ðt 2 TÞc¹1e2 kt=½ðt 2 TÞc 1 Kcÿ2}dt : (33)

Again, the integral I is non-analytical and has to be
evaluated numerically.

Special case

In this case the parameter c equals 1 so the fractional
degradation rate varies with time t as follows:

m 5 1=ðt 2 T 1 KÞ; t > T; (34)

where K (.0) is the inverse ofmmax. The gas production
equation becomes:

G5 YS0ðt 2 TÞ=ðt 2 T 1 KÞ; t > T: (35)

Equation 35 is a rectangular hyperbola and, with T equals
zero, is in the form of the well-known Michaelis–Menten
equation of enzyme kinetics. A range of values of K is
shown in Fig. 5 which illustrates the general behaviour of
this equation. The rate of accumulation decreases con-
tinually and there is no point of inflexion. This can be
seen from the second differential d2G/dt2 which is only zero
for t → `.

The extent of degradation in the rumen is given by
equations 19 and 20 with, in this case:

I 5 K
Z `

T
½e2 kt=ðt 2 T 1 KÞ2ÿdt: (36)

This integral is also non-analytical and has to be evaluated
numerically.
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Fig. 4. The range of behaviour of the generalized Michaelis–
Menten model with Y =500 ml/g, S0 =0⋅6 g, K =25 h and T =9 h.
The parameter c is dimensionless. (——), c =0⋅5; (- - - -), c =1;
(– – –), c =2; (– ⋅ – ), c =5; (– - - –), c =10.

Fig. 5. The range of behaviour of the simple Michaelis–Menten
model with Y =500 ml/g, S0 =0⋅6 g and T =9 h. The units of K are h.
(——), K =1; (- - - -), K =5; (– – –), K =10; (– ⋅ – ), K =20; (– ⋅ ⋅ –),
K =50.
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Standard growth functions

Gompertz

The scheme is shown in Fig. 1. In this case the fractional
degradation ratem varies with time t as:

m 5 becðt 2 TÞ; t > T; (37)

where b and c (both /h) are constants. The restriction b. 0
has to be satisfied asm cannot be negative and, as explained
after equation 38b, the restriction c> 0 also has to be
satisfied. Equation 37 permits the fractional degradation
rate to remain constant or increase exponentially with time.

Equations 1 and 2 give the dynamics of the two feed-
component fractions. On substituting form using equation
37 and integrating, these yield:

S5 S0;0 < t , T ð38aÞ

5 S0exp½ 2 bðecðt 2 TÞ 2 1Þ=cÿ; t > T; ð38bÞ
and

U 5 U0; t > 0: (39)

It is evident from an inspection of equation 38b that c (>0)
cannot be negative, because S must be zero at infinite time.
Equation 9 applies, assuming direct proportionality between
the rate of gas production and the rate of degradation of
feed, giving:

G5 YS0{1 2 exp½¹bðecðt 2 TÞ 2 1Þ=cÿ} ; t > T: (40)

The behaviour of this cumulative gas equation is illustrated
in Fig. 6 using a range of values for c.

A variable point of inflexion exists, provided c is greater
than b, and occurs at time:

t¬ 5 T 1 c2 1lnðc=bÞ: (41)

The time t* (h) is determined using equation 8, and at this
time m equals c. The t* values for the curves illustrated in
Fig. 6 are 41⋅2, 32⋅0, 24⋅0 and 18⋅2 h for c equals 0⋅05, 0⋅10,
0⋅20 and 0⋅40/h respectively. The time tp, that is needed for
proportion p of the degradable fraction S0 to disappear, is
found using equation 38b which gives:

tp 5 T 1 c2 1ln{ ½b2 clnð12 pÞÿ=b} : (42)

The t50 values for the curves in Fig. 6 are 61⋅7, 38⋅9, 29⋅7,
22⋅5 and 17⋅4 h for c equals 0⋅01, 0⋅05, 0⋅10, 0⋅20 and 0⋅40/h
respectively.

In the rumen, where feed is also subject to passage, the
two feed-component fractions obey differential equations
15 and 16. Using equation 37 to substitute form, their
solution is:

S5 S0e2 kt; 0 < t , T ð43aÞ

5 S0exp½¹bðecðt 2 TÞ 2 1Þ=c2 ktÿ; t > T; ð43bÞ

and

U 5 U0e2 kt; t > 0: (44)

The expressions for extent of ruminal degradation are
equations 19 and 20 with:

I 5 b
Z `

T
exp½¹bðecðt 2 TÞ 2 1Þ=c1 ðc2 kÞt 2 cTÿdt: (45)

This integral is also non-analytical and has to be evaluated
numerically.

Logistic

Again, the scheme is shown in Fig. 1. In this case, the
fractional degradation ratem varies with substrate S rather
than explicitly with time:

m 5 bðK 2 SÞ; t > T; (46)

where b. 0 (g DM/h) and K> S0 (g DM) are constants.
The term (K− S) can be interpreted as a temporal indicator
of microbial activity per unit of feed.

The dynamics of the two feed-component fractions are
once again given by equations 1 and 2. On substituting form
using equation 46 and integrating, these equations now
yield:

S5 S0; 0 < t , T ð47aÞ

5 KS0=½S0 1 ðK 2 S0Þe
bKðt 2 TÞÿ; t > T; ð47bÞ

and
U 5 U0; t > 0: (48)

Equation 9 applies, assuming the rate of gas production is
directly proportional to the rate of degradation of feed
component, giving:

G5 YS0{ ð12 e2 bKðt 2 TÞÞ

4 ð11 ½S0=ðK 2 S0Þÿe
2 bKðt 2 TÞÞ} ; t > T: (49)

The behaviour of this gas equation is illustrated in Fig. 7
using a range of values for b.

Provided K is less than 2S0, a variable point of inflexion
occurs when S falls to K/2, i.e. at time:

t¬ 5 T 1 ðbKÞ2 1ln½S0=ðK 2 S0Þÿ: (50)

The inflexion point occurring at S equals K/2 can be
ascertained from equation 8. The t* values for the curves
shown in Fig. 7 are 60⋅2, 34⋅6, 26⋅1, 19⋅2 and 14⋅1 h for b
equals 0⋅05, 0⋅10, 0⋅15, 0⋅25 and 0⋅50 g DM/h respectively.
The time needed for proportion p of the degradable fraction

147Models to describe gas production profiles

Fig. 6. The general behaviour of the Gompertz model with Y =
500 ml/g, S0 =0⋅6 g, b =0⋅01/h and T =9 h. The units of c are /h.
(——), c =0⋅40; (- - - -), c =0⋅20; (– – –), c =0⋅10; (– ⋅ – ), c =0⋅05;
(– - - –), c =0⋅01.
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S0 to disappear, tp, is found from equation 47b:

tp 5 T 1 ðbKÞ2 1ln{ ½K=ð12 pÞ 2 S0ÿ=ðK 2 S0Þ} : (51)

The t50 values for the curves shown in Fig. 7 are 68⋅4, 38⋅7,
28⋅8, 20⋅9 and 14⋅9 h for b equals 0⋅05, 0⋅10, 0⋅15, 0⋅25 and
0⋅50 g DM/h respectively.

In the rumen, the two feed-component fractions obey
differential equations 15 and 16. Using equation 46 to
substitute form, their solution is now:

S5 S0e2 kt; 0 < t , T ð52aÞ

5 vS0e2 kT=½S0e2 kT 1 ðv 2 S0e2 kTÞebvðt 2 TÞÿ; t > T;

ð52bÞ
and

U 5 U0e2 kt; t > 0; (53)

where v denotes K+k/b. The expressions for extent of
ruminal degradation are equations 19 and 20 with:

I 5 bS2 1
0

Z `

T
ðK 2 SÞSdt: (54)

On replacing S using equation 52b, this integral is non-
analytical and has to be evaluated numerically.

Discussion

In the present study, it was decided to construct different
models of gas production based on the potentially degrad-
able substrate (S) and its fractional degradation rate (m). Not
only does such a representation allow a proper comparison
of the assumptions made in each model, but it also permits
the extent of degradation in the rumen (E) (and hence
microbial protein supply) to be calculated, thus providing
an index of the nutritive value of feeds for animal produc-
tion. Introducing further complexity into the representation
by, for example, adding a microbial pool, would lead to
either no analytical solution to the model or an over-
parameterized gas production equation. Most published
models developed to analyse gas production profiles are
based on the amount of gas produced rather than on the
amount of substrate degraded, thus failing to link the gas

production technique to animal performance (Krishna-
moorthyet al. 1991; Beuvink & Kogut, 1993; Blu¨mmel &
Ørskov, 1993; Schofieldet al. 1994; Grootet al. 1996).

The simple Mitscherlich function (equation 22) was
among the first to be applied to cumulative gas production
data (Krisnamoorthyet al. 1991; Blümmel & Ørskov,
1993). This equation assumes that degradation occurs at a
constant fractional ratem after a discrete time lag T. Thus,
the rate of gas accumulation decreases continually and there
is no point of inflexion. In applying the simple Mitscherlich,
several research groups have included a parametera
denoting the immediately soluble material when applied
to in saccodata, or the initial amount of gas produced when
applied to gas production data (e.g. Blu¨mmel & Ørskov,
1993; Khazaalet al. 1993, 1994). Khazaalet al. (1993,
1994) frequently calculated negative values ofa, implying a
negative initial gas volume. Yet initial gas volumes at the
start of incubation should be zero, and in most experimental
systems this is achieved by regulating the pressure in the
incubation vessels before data are recorded. Thus, the gas
production curve starts at zero volume, as in the present
representation of the simple Mitscherlich (equation 22).
Indeed, this representation of the simple Mitscherlich was
applied by Krisnamoorthyet al. (1991, 1995).

Following automation of extant systems and development
of new ones (Beuvinket al. 1992; Pell & Schofield, 1993;
Theodorouet al.1994), it became apparent that cumulative
gas production profiles varied in shape from steep diminish-
ing returns to highly sigmoidal, and equation forms without
a point of inflexion would no longer be appropriate in many
cases. Franceet al. (1993) proposed a generalization of the
Mitscherlich model (equation 10) to accommodate either
sigmoidal or non-sigmoidal shapes. The fractional degrada-
tion ratem can increase or decrease to an asymptote with this
equation. This may reflect the increase in substrate acces-
sibility due to hydration of particles, microbial attachment,
and increase in microbial numbers after a lag time
(McAllister et al. 1994). This generalization of the
Mitscherlich model has been applied to gas production
data from fermentation of roughages with mixed rumen
micro-organisms or with single species (Theodorouet al.
1994, 1995; Williamset al.1995, 1996; Sileshiet al.1996).
However, the assumption thatm approaches an asymptote is
not unequivocal. Local build-up of fermentation end-
products, reduced availability of essential growth factors,
and the imposition of chemical and structural restrictions,
are all potential factors which could give rise to a reduced
fractional degradation rate as degradation proceeds
(Chesson, 1988; Wilson, 1993).

Schofieldet al. (1994) proposed Gompertz and logistic
equations to describe gas production data and compared
these with exponential and simple Mitscherlich equations.
Their derivations of the Gompertz and logistic equations
differ from ours, as they start from the amount of gas
produced. In their derivations, the amount of gas produced
depends amongst other things on the amount of microbial
biomass present. Microbial growth yield is assumed to be
constant throughout incubation. Whilst microbial growth
yield will be constant in steady-state situations and during
the exponential phase in batch cultures (Pirt, 1975), this
assumption is unlikely to be valid for the gas production
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Fig. 7. The general behaviour of the logistic model with Y =
500 ml/g, S0 =0⋅6 g, K =0⋅07 g and T =9 h. The units of b are g/h.
(——), b =0⋅50; (- - - -), b =0⋅25; (– – –), b =0⋅15; (– ⋅ – ), b =0⋅10;
(– - - –), b =0⋅05.

https://doi.org/10.1017/S0007114500000180  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114500000180


technique. The Pirt (1975) double reciprocal equation
relates efficiency to fractional growth rate of micro-
organisms and their non-growth requirements (main-
tenance), assuming that micro-organisms can utilize sub-
strates for growth only when non-growth requirements have
been satisfied. After the inflexion point, the rate of substrate
degradation is reduced and microbial non-growth require-
ments form a larger part of the substrate utilized per unit
time, reducing the fractional growth rate and consequently
reducing microbial yield. Moreover, microbial growth yield
will vary with such factors as microbial species present, pH
of the medium, and availability of N substrates (Dijkstra &
France 1996), and these factors might change in the course
of incubation. In our derivation of the Gompertz and logistic
equations (equations 40 and 49 respectively),m is assumed
to increase with time. This increase can be interpreted as an
increase in microbial activity per unit feed, but it does not
involve any assumptions on the constancy of the microbial
growth yield. Schofieldet al. (1994) selected the logistic
equation to describe gas production curves and applied this
equation to describe them for several roughages and for
the fibre and non-fibre fractions of roughages (Schofield &
Pell, 1995a,b). As with certain applications of the simple
Mitscherlich model, an initial gas volume unavoidably
arises with application of the Gompertz and logistic
equations as given by Schofieldet al. (1994), introducing
an inherent error as gas volume at zero time should be nil.
Note that our Gompertz equation is equivalent to the
simple Mitscherlich equation when parameter c equals
zero.

Groot et al. (1996) proposed a modified Michaelis–
Menten equation without formal derivation to describe gas
production curves, and this equation has been applied by
Cone et al. (1996). In our derivation of a generalized
Michaelis–Menten (equation 27), the fractional degradation
rate m either decreases continuously (c< 1), or increases
first and decreases later during fermentation (c. 1). Again,
an initial increase inm reflects an increase in substrate
accessibility due to hydration of particles, microbial attach-
ment and increase in microbial numbers, whilst the decrease
might reflect the imposition of chemical and structural
restrictions. Thus, compared with our other gas production
models, the assumptions concerningm are more flexible.

The modified Michaelis–Menten equation has often been
extended for multiphasic analysis, assuming that each single
phase describes the gas produced by different components
of the feedstuff. The number of phases included in a number
of applications was two or three (Coneet al. 1996; Groot
et al.1996). Similarly, the logistic and Gompertz equations
have been used multiphasically (Schofieldet al. 1994;
Schofield & Pell, 1995a,b). In general, the robustness of
an equation declined when the number of phases was
increased, which is an inherent characteristic of these non-
linear models. In the present analysis only single-pool
characterization of the potentially degradable fraction was
considered. For multiple-pool characterization, total gas
produced is obtained by simply summing over all the
pools of degradable material, so the models derived in the
present analysis can be used additively for multiphasic
analysis without affecting the basic assumptions inherent
in their derivations.

Not all gas production equations have been applied with a
fixed lag phase before fermentation starts. Factors which
affect the presence and length of a lag include the nature of
the substrate incubated, the microbial species inoculated,
and the amount of inoculum added (Franceet al.1993; Pell
& Schofield, 1993; Coneet al. 1996). In fitting the present
models the lag phase can simply be deleted from the
equation if it does not significantly improve the fit of the
curve, except in the case of the generalized Mitscherlich
where a lag, albeit small, is needed to prevent a mathema-
tical discontinuity inm at zero time. There seems little to
choose between the present models biologically and mathe-
matically, so choice of best model should be made on the
basis of fitting criteria (see Dhanoaet al. 2000).
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