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Abstract. A new decomposition, the mutually aposyndetic decomposition of homogeneous continua

into closed, homogeneous sets is introduced. This decomposition is respected by homeomorphisms

and topologically unique. Its quotient is a mutually aposyndetic homogeneous continuum, and in

all known examples, as well as in some general cases, the members of the decomposition are semi-

indecomposable continua. As applications, we show that hereditarily decomposable homogeneous

continua and path connected homogeneous continua are mutually aposyndetic. A class of new exam-

ples of homogeneous continua is defined. The mutually aposyndetic decomposition of each of these

continua is non-trivial and different from Jones’ aposyndetic decomposition.

Given a category C of objects, and two properties P0 and P1 representing opposite

extremes of the same spectrum, in various areas of mathematics we find theorems

affirming that an object in C admits a unique (minimal or maximal) decomposition

into subspaces (hyperspaces, co-sets, etc.) having property P0 such that the quotient

object, that is, the image under quotient morphism, has the property P1. These

theorems tend to be important but rare, because they provide fundamental structural

information about the objects with respect to the particular spectrum of properties.

For instance, in topology the most fundamental decomposition of this type would be

the decomposition into (connected) components with totally disconnected quotient.

In this study we present a new decomposition of this type in an intriguing class

of topological spaces, the class of homogeneous continua. Homogeneous continua

naturally generalize the two following important classes of spaces: closed connected

manifolds, and compact connected topological groups. The significance of this class

was noticed as early as the 1920’s. Progress in understanding these spaces and finding

new examples has been slow. However, persistent efforts in this direction have been

rewarded with occasional unexpected turns and spectacular breakthroughs.

Jones’ aposyndetic decomposition theorem [12], a remarkable decomposition of

the type discussed above, is one of these breakthroughs. It corresponds to the oppo-

site extremes of being an aposyndetic continuum and indecomposable continuum.

It asserts that each homogeneous continuum has a unique minimal decomposition

into indecomposable homogeneous continua such that the quotient is an aposynde-

tic homogeneous continuum. Much more is now known about this decomposition,
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as it has been a subject of study for over fifty years (see [22, 23, 25] for later improve-

ments by James Rogers). One of the most spectacular outcomes of this theorem was

an early theoretical prediction that a space now called the circle of pseudo-arcs might

exist. Shortly afterwards, this prediction was followed by actual construction of the

circle of pseudo-arcs [4], adding a new surprising example of a homogeneous plane

continuum. Decades later many more examples of this type were defined [14]. Jones’

theorem is an excellent example of a mathematical discovery coming from the study

of seemingly simple set-theoretical ideas, yet leading to deep results reaching far be-

yond our usual intuition.

Investigating homogeneous continua by studying their filament and ample sub-

continua, I was surprised to realize there is yet another decomposition of these spaces,

one of the type described in the beginning of the paper. I call it the mutually aposyn-

detic decomposition. It corresponds to the opposite extremes of being mutually apo-

syndetic and semi-indecomposable. These properties were introduced and studied

in the late 1960’s by Charles Hagopian [8]. This paper is devoted to the study of the

mutually aposyndetic decomposition. First, we investigate its general properties in a

larger class of Kelley continua. Next, narrowing down the class of spaces to homoge-

neous continua, we obtain stronger basic properties of this decomposition. As appli-

cations, we prove that hereditarily decomposable homogeneous continua and path

connected homogeneous continua are mutually aposyndetic. Finally, we give non-

trivial examples of the mutually aposyndetic decomposition. Some of them coincide

with the aposyndetic decomposition; however we also show that many examples exist

that are different from the aposyndetic decomposition. This article initiates the re-

search of mutually aposyndetic decompositions of homogeneous continua. Though

we do not know how deep this research can go, what we have learned so far seems to

be very promising.

1 Preliminaries

All spaces are assumed to be metric. If K is a subset of X, a neighborhood of K is

any subset of X containing K in its interior. A continuum is a compact, connected,

nonempty metric space, and a curve is a 1-dimensional continuum. If X is a space,

C(X) is the hyperspace of subcontinua of X equipped with the Hausdorff metric. If

f : X → X is a map, we define d̃( f ) = sup{d(x, f (x)) | x ∈ X}. A map f : X → Y is

said to be confluent if for every continuum K ⊂ Y and every component C of f −1(K)

we have f (C) = K . It is known that open maps between continua are confluent.

The following concepts were introduced in [18] and further studied in [19–21]. If

X is a space, a subcontinuum K is called a filament continuum (in X) provided there

exists a neighborhood N of K such that the component of N containing K has empty

interior. A set S ⊂ X is called a filament set provided every continuum contaik

A space X is called a Kelley space1 if whenever a sequence {xn} ⊂ X converges

to a point x ∈ X and x belongs to a subcontinuum K of X, there are continua Kn

converging to K in C(X) such that xn ∈ Kn for each n [13].

1Historically the name has varied. It was originally called a space with property 3.2 in [13], and later
also a space with the property of Kelley and a space with property [k].
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The following fact, which is fundamental to the study of filament and ample con-

tinua, was established in [18, Proposition 2.3].

Proposition 1.1 Every subcontinuum of a Kelley continuum X is either filament or

ample. In particular, if a continuum Y in X contains a subcontinuum that is ample in

X, then Y is ample in X.

Every homogeneous continuum is a Kelley space [27]. In a homogeneous contin-

uum X the filament subcontinua form an open collection in C(X).

In this paper we will employ the following set function J, which is a modification

of Jones’ function T. If X is a compactum and Y a subset of X, then

J(Y ) = {y ∈ X | every ample continuum containing y intersects Y}.

It should be noted the function J is not identical with Jones’ function T, even for

closed sets. Indeed, if X is a one-point union of two nondegenerate indecomposable

continua X1 and X2 with X1 ∩ X2 = {p}, then for any p ′ ∈ X1 \ {p} we have

T(p ′) = X1 6= X = J(p ′). Nevertheless, using Proposition 1.1, it can easily be

shown that for closed sets Y the function J coincides with T in the class of Kelley

continua. We note the following.

Proposition 1.2 Let X be a continuum and Y a closed subset of X.

(i) J(Y ) is closed in X.

(ii) J2(Y ) = J( J(Y )) = J(Y ).

(iii) If, additionally, X is a Kelley continuum and Y is a subcontinuum of X, then J(Y )

is a continuum.

Proof (i) If p /∈ J(Y ), then there exists an ample continuum A ⊂ X − Y containing

p, which can be enlarged to a continuum L ⊂ X − Y having A in its interior. The set

Int L is a neighborhood of p in X − J(Y ), and thus J(Y ) is closed.

(ii) Clearly J(Y ) ⊂ J2(Y ). Let p ∈ X − J(Y ), and A, L be as in part (i). Then

A ⊂ Int L ⊂ X − J(Y ), and thus A is an ample continuum containing p disjoint with

J(Y ). Hence p ∈ X − J2(Y ).

(iii) This property is known [6] for Jones’ function T, which coincides with J in

Kelley continua.

A continuum X is aposyndetic at x with respect to y if there exists a continuum

K ⊂ X \ {y} containing x in its interior. It is aposyndetic at x if it is aposyndetic at

x with respect to every other point, and aposyndetic if it is aposyndetic everywhere

[11]. If X is a homogeneous continuum, the sets T(x) (or equivalently J(x)), for

x ∈ X, form Jones’ aposyndetic decomposition [12] of X. The element of Jones’ de-

composition containing x ∈ X can also be equivalently defined as: (i) the intersection

of the continua in X having x in their interiors; or (ii) the intersection of the ample

continua in X containing x [21].

A continuum X is said to be decomposable if it has proper subcontinua Y and Z

such that X = Y ∪ Z. If every non-degenerate subcontinuum of X is decompos-

able, X is called hereditarily decomposable. Non-decomposable continua are called
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indecomposable. Note that a continuum X is indecomposable if and only if it is non-

aposyndetic at each of its points with respect to any other point. A subcontinuum Y

of a space X is called terminal if, for every continuum Z ⊂ X intersecting Y , either

Y ⊂ Z or Z ⊂ Y .

The following concepts of mutual aposyndesis and semi-indecomposability2 have

been introduced by Hagopian in [8]. A continuum X is mutually aposyndetic at

points x and y, provided there are disjoint continua K and L in X containing x and y

in their corresponding interiors. It is mutually aposyndetic if it is mutually aposynde-

tic at each pair of its distinct points. If X is not mutually aposyndetic at any pair of its

distinct points, then X is called a semi-indecomposable continuum. In Kelley spaces

we can equivalently express mutual aposyndesis using ample continua. Indeed, a Kel-

ley continuum X is mutually aposyndetic at x and y if and only if there are disjoint

ample continua K and L in X containing x and y, respectively.

If X is a homogeneous compactum, then for every positive ε there is a number δ,

called an Effros number for ε, such that for each x, y ∈ X with d(x, y) < δ, there is

some homeomorphism f : X → X such that f (x) = y and d(z, f (z)) < ε for each

z ∈ X. This is called the Effros theorem. It follows from the more general statement

that for each x ∈ X, the evaluation map, g 7→ gx, from the homeomorphism group

onto X is open. The latter follows from [7, Theorem 2]. (See also [26, Theorem 3.1].)

2 Mutually Aposyndetic Decomposition in Kelley Continua

Let X be a continuum. If x, y ∈ X, we write x ≍ y provided that every two ample

continua Ax and Ay in X such that x ∈ Ax and y ∈ Ay have nonempty intersection.

We also let Qx = {y ∈ X | x ≍ y}.

If x 6≍ y, there are disjoint ample continua Ax and Ay such that x ∈ Ax and y ∈ Ay.

Since Ax and Ay are ample, there exist continua Bx and By such that Ax ⊂ Int Bx,

Ay ⊂ Int By , and Bx ∩ By = ∅. Note that Bx × By is a neighborhood of (x, y) in

X × X composed of pairs (x ′, y ′) such that x ′ 6≍ y ′. We have shown the following.

Proposition 2.1 If X is a continuum, then the relation ≍ is a closed subset of X × X.

In particular, the sets Qx are closed and the function x 7→ Qx is upper semi-continuous.

Given a continuum X and a subset Y of X, recall that J(Y ) denotes the modified

Jones’ set function of Y , which was introduced in the previous section.

Proposition 2.2 For every continuum X and x ∈ X,

Qx =
⋂
{ J(A) | A is an ample subcontinuum of X containing x}.

Proof Let Ax be the collection of ample continua containing x. If y /∈ Qx, then

x 6≍ y. Thus there exist disjoint ample continua Ax and Ay containing x and y,

respectively. Clearly, Ax ∈ Ax and y /∈ J(Ax). Thus y /∈
⋂
{ J(A) | A ∈ Ax}.

2Originally, Hagopian used the name strictly non-mutually aposyndetic. We changed the name to semi-
indecomposable for brevity, and also because the continua in question manifest properties similar to the
properties of indecomposable continua.
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Conversely, if y /∈
⋂
{ J(A) | A ∈ Ax}, then y /∈ J(Ax) for some Ax ∈ Ax. Therefore,

there is an ample continuum Ay disjoint from Ax such that y ∈ Ay. Consequently,

y /∈ Qx.

Now we study the sets Qx in Kelley continua. Note that if X is a Kelley continuum

and x, y ∈ X, then x ≍ y if and only if X is not mutually aposyndetic at x and y.

Proposition 2.3 If A1 and A2 are disjoint ample subcontinua of a Kelley continuum

X, then J(A1) and J(A2) are disjoint.

Proof Suppose p ∈ J(A1) ∩ J(A2). Let Pt for t ∈ [0, 1] be an order arc of continua

such that P0 = {p}, P1 = X, and Pt ⊂ Pt ′ for t < t ′. There is a smallest α ∈ [0, 1]

such that Pα ∩ (A1 ∪ A2) 6= ∅. For some i ∈ {1, 2} we have Pα ∩ Ai 6= ∅. Let j be

such that { j} = {1, 2} − {i}. Since Ai is ample, there exists a continuum Bi such

that Ai ⊂ Int Bi ⊂ Bi ⊂ X − A j . Thus, for a number β ∈ [0, α) sufficiently near to

α, we have Pβ ∩Bi 6= ∅. Consequently, the continua Pβ ∪Bi and A j are disjoint, and

Pβ ∪ Bi is not filament. Thus Pβ ∪ Bi is ample by Proposition 1.1. Since p ∈ Pβ ∪ Bi ,

it follows p /∈ J(A j), a contradiction.

Proposition 2.4 If X is a Kelley continuum, then ≍ is an equivalence relation in X.

Proof It suffices to show that ≍ is transitive. Suppose x ≍ y and y ≍ z but x 6≍ z.

There are disjoint ample continua Ax and Az such that x ∈ Ax and z ∈ Az. By

Proposition 2.3 the continua J(Ax) and J(Az) are disjoint. If y ∈ J(Ax), then J(Ax)

and Az are disjoint ample continua containing y and z, respectively. So y 6≍ z, a

contradiction. If y /∈ J(Ax), there is an ample continuum Ay such that y ∈ Ay and

Ax ∩ Ay = ∅. Hence x 6≍ y, a contradiction.

By Propositions 2.1 and 2.4 we have the following.

Corollary 2.5 For every Kelley continuum X the collection Q = {Qx | x ∈ X} is an

upper semi-continuous decomposition of X into closed sets.

The decomposition Q of X, also denoted by Q(X), will be called the mutually

aposyndetic decomposition of X.

Proposition 2.6 Let X be a Kelley continuum, Q = {Qx | x ∈ X}, and q : X → X/Q

the quotient map. Then for every ample continuum A in X the continuum J(A) is

saturated with respect to q, that is, q−1(q( J(A))) = J(A).

Proof If x ∈ J(A), then q−1(q(x)) = Qx ⊂ J( J(A)) by Proposition 2.2. We also have

J( J(A)) = J(A) by Proposition 1.2. The conclusion follows.

Proposition 2.7 If X is a Kelley continuum, Q = {Qx | x ∈ X}, and q : X → X/Q

the quotient map, then for every ample continuum A in X the continuum q( J(A)) is

ample in X/Q.

Proof Since A is ample, so is the continuum J(A). For every ε > 0 there is a con-

tinuum B in X such that J(Ax) ⊂ Int B ⊂ B ⊂ Nε( J(Ax)). Since J(A) is saturated

with respect to q (see Proposition 2.6), the continuum B is a neighborhood of every

set q−1(q(p)), where p ∈ J(A). Thus q(p) ∈ Int(q(B)) for every such B and p. Hence

q( J(A)) ⊂ Int(q(B)), and thus q( J(A)) is ample in X/Q.
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Proposition 2.8 If X is a Kelley continuum and Q = {Qx | x ∈ X}, then the contin-

uum X/Q is mutually aposyndetic.

Proof Let q : X → X/Q be the quotient map and x, y ∈ X two points such that

Qx 6= Qy . Since x 6≍ y, there are ample, disjoint continua Ax and Ay such that x ∈ Ax

and y ∈ Ay . By Proposition 2.3 the continua J(Ax) and J(Ay) are disjoint. They are

also saturated with respect to q by Proposition 2.6. Therefore,

q( J(Ax)) ∩ q( J(Ay)) = ∅.

Applying Proposition 2.7 we see that q( J(Ax)) and q( J(Ay)) are disjoint ample con-

tinua in X/Q containing q(x) and q(y), respectively.

Question 1 Let X be a Kelley continuum. Are the members of the mutually aposyn-

detic decomposition of X connected?

This question remains open also for homogeneous continua. Homogeneous spa-

ces are the focus of the rest of the paper.

3 Mutually Aposyndetic Decomposition in Homogeneous Continua

The results of the previous section apply to all homogeneous continua because each

such continuum is Kelley [27]. In this section we further study the mutually aposyn-

detic decomposition Q = {Qx | x ∈ X} in the case when X is a homogeneous

continuum. Note that the function x 7→ Qx is respected by self-homeomorphisms

of X, that is, for every homeomorphism h : X → X and x ∈ X if h(x) = y, then

h(Qx) = Qy (cf. [20, §4]). A decomposition of a homogeneous continuum respected

by homeomorphisms leads to a particularly regular structure of the space. For the

partition Q, by Corollary 2.5, Proposition 2.8, and [20, Proposition 4.1], we have the

following.

Theorem 3.1 If X is a homogeneous continuum, then the relation x ≍ y, meaning X

is not mutually aposyndetic at x and y, is an equivalence relation in X. The collection

of the equivalence classes of this relation, Q(X) = {Qx | x ∈ X}, is a continuous

decomposition of X into closed sets, which is respected by self-homeomorphisms of X.

Moreover, the sets Qx are mutually homeomorphic and homogeneous. The quotient

space X/Q is a homogeneous mutually aposyndetic continuum.

In addition, the decomposition Q(X) in Theorem 3.1 is completely regular in the

sense of [22]. This is the case because X is homogeneous, and the self-homeomor-

phisms of X respect Q(X).

Remark 3.2 If X is a homogeneous continuum and Da(X) its aposyndetic decom-

position, then by definition each member of Da(X) is contained in some member

of the decomposition Q(X). In other words, Q(X) is coarser than Da(X). As the

study of Section 5 below shows, we have many examples X for which Q(X) = Da(X),

and many with Q(X) essentially coarser than Da(X). Whether there exists X with
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Q(X) 6= Da(X) having non-degenerate members of both Q(X) and Da(X), is an

open problem whose solution depends on a possible counterexample to Question 2

from Section 5.

To further strengthen Theorem 3.1, we devote the rest of this section to the study

of the following conjecture.

Conjecture If X is a homogeneous continuum, then the fibers of the mutually aposyn-

detic decomposition of X are semi-indecomposable continua.

We begin with the following lemma.

Lemma 3.3 Let X be a homogeneous continuum. If for every ε > 0 there are two

disjoint ample subcontinua A and B of X such that A = J(A) and B = J(B) and two

continua Y, Z ⊂ X/Q such that

(i) Y ∩ Z 6= ∅,

(ii) Y ∩ q(A) 6= ∅ 6= Z ∩ q(B),

(iii) Y ∩ q(B) = ∅ = Z ∩ q(A), and

(iv) diam Y, diam Z < ε,

then each set Qx in X is connected.

Proof Suppose the contrary. By homogeneity each Qx is not connected. Let An, Bn,

Yn, and Zn be continua as in the hypothesis for ε = 1/n. We choose a sequence pn

such that pn ∈ q(An) ∩ Yn. Replacing all defined sequences by their subsequences,

without loss of generality we assume {pn} converges to some point p ∈ X/Q. Since

X/Q is a homogeneous continuum, and the decomposition Q is respected by the

homeomorphisms, using the Effros theorem we modify these sets, by a sequence of

homeomorphisms sending pn to p, so that p = pn for each n. By the assumption

q−1(p) is not connected. Let x, y ∈ X be such that q(x) = q(y) = p and q−1(p) =

Qx = Qy is not connected between x and y. Let S ⊂ Qx and T ⊂ Qx be disjoint,

open-closed sets relative to Qx such that x ∈ S, y ∈ T, and S ∪ T = Qx. Let U , V

be disjoint neighborhoods in X of S and T, respectively. The sets Yn ∪ Zn converge to

the singleton {p}, and thus, by the continuity of q, we have q−1(Yn ∪ Zn) ⊂ U ∪ V

for almost all n. We fix such an n. Let Kx and Ky be the components of q−1(Yn ∪ Zn)

such that x ∈ Kx and y ∈ Ky. Clearly Kx ⊂ U and Ky ⊂ V . Since q is open, and

thus confluent, q(Kx) = q(Ky) = Yn ∪ Zn. Let Lx, Ly be the components of q−1(Yn)

containing x and y, respectively. We have Lx ⊂ Kx ⊂ U and Ly ⊂ Ky ⊂ V , and

q(Lx) = q(Ly) = Yn by the confluence of q. Let r ∈ Yn ∩ Zn. Fix xr ∈ Lx and

yr ∈ Ly such that q(xr) = q(yr) = r. Let Mx and My be the components of q−1(Zn)

containing xr and yr , respectively. Clearly, Mx ⊂ Kx ⊂ U and My ⊂ Ky ⊂ V ,

and q(Mx) = q(My) = Zn by the confluence of q. In particular My ∩ An = ∅ 6=
My ∩ Bn. Since the sets An ∪ Lx and Bn ∪ My contain ample continua, they are ample

by Proposition 1.1. Therefore, they are disjoint ample continua containing xr and

yr, respectively. By the definition of the quotient map q, this is impossible, because

xr, yr ∈ q−1(r).

Lemma 3.4 Let X be a homogeneous continuum and D a monotone, continuous

decomposition of X, with the quotient map q : X → X/D, such that the group HD
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of self-homeomorphisms of X that respect D acts transitively on X. Then for every

D ∈ D, an ample subcontinuum A of D, and ε > 0, there exists a closed set L such

that A ⊂ Int L ⊂ L ⊂ Nε(A) ⊂ X and the map q|L : L → q(L) ⊂ X/D is monotone.

Proof Note that HD is a closed subset of the group H(X) of self-homeomorphisms

of X. Thus the Effros theorem applies to the homeomorphisms from HD [5]. Let dH

be the Hausdorff distance for closed subsets of X, and, for x, y ∈ X/D, let d(x, y) =

dH(q−1(x), q−1(y)). Define CD(X) = {C ∈ C(X) | C ⊂ D ∈ D for some D ∈ D} ,
and note that CD(X) is a closed subcollection of C(X).

Let ε > 0. Let D ∈ D and A be an ample subcontinuum of D. For every ξ > 0 de-

fine HD,ξ = {h ∈ HD | d̃(h) < ξ}. Since A is ample in D, there exists a continuum

A0 ⊂ D ∩ Nε/3(A) such that A is in the interior of A0 relative to D.

Claim There exists a ξ > 0 such that for every h ∈ HD,ξ and B ∈ CD(X) with

dH(B, A0) < ξ, if h(A0) and B are subsets of the same member of D, then

h(A0) ∩ B 6= ∅.

Suppose there is no such ξ. There are two sequences

{hn} ⊂ HD,ξ and {Bn} ⊂ CD(X)

such that hn converges to the identity, Bn converges to A0 in the sense of the Hausdorff

distance, and hn(A0) and Bn are in the same member of D but disjoint. Thus A0 =

h−1
n (hn(A0)) and h−1

n (Bn) are in D, and they are disjoint for each n. Since h−1
n (Bn)

converges to A0 and the interior of A0 relative to D is non-empty, h−1
n (Bn) ∩ A0 6= ∅

for almost all n, which is a contradiction.

Let δ = min{ε/3, ξ/2}, where ξ is as in the Claim. Define

U =
⋃
{h(A0) | h ∈ HD,δ}.

We have A0 ⊂ IntU by the Effros theorem applied to the homeomorphisms from

HD. Thus there exists a closed set L0 such that A0 ⊂ Int L0 ⊂ L0 ⊂ U . Let

L0 = {h(A0) | h ∈ HD,δ and q(h(A)) ⊂ q(L0)}

and L be the closure of L0 in C(X). Since L0 ⊂ CD(X), and CD(X) is closed,

we have L ⊂ CD(X). Since L0 is closed, q(L0) is also closed. Therefore q(S) is a

singleton in q(L0) for each S ∈ L and
⋃
{q(S) | S ∈ L} = q(L0). By definition, for

each S ∈ L there exists a member h(A0) ∈ L0 such that q(S) = q(h(A0)), and thus S

and h(A0) are contained in the same member of D. Moreover, d(A0, S) ≤ δ < ξ and

d̃(h) < δ < ξ. By the Claim, h(A0) ∩ S 6= ∅ for each such pair h(A0) and S. This

implies that the union Lx of the collection of the members of L contained in a single

set q−1(x) ∈ D, x ∈ q(L0), is connected. Define L =
⋃

L =
⋃
{Lx | x ∈ q(L0)}.

Since L is a closed collection and the decomposition D is continuous, the monotone

decomposition {Lx | x ∈ q(L0)} of L is upper semi-continuous. We also have

A0 ⊂ Int L0 ⊂ Int L ⊂ L ⊂ cl(Nδ(A0)) ⊂ cl(Nε/3(Nε/3(A))) ⊂ Nε(A).
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Lemma 3.5 Let X be a homogeneous continuum. If for every ε > 0 there are two

disjoint ample subcontinua A and B of X such that A = J(A) and B = J(B) and two

continua Y, Z ⊂ X/Q such that:

(i) Y ∩ Z 6= ∅,

(ii) Y ∩ q(A) 6= ∅ 6= Z ∩ q(B),

(iii) Y ∩ q(B) = ∅ = Z ∩ q(A), and

(iv) diam Y, diam Z < ε,

then each set Qx in X is a semi-indecomposable continuum.

Proof By Lemma 3.3 the members of Q are connected. Suppose they are not semi-

indecomposable. As in the proof of Lemma 3.3 we choose continua An, Bn, Yn, and

Zn satisfying the hypothesis for ε = 1/n, with a point p ∈ q(An) ∩ Yn for each n. By

the assumption, the continuum q−1(p) is not semi-indecomposable, which implies

there are two disjoint ample subcontinua C1 and C2 of q−1(p). Let ε > 0 be such that

2ε < min{d(a1, a2) | a1 ∈ C1 and a2 ∈ C2}. Let L1 and L2 be closed sets guaranteed

by Lemma 3.4 for the decomposition Q with C1 and C2, respectively, and the number

ε. Note that p ∈ Int(q(L1))∩ Int(q(L2)) by the openness of q, and L1 ∩L2 = ∅ by the

assumption on ε. The continua Yn∪Zn converge to p, and thusYn∪Zn ⊂ q(L1)∩q(L2)

for almost all n. Fix such an n and an r ∈ Yn ∩ Zn. Let q1 = q|L1 : L1 → q(L1) and

q2 = q|L2 : L2 → q(L2), and note that q1 and q2 are monotone by Lemma 3.4. The

continua An∪q−1
1 (Yn) and Bn∪q−1

2 (Zn) are disjoint ample continua both intersecting

q−1(r), which is impossible by the definition of q.

Given a continuum X, let Φn(X) be the collection of continua K in X such that

K = K1 ∪ · · · ∪ Km for some continua K1, . . . , Km, each having diameter less than

1/n. Let Φ(X) be the collection of continua L in X such that there is a sequence {Ln},

with Ln ∈ Φn(X), converging to L in C(X). Clearly Φ(X) is a closed subcollection of

C(X) containing all singletons.

Theorem 3.6 Let X be a homogeneous continuum and Q its mutually aposyndetic

decomposition. Suppose at least one of the three following conditions holds:

(i) there is a hereditarily decomposable continuum in X intersecting two different

members of Q;

(ii) the quotient space X/Q contains a non-degenerate, hereditarily decomposable sub-

continuum;

(iii) the quotient space X/Q contains a non-degenerate member of Φ(X/Q).

Then each member of Q is a semi-indecomposable continuum.

Proof It suffices to show that the conditions of Lemma 3.5 hold. Let ε > 0.

Case 1. There is a hereditarily decomposable continuum M in X intersecting two

different members of Q.

Let M0 be a subcontinuum of M maximal with respect to the property that M0 is

contained in a single set Qx. We can slightly enlarge M0 to a continuum M1 such that

0 < diam q(M1) < ε. Since q(M1) is non-degenerate, M1 intersects two different sets

Qa and Qb for some a, b ∈ M1. Consequently, there are disjoint ample continua A ′
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and B ′ in X such that a ∈ A ′ and b ∈ B ′. Let A = J(A ′) and B = J(B ′). By Propo-

sition 1.2, the continua A and B satisfy J(A) = A and J(B) = B, and, by Proposition

2.3, are disjoint. They are saturated with respect to q by Proposition 2.6, and thus

Qa ⊂ A and Qb ⊂ B. Let M2 be a subcontinuum of M1 irreducibly intersecting A

and B. Since M2 is decomposable, there are proper subcontinua K and L of M2 such

that K ∪ L = M2, K ∩ A 6= ∅ 6= L ∩ B, and K ∩ B = ∅ = L ∩ A. Letting Y = q(K)

and Z = q(L), we have Y ∩ q(A) 6= ∅ 6= Z ∩ q(B). Since A and B are saturated

with respect to q, it follows Y ∩ q(B) = ∅ = Z ∩ q(A). Clearly Y ∩ Z 6= ∅ and

diam Y, diam Z ≤ diam q(M2) ≤ diam q(M1) < ε. The conditions of Lemma 3.5

hold.

Case 2. The quotient space X/Q contains a non-degenerate hereditarily decompos-

able continuum.

Let P be a hereditarily decomposable non-degenerate subcontinuum of X/Q of

diameter less than ε, and p1, p2 two different points of P. Let a ∈ q−1(p1) and b ∈
q−1(p2). By the definition of q there are disjoint ample continua A ′ and B ′ containing

a and b, respectively. By Propositions 2.3, 2.6, and 2.7 the continua A = J(A ′) and

B = J(B ′) are ample and have disjoint images under q. The continuum P contains

a subcontinuum P ′ irreducible with respect to intersecting q(A) and q(B). Since P is

hereditarily decomposable, there are continua Y and Z in P ′ such that Y ∪ Z = P ′

and the conditions (i)–(iii) of Lemma 3.5 hold. Condition (iv) is satisfied as well.

Case 3. The quotient space contains a non-degenerate member P∗ of Φ(X/Q).

By definition, P∗ is the limit, in the sense of the Hausdorff distance, of a sequence

continua P∗

n ∈ Φn(X/Q). For sufficiently large n we can choose subcontinua Pn of

P∗

n such that ε/2 < diam Pn < 2ε/3 and Pn ∈ Φn(X/Q). The limit P of a conver-

gent subsequence of Pn is a non-degenerate member of Φ(X/Q) having diameter less

than ε.

Let p1, p2 be two different points of P. Let a ∈ q−1(p1) and b ∈ q−1(p2). There

are disjoint ample continua A ′ and B ′ containing a and b, respectively. Since A ′ and

B ′ are ample, there are disjoint continua A ′′ and B ′ ′ in X containing a and b in their

corresponding interiors. By Propositions 2.3, 2.6, and 2.7 the continua A = J(A ′′)

and B = J(B ′ ′) are ample and have disjoint images under q. Since a ∈ Int A and

b ∈ Int B, and the map q is open, Pn ∩ q(A) 6= ∅ 6= Pn ∩ q(B). Fix an n so large

that 3/n < max{d(u, v) | u ∈ q(A) and v ∈ q(B)}. The continuum Pn, being the

finite union of subcontinua of diameter less than 1/n, contains continua K1, . . . , Km,

m ≥ 3, such that (i) Ki ∩ K j 6= ∅ if and only if |i − j| ≤ 1, (ii) Ki ∩ q(A) 6= ∅ if

and only if i = 1, and (iii) Ki ∩ q(B) 6= ∅ if and only if i = m. Letting Y = K1 and

Z = K2 ∪ · · · ∪ Km, we see that the conditions (i)–(iv) of Lemma 3.5 hold.

Remark 3.7 In Theorem 3.6 the conjecture stated in the beginning of this section

has been confirmed in three important cases. Note that it also holds in the trivial

cases when the sets Qx are either singletons or each Qx is the whole space. More-

over, the quotient space X/Q, being mutually aposyndetic, does not have proper,

non-degenerate, terminal subcontinua. Therefore, decomposable continua are ev-

erywhere in X/Q, which makes the conditions of Lemma 3.5 seem likely and the
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conjecture is probably true in general. Solving the conjecture would be a major

breakthrough in the study of the mutually aposyndetic decomposition of homoge-

neous continua.

4 Applications

In this section we present some applications of the mutually aposyndetic decompo-

sition, which lead to new results on homogeneous continua that (i) are hereditarily

decomposable, (ii) have dense path components, or (iii) are path connected.

We begin with a theorem on semi-indecomposable homogeneous continua.

Though it plays an auxiliary role here, it may be of interest in its own right. Indeed,

in view of the results from the previous section, semi-indecomposable continua seem

to deserve special attention and, perhaps, a separate study.

Theorem 4.1 If X is a semi-indecomposable, homogeneous continuum, then every

minimal ample subcontinuum of X is either indecomposable or the union of two inde-

composable continua.

Proof Suppose a minimal ample continuum A in X cannot be represented as the

union of at most two indecomposable continua. Then A, being decomposable, is the

union of two of its proper subcontinua, B and C. Using Zorn’s lemma, we can assume

the union B ∪ C is irreducible in the sense that B ′ ∪ C ′ 6= A for every subcontinua

B ′ ⊂ B and C ′ ⊂ C, at least one of which is proper. At least one of the continua B

and C is decomposable, say C. We have C = C1 ∪ C2 for some proper subcontinua

C1 and C2 of C. Consequently, A is the union of its three proper subcontinua B, C1,

and C2, no two of which have their union equal to A. We note that the closed sets

G1 = B ∪C1, G2 = C1 ∪C2, G3 = B ∪C2 are filament sets at least two of which, say

G1 and G2, are connected. The third, G3, has at most two components.

Case 1. Only G1 and G2 are connected.

Let U1 and U2 be open filament neighborhoods of G1 and G2, respectively [18,

Theorem 3.2]. Define

ε1 = min{d(x, y) | x ∈ G1, y ∈ X −U1},

ε2 = min{d(x, y) | x ∈ G2, y ∈ X −U2},

ε3 = min{d(x, y) | x ∈ B, y ∈ C2},

ε = min{ε1, ε2, ε3}/3.

Since G1 is a filament continuum, by the Effros theorem there exists a homeomor-

phism h1 : X → X with d̃(h1) < ε sending G1 to the component of U1 different from

the component of U1 containing G1. Thus G1 ∩ h1(G1) = ∅. Let

ε4 = min{d(x, y) | x ∈ G1, y ∈ h1(G1)} and ε5 = min{ε, ε4}.

https://doi.org/10.4153/CJM-2010-010-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-010-4


Mutually Aposyndetic Decomposition of Homogeneous Continua 193

Since h1(G2) is a filament continuum, by the Effros theorem there exists a homeo-

morphism h2 : X → X with d̃(h2) < ε5 sending h1(G2) to the component of U2

different from the component of U2 containing G2. Letting h = h2 ◦ h1, we note that

h(G1)∩G1 = ∅ = h(G2)∩G2 and h(B)∩C2 = ∅ = h(C2)∩B. Hence A∩h(A) = ∅,

and X contains two disjoint ample continua A and h(A). This is impossible because

X is semi-indecomposable.

Case 2. All three sets G1, G2, and G3 are connected.

This case is similar to the previous one. In this case we also use a third filament

neighborhood U3 of G3, the number ε ′

3 = min{d(x, y) | x ∈ G3, y ∈ X − U3},

and a third homeomorphism h3 : X → X sending h2(h1(G3)) to a component of U3

different from the one containing G3. By choosing h3 with sufficiently small d̃(h3),

we also have h3(h2(h1(G1)))∩G1 = ∅ = h3(h2(h1(G2)))∩G2. The homeomorphism

h is defined as the composition h3◦h2◦h1. The sets h3(h2(h1(Gi))) and Gi are disjoint

for i ∈ {1, 2, 3}. Hence h(A) ∩ A = ∅, an impossibility. The details are left to the

reader.

The problem whether a circle is the only homogeneous, non-degenerate, heredi-

tarily decomposable continuum, by Józef Krasinkiewicz and Piotr Minc, is still open.

Some recent partial results can be found in [19]. Here we add the following.

Theorem 4.2 If X is a hereditarily decomposable homogeneous continuum, then X is

mutually aposyndetic.

Proof The map q : X → X/Q is open, and thus X/Q is hereditarily decomposable

(see [15, (9.2), p. 76 and Table II, p. 28]). By Theorems 3.1 and 3.6 the sets Qx are

homogeneous semi-indecomposable continua. If non-degenerate, clearly the Qx’s

are non-locally connected. Non-locally connected homogeneous continua have non-

degenerate minimal ample subcontinua, and thus the Qx’s contain non-degenerate

continua that are the unions of at most two indecomposable continua by Theo-

rem 4.1. Thus X contains a non-degenerate indecomposable subcontinuum, which

is a contradiction. Hence the Qx’s are singletons and X is mutually aposyndetic.

Theorem 4.3 If X is a homogeneous continuum containing an arc that intersects two

different members of Q(X), then X is mutually aposyndetic.

Proof Let P be an arc with end points x and y such that the sets Qx and Qy are

distinct. The image q(P) is a non-degenerate locally connected subcontinuum of

q(X), which contains an arc. By Theorem 3.6 the sets Qp, for p ∈ X, are semi-

indecomposable continua.

Suppose the sets Qp are non-degenerate. Since the sets Qx and Qy are distinct,

there are disjoint ample continua A ′ and B ′ containing x and y, respectively, such that

J(A ′) = A ′ and J(B ′) = B ′ (see Proposition 2.3). Let ab be an arc with end points

a ∈ A ′ and b ∈ B ′ irreducible with respect to the property ab ∩ A ′ 6= ∅ 6= ab ∩ B ′.

Let z ∈ P − (A ′ ∪ B ′) and note that Qz ∩ A ′
= ∅ = Qz ∩ B ′ by Proposition 2.6. We

enlarge A ′ and B ′ slightly to some disjoint continua A and B, respectively, such that

A ∩ Qz = ∅ = B ∩ Qz, A ′ ⊂ Int A, B ′ ⊂ Int B and az ∩ B = ∅ = zb ∩ A, where az

and zb are arcs in ab with the corresponding end points.
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Claim. Qz ∩ ab = {z}.

Indeed, otherwise there would be two different points za, zb ∈ Qz ∩ ab, the first

and the last, respectively, in the sense of the ordering in ab from a to b. Let aza and zbb

be arcs in ab with the corresponding end points. The continua A ′ ∪ aza and B ′ ∪ zbb

are disjoint ample continua containing, respectively, two different points za and zb of

Qz, an impossibility.

By the Effros theorem we can choose a homeomorphism h : X → X, satisfying

h(z) ∈ Qz − {z}, so near to the identity that h(a) ∈ Int A, h(b) ∈ Int B, and h(az) ∩
B = ∅ = h(zb) ∩ A.

Case 1. h(ab) ∩ zb = ∅.

In this case we notice that A ∪ h(az) and B ∪ zb are disjoint ample continua in X

containing, correspondingly, two different points, z and h(z), of Qz. This is impossi-

ble by the definition of Qz .

Case 2. h(ab) ∩ zb 6= ∅.

Let r be the first point in zb, with respect to the order from z to b, that belongs

to h(ab), and u = h−1(r). Observe that r 6= z because z 6= h(z) ∈ h(ab) ∩ Qz , and

h(ab) intersects Qz at exactly one point for the same reason as ab does (see the Claim

above). Again by the Claim, r /∈ Qz . Therefore u 6= z. Let zr ⊂ zb be the arc from z

to r.

Suppose u ∈ az − {z}. Let au ⊂ az be the arc from a to u. The disjoint ample

continua A ∪ h(au) ∪ zr and B ∪ h(zb) contain, respectively, the two different points

z and h(z) of Qz . This is impossible by the definition of Qz .

Suppose u ∈ zb − {z}. Let ub ⊂ zb be the arcs from u to b. The disjoint ample

continua A ∪ h(az) and B ∪ h(ub) ∪ zr contain, respectively, the two different points

h(z) and z of Qz . This is impossible by the definition of Qz . Hence the sets Qp , for

p ∈ X, are singletons, and thus X is mutually aposyndetic.

Corollary 4.4 If X is a homogeneous continuum with dense path components, then X

is either mutually aposyndetic or semi-indecomposable.

Compact, connected topological groups are significant examples of homogeneous

continua with dense path components [9, Theorem 9.60, p. 500]. By the previous

result we have the following.

Corollary 4.5 Each compact, connected topological group is either mutually aposyn-

detic or semi-indecomposable.

From the view point of Corollary 4.5, the products of solenoids are particularly

interesting. First, solenoids are examples of semi-indecomposable compact topolog-

ical groups. In fact, they are even indecomposable. Second, Hagopian [8] has shown

the product of three non-degenerate continua is always mutually aposyndetic. Thus

the product of at least three solenoids is mutually aposyndetic. The case of the prod-

uct of two solenoids is intriguing. Alejandro Illanes [10] proved that if Sp and Sq

are the p-adic and q-adic solenoids, respectively, with p and q relatively prime, then
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Sp ×Sq is mutually aposyndetic. In a recent paper [17] the author characterized pairs

of solenoids having semi-terminal products. From that characterization the product

S × S is semi-indecomposable for every solenoid S. Thus some products of pairs of

solenoids are semi-indecomposable, compact, connected topological groups that are

decomposable.

Another class of special interest is that of path connected homogeneous continua.

It may be considered fundamental in the sense that it connects with other areas of

study in topology and beyond topology. This class is much larger than the class

of homogeneous, locally connected continua. The first example of homogeneous

path connected, non-locally connected continuum was defined in [16]. Some general

properties of homogeneous path connected continua can be found in [1, 2]. Using

Jones’ decomposition, it is easy to see that such spaces are aposyndetic. Here we show

that they are also mutually aposyndetic.

Theorem 4.6 Each path connected homogeneous continuum is mutually aposyndetic.

Proof Suppose a path connected homogeneous continuum X is not mutually apo-

syndetic. According to Theorem 4.3, it is semi-indecomposable. Let x ∈ X and

Fcs(x) be the filament composant of X determined by x, that is, the union of the

filament continua containing x. The set Fcs(x) of x is a first category subset of X

[18, Proposition 1.8], and thus there is a y ∈ X − Fcs(x). Let A be an arc containing

x and y. Since A is not filament, A is an ample subcontinuum of X by Proposition

1.1. It contains a minimal ample subcontinuum A0. Since X is not locally connected,

A0 is nondegenerate. Therefore A0 is an arc, whereas, by Theorem 4.1, A0 is either

indecomposable or the union of two indecomposable continua. This is impossible,

and hence the proof is complete.

Remark 4.7 Theorem 4.3 yields a comparison of the mutually aposyndetic decom-

position Q(X) of a homogeneous continuum X to a decomposition determined by

the partition of X into path components. Using the Effros theorem, it is easy to see

that the closures of the path components of X form a decomposition of X into mu-

tually disjoint sets, denoted here by P(X). Each member of P(X) is a homogeneous

continuum having dense path components, P(X) is respected by homeomorphisms,

and it is completely regular in the sense of [22]. By Theorem 4.3 it is clear that either

Q(X) is coarser than P(X), or P(X) is coarser than Q(X). Moreover, if P(X) is coarser

than and different from Q(X), then the members of Q(X) are singletons. Since the

members of the aposyndetic decomposition Da(X) of X are terminal, the same holds

true for Da(X) in relation to P(X). As pointed out in Remark 3.2, Q(X) is coarser

than Da(X), and hence for each two of the decompositions Q(X), Da(X), and P(X),

one is coarser than the other.

5 Examples of Mutually Aposyndetic Decompositions

In this section we discuss examples of mutually aposyndetic decompositions of ho-

mogeneous continua. It turns out that many known aposyndetic decompositions
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are also mutually aposyndetic. Moreover, we also show that there exist aposyndetic

homogeneous continua with nontrivial mutually aposyndetic decompositions.

First, we notice that for any mutually aposyndetic homogeneous continuum X the

sets Qx are singletons. To have non-trivial members of the decomposition Q, consider

the circle of pseudo-arcs Ŝ defined in [4]. The mutually aposyndetic decomposition

of Ŝ is the same as the aposyndetic one. The members of this decomposition are

the maximal (terminal) pseudo-arcs in Ŝ. Similarly, according to the results of [14],

for every mutually aposyndetic homogeneous curve M there exists a homogeneous

curve M̂ having a unique continuous monotone decomposition into maximal termi-

nal pseudo-arcs with the quotient homeomorphic to M. As in the case of the circle

of pseudo-arcs, this decomposition is both aposyndetic and mutually aposyndetic.

Thus we have a large class of examples of mutually aposyndetic decompositions with

non-degenerate fibers. This leads to the question whether the aposyndetic and mu-

tually aposyndetic decompositions coincide in every homogeneous continuum. This

question was answered in the negative by Hagopian [8], using the following example.

Example 5.1 (Hagopian) Let P be the pseudo-arc and X = P × P. Note that X

is homogeneous because P is homogeneous. As the product of two non-degenerate

continua, X is aposyndetic. Therefore the fibers of its aposyndetic decomposition are

singletons. Hagopian proved [8] that X is semi-indecomposable. Thus the mutually

aposyndetic decomposition of X has only one member, the set X itself.

It is not known whether there exists a similar example in dimension one. The

following open question is of particular interest from the view point of this study.

Question 2 Is every homogeneous aposyndetic curve mutually aposyndetic?

One can ask whether there exist homogeneous continua having the mutually apo-

syndetic decomposition Q different from the aposyndetic one, with proper subcon-

tinua for the members of Q. Below, we answer this question in the affirmative. In our

argument we will use the following result by David Bellamy and Janusz Łysko [3].

Theorem 5.2 (Bellamy–Łysko) A subcontinuum K of the product P×P of the pseudo-

arc P with itself is ample if and only if the projections of K to the first and second coordi-

nates both equal P.

Let M be a (homogeneous) continuum of dimension at most 1 and M̂ a continu-

ous curve of terminal pseudo-arcs, as defined in [14], with M as the quotient space

and the quotient map g : M̂ → M. Let g × g : M̂ × M̂ → M × M be the prod-

uct map, and ∆ = {(x, x) | x ∈ M} the diagonal of the product M × M. Define

M̂2
∆

= (g × g)−1(∆) and q∆ = (g × g)|M̂2
∆

: M̂2
∆
→ ∆. The map q∆ yields a con-

tinuous decomposition of M̂2
∆

into products of two pseudo-arcs, with the copy ∆ of

M as the quotient space. Let π1, π2 : M̂2
∆
→ M̂ be the projections onto the first and

second coordinates, respectively. Finally, let Da be the aposyndetic decomposition of

M with the quotient map qa : M → M/Da. The defined spaces and maps are shown

in the following commuting diagram.
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Proposition 5.3 If M is a homogeneous curve, then the group of self-homeomorphisms

of M̂ × M̂ that keep M̂2
∆

invariant and respect the decomposition {q−1
∆

(x) | x ∈ M} of

M̂2
∆

acts transitively on M̂2
∆

. In particular, if M is homogeneous, then so is M̂2
∆

.

Proof Let H be the group of homeomorphisms h : M̂ × M̂ → M̂ × M̂ such that

h(M̂2
∆

) = M̂2
∆

and h respects the decomposition {q−1
∆

(x) | x ∈ M}. Given a point in

M̂2
∆

, it suffices to show that (i) its orbit with respect to H intersects all sets q−1
∆

(x) for

x ∈ M, and (ii) if it intersects one such set, then it contains it.

If x, y ∈ M, by the homogeneity of M there is a homeomorphism f : M → M with

f (x) = y. This homeomorphism can be lifted to the homeomorphism f̂ : M̂ → M̂

such that g ◦ f̂ = f ◦ g by [14, Theorem 3, p. 95]. Note that the homeomorphism

f̂ × f̂ : M̂ × M̂ → M̂ × M̂ belongs to H and maps q−1
∆

(x) onto q−1
∆

(y), which shows

condition (i).

If (p1, p2), (p ′

1, p ′

2) ∈ q−1
∆

(x) for some x ∈ M, by [14, Theorem 5, p. 98] there

are homeomorphisms ĥ1, ĥ2 : M̂ → M̂ such that ĥ1(p1) = p ′

1, ĥ2(p2) = p ′

2 and

g ◦ ĥ1 = g ◦ ĥ2 = g. Observe that ĥ1 × ĥ2 : M̂ × M̂ → M̂ × M̂ belongs to H and

maps (p1, p2) to (p ′

1, p ′

2). Hence condition (ii) holds. The proof is complete.

Proposition 5.4 If M is a homogeneous curve and K is a subcontinuum of q−1
∆

(x) for

some x ∈ M, then the two following statements are equivalent:

(i) For every ε > 0 there is a continuum K ′ such that K ⊂ K ′ ⊂ Nε(K) ⊂ M̂2
∆

and

K ′ − q−1
∆

(x) 6= ∅;

(ii) K is an ample subcontinuum of q−1
∆

(x).

In particular, if a continuum Y in M̂2
∆

intersects both q−1
∆

(x) and its complement, then

Y contains an ample subcontinuum of q−1
∆

(x).
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Proof Suppose K is not ample in q−1
∆

(x). Since q−1
∆

(x) is the product of two pseudo-

arcs with the projections

π1|q
−1
∆

(x) : q−1
∆

(x) → g−1(x) and π2|q
−1
∆

(x) : q−1
∆

(x) → g−1(x),

by Theorem 5.2 at least one of the continua π1(K) and π2(K) is properly contained

in g−1(x). Say π1(K) 6= g−1(x) (the other case is similar). The continuum g−1(x) is

terminal in M̂, and thus π1(K ′) ⊂ g−1(x) for any continuum K ′ that is sufficiently

near to and intersects K . Therefore K ′ ⊂ π−1
1 (g−1(x)) = q−1

∆
(x) for such K ′, and

hence (i) does not hold.

Suppose K is ample in q−1
∆

(x). We apply Lemma 3.4 to the space X = M̂2
∆

and

decomposition D = {q−1
∆

(x) | x ∈ M}. By Proposition 5.3 the conditions of

Lemma 3.4 are satisfied. Let L be the closed set guaranteed by that lemma. Since

K ⊂ Int L, it follows that x ∈ Int q∆(L). Let Y ⊂ Int q∆(L) be a nondegenerate con-

tinuum containing x. Then K ′
= (q∆|L)−1(Y ) contains K . Moreover, K ′ is a contin-

uum because q∆|L is monotone. We also have K ′ − q−1
∆

(x) = (q∆|L)−1(Y − {x}) 6=
∅. Since K ⊂ K ′ ⊂ L, and L can be chosen as near to K as we wish, the continuum

K ′ can be defined arbitrarily near to K . Hence (i) holds. The proof is complete.

In the next theorem we assume that the aposyndetic and mutually aposyndetic

decompositions of a homogeneous curve M are the same. Since the quotients of

non-trivial aposyndetic decompositions are at most one-dimensional [25], we do

not know whether this assumption is essential (cf. Question 2).

Theorem 5.5 Let M be a homogeneous continuum of dimension at most one, whose

aposyndetic decomposition is mutually aposyndetic. Then M̂2
∆

is a homogeneous con-

tinuum, the mutual aposyndetic decomposition of M̂2
∆

is the collection

{q−1
∆

(q−1
a (u)) | u ∈ M/Da},

and each member of this collection is a semi-indecomposable continuum.

Proof The homogeneity of M̂2
∆

is shown in Proposition 5.3. We show that the sets

q−1
∆

(q−1
a (u)) are the members of the mutually aposyndetic decomposition of M̂2

∆
.

If x ∈ q−1
∆

(q−1
a (u)) and y ∈ q−1

∆
(q−1

a (v)), where u 6= v, by the mutual aposyn-

desis of M/Da there are disjoint continua A and B in M/Da having u and v in their

corresponding interiors. The map qa ◦ q∆ is monotone, and thus q−1
∆

(q−1
a (A)) and

q−1
∆

(q−1
a (B)) are disjoint continua in M̂2

∆
containing x and y in their corresponding

interiors. Hence M̂2
∆

is mutually aposyndetic at x and y.

Let x, y ∈ q−1
∆

(q−1
a (u)) for some u ∈ M/Da, and Ax and Ay be continua in M̂2

∆

containing x and y in their interiors, respectively. If M is a singleton, then M̂2
∆

is the

product of the pseudo-arcs with itself. In this case Ax ∩ Ay 6= ∅ by Example 5.1.

Suppose M is non-degenerate. The map q∆ is open, so each of the continua

q∆(Ax) and q∆(Ay) has some point of q−1
a (u) in its interior. Since q−1

a (u) is a ter-

minal continuum M, it follows that q−1
a (u) ⊂ q∆(Ax) ∩ q∆(Ay). Let p ∈ q−1

a (u).

Then Ax ∩ q−1
∆

(p) 6= ∅ 6= Ay ∩ q−1
∆

(p). Since M is non-degenerate, the interior of
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q−1
∆

(p) is empty. Therefore both Ax and Ay must intersect the complement of q−1
∆

(p).

By Proposition 5.4 there are continua Bx ⊂ Ax ∩ q−1
∆

(p) and By ⊂ Ay ∩ q−1
∆

(p) such

that Bx and By are ample in q−1
∆

(p). These continua have non-empty intersection by

Example 5.1. Therefore Ax ∩Ay 6= ∅, and hence M̂2
∆

is not mutually aposyndetic at x

and y. We have shown Q = {q−1
∆

(q−1
a (u)) | u ∈ X/Da} is the mutually aposyndetic

decomposition of M̂2
∆

.

The maps q∆ and qa are monotone, and thus the members of Q are connected.

It remains to show that they are semi-indecomposable. If qa is a homeomorphism,

the members q−1
∆

(q−1
a (u)) of Q are products of two pseudo-arcs, which are semi-

indecomposable by Example 5.1.

Suppose qa is not a homeomorphism. Given u ∈ M/Da, let K and L be subcon-

tinua of q−1
∆

(q−1
a (u)) with non-empty interiors relative to q−1

∆
(q−1

a (u)). The maps π1

and π2 are open and q−1
∆

(q−1
a (u)) is saturated with respect to them. Therefore the

maps πi |q
−1
∆

(q−1
a (u)) : q−1

∆
(q−1

a (u)) → g−1(q−1
a (u)) for i ∈ {1, 2} are open. Con-

sequently the sets π1(K), π1(L), π2(K), and π2(L) have non-empty interiors relative

to g−1(q−1
a (u)). Since q−1

a (u) is a member of the aposyndetic decomposition of M,

it is indecomposable [24, Theorem 1, p. 277]. The map g is open and has terminal

point inverses (such maps are also called atomic), which implies that g−1(q−1
a (u)) is

indecomposable. Thus π1(K) = π1(L) = π2(K) = π2(L) = g−1(q−1
a (u)). Since qa

is not a homeomorphism, there are two different points p, p ′ ∈ q−1
a (u). Note that

K ∩ q−1
∆

(p) 6= ∅ 6= L ∩ q−1
∆

(p) and K ∩ q−1
∆

(p ′) 6= ∅ 6= L ∩ q−1
∆

(p ′) by the last

statement. By Proposition 5.4, the continua K and L contain, correspondingly, ample

subcontinua AK and AL of q−1
∆

(p). The set q−1
∆

(p) is the product of two pseudo-arcs,

so AK ∩ AL 6= ∅ by Example 5.1. Hence K ∩ L 6= ∅, which completes the proof.

By Proposition 5.3, for every homogeneous curve M the set M̂2
∆

is a homoge-

neous continuum. Since M̂ is 1-dimensional, from the definition it follows that M̂2
∆

is a two-dimensional continuum. Moreover, M̂2
∆

has no proper, non-degenerate, ter-

minal subcontinuum. Indeed, such a subcontinuum of M̂2
∆

would either be properly

contained in some set q−1
∆

(x), or be the union of such sets. The former case is impos-

sible because q−1
∆

(x) is the product of two pseudo-arcs, which has no proper terminal

subcontinua. The latter case is impossible because the continuum {(x, x) | x ∈ M̂}
intersects all the set q−1

∆
(x), but contains none of them.

The fibers of the aposyndetic decomposition are terminal, and thus they must be

singletons in M̂2
∆

. Consequently, M̂2
∆

is aposyndetic. Since the sets q−1
∆

(q−1
a (u)) are

non-degenerate, M̂2
∆

is not mutually aposyndetic.

By Theorem 5.5 we conclude the following:

(i) If M is indecomposable, then M/Da is a singleton. Consequently, the mutually

aposyndetic decomposition of M̂2
∆

is trivial and M̂2
∆

is semi-indecomposable.

(ii) If M is mutually aposyndetic, then the sets q−1
∆

(x), which are the products of

two pseudo-arcs, are the fibers of the mutually aposyndetic decomposition of

M̂2
∆

.

(iii) If the members of the aposyndetic decomposition of M are homeomorphic

to an indecomposable curve Y and M/Da is mutually aposyndetic, then the

https://doi.org/10.4153/CJM-2010-010-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-010-4


200 J. R. Prajs

members of the mutually aposyndetic decomposition of M̂2
∆

are homeomor-

phic to Ŷ 2
∆

.

If the answer to Question 2 is yes, than for each homogeneous curve M at least

one of the cases (i), (ii), or (iii) holds. The spaces M̂2
∆

form a large collection of ho-

mogeneous continua having the mutually aposyndetic decomposition different from

the aposyndetic decomposition.
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[5] J. J. Charatonik and T. Maćkowiak, Around Effros’ theorem. Trans. Amer. Math. Soc. 298(1986),
no 2, 579–602. doi:10.2307/2000637

[6] H. S. Davis, D. P. Stadtlander, and P. M. Swingle, Properties of the set functions Tn . Portugal. Math.
21(1962), 113–133.

[7] E. G. Effros, Transformation groups and C∗-algebras. Ann. of Math. 81(1965), 38–55.
doi:10.2307/1970381

[8] C. L. Hagopian, Mutual aposyndesis. Proc. Amer. Math. Soc. 23(1969), 615–622.
doi:10.2307/2036598

[9] K. H. Hofmann and S. A. Morris, The Structure of Compact Groups. Second Revised and
Augmented Edition. de Gruyter Studies in Mathematics 25. de Gruyter, Berlin, 2006.

[10] A. Illanes, Pairs of indecomposable continua whose product is mutually aposyndetic, Topology Proc.
22 (1997), 239–246.

[11] F. B. Jones, Aposyndetic continua and certain boundary problems. Amer. J. Math. 63(1941), 545–553.
doi:10.2307/2371367

[12] , On a certain type of homogeneous plane continuum. Proc. Amer. Math. Soc. 6(1955),
735–740. doi:10.2307/2032927

[13] J. L. Kelley, Hyperspaces of a continuum. Trans. Amer. Math. Soc. 52(1942), 22–36.
doi:10.2307/1990151

[14] W. Lewis, Continuous curves of pseudo-arcs. Houston J. Math. 11(1985), no. 1, 91–99.
doi:10.1016/0315-0860(85)90079-5
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