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COMMUTATIVE INVARIANT THEORY
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Introduction

In this paper we will study some aspects of non-commutative in-
variant theory. Let V be a finite-dimensional vector space over a field
K of characteristic zero and let

K[V] = K®VφS\V)@ . . . ,and

K(V) =

be respectively the symmetric algebra and the tensor algebra over V.
Let G be a subgroup of GL(V). Then G acts on K[V] and K(V). Much
of this paper is devoted to the study of the (non-commutative) invariant
ring K(Vy of G acting on K(V}.

In the first part of this paper, we shall study the invariant ring in
the following situation.

Take a classical group G (i.e., G = SL(n, K), O(n, K) or Spin, K))
and the standard G-module K\ Let V be the d-th symmetric power of
Kn. Then G acts on V and we get K(V}°.

By the Lane-Kharehenko theorem ([L], [Kh]), the invariant ring K(V}G

is a free algebra. For the construction of explicit free generators, we
will develop a symbolic method along the lines of Kung-Rota [K-R].

In the second part of this paper, we will study S-algebras in the
sence of A.N. Koryukin. Koryukin [Ko] has proved that if V is a
finite-dimensional K-vector space and G is a reductive subgroup of GL(V)
then K(V)G is finitely generated as an S-algebra. We will prove that a
homogeneous system of generators for the (commutative) invariant ring
K[A2VφV]G gives rise to a system of generators for the invariant ring
K(Vy as an S-algebra.

In the final part of this paper, we will study (non-commutative) in-
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16 YASUO TERANISHI

variants of finite linear groups acting on the ring of 2 by 2 generic
matrices with zero trace. In this case, rings of invariants are finitely
generated and Cohen-Macaulay modules over their centrers. We will
give a formula for the Poincare series of the invariant rings. The formula
is analogous to the classical formula of Molien in the commutative case,
but more complicated.

§ 1. Umbral derivation of tensor invariants of n-ary forms

1.1. We consider the generic n-ary forms of degree dt

= Σ (
N \a

with coefficients αβ which are indeterminates over a field K of characteristic
zero. Here, for an a = (au , an) e Nn, |α| = ecx + + α«, ξ" = fβl ίβ"

and ( ) = . Then each transformation
\ a I ccx! an!

- Σ

carries the generic n-ary form f(ξu -,ξn) into another n-ary form

= Σ

The map αα -> a!a defines the d-th symmetric tensor representation of the

general linear group GL(n, K). Further let du d2, • ,d r be positive in-

tegers and consider a system of generic n-ary forms fufz, ,/ r of degree

du d2, , dτ, respectively:

Λ = Σ (*)α«ί , Λ - Σ ( * W , ••-,/;= Σ

Viewing the coefficients α^, α^2), , α^r) as independent variables over
K, we get a linear action of GL(n, K) on the polynomial ring

Let G be a classical subgroup (i.e., G = SL(n, K), O(n, K), or S/>(τι, K)).

The invariant ring S£g under the group action of G is called the ring of

simultaneous G-invariants of n-ary forms fl9 f2, , /r. The polynomial ring

Sn,d is Nr-graded by giving αi° multi-degree e4 = (0, , 0,1, 0, , 0), the
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NON-COMMUTATIVE INVARIANT THEORY 17

i-th unit vector of N r, the grading on Sftftf induces the same grading on
OG

For each m = (mu , my) e N r, we denote by (Sntύ)% the vector space

of degree m. If m = (1,1, , 1), the space is called the space of multi-

linear G-invariants of type d = (dl9 , dr).
"Γpf γθ) — t/r(X) . . . γ(l)\ r(2) _ t(γ{2) , r(2)\ . , r(r) _ t/r(r) . . . r(r)\

be the ^-dimensional column vectors whose entries xf are independent

commuting variables. We call these variable vectors x{1), x(2>, « ,x ( r )

umbral vectors and we call the polynomial ring K[xψ\ l<i<r,l<j<ri\

the umbral space. The umbral operator U is the linear operator from

the umbral space to the polynomial ring Sn>ίf defined by

a«\ if \a\ = dt

, otherwise,

where x(i)βl = x[i)aχ< xί)σn, for αreNn. For a monomial, we set

1.2. We associate to an ra-tuple i = (i19 i2, , ίn) of positive integers

satisfying 1 < ix < i2 < <in < r, an indeterminate pt( = p ί 2 i l...< n). Let /

be the ideal of the polynomial ring K[- - -,pv •] generated by the Plύcker

relations

The quotient ring

is the coordinate ring if [Gr(n, r)] of the Grassmann variety Gr(n, r). The

ring K[- -,pi9 •] (resp. UL"[Gr(rc, r)]) is an Nr-graded ring by giving each

pi degree eix + + ein e N r. We associate to each monomial

Pi'Pr Pί (i = (ii, , in), J = 0Ί» * > Jπ)> ••-,*== (fei, , ^ ) )

of degree d = (rf̂  , dr) e N r, a multi-linear form in a™, af\ , a\r) in

the following way. We replace each factor pmi...mn of a monomial PίP^

• Pk by the determinant |x(mi) x(7Λw)| of the n by π matrix
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18 YASUO TERANISHI

Then expanding the product of these determinants, we find that

C7(|αc«i>. . .*<«•>1.1*«»>.. .xu >\.. .\χ<**. .XM\)

is a Z-linear combination of terms of the form

α?.α?>... f lW(α,/l, . . . ,r€N ) with \a\ = du \β\ = d2, . . ., \γ\ = dr.

Therefore we can define a if-linear map

Un,rti : K[ - , p p - -]a > (Sπ, t f) (1...i)

by

THEOREM 1.1. The image of K[- ,p t, ]^ by the KΊinear map UnyT}4

is the K-υector space (Snyύ)
s^.%K) of multi-linear SL(nf K) invariants of type

d and the kernel is If\K[- - ,p ί ? -]a.

In other words, the map UnyrΛ induces a KΊinear isomorphism

K[Gx{n, r)]t = (Su,r,J%}tf>.

Proof. Consider the standard action of SL(n, K) on the umbral

vectors x(1), x{2\ -'-,x(r). Then the fundamental theorem of vector in-

variants (cf. [W] Chap. 2) says that the ring K[Gτc(n, r)] is isomorphic to

the ring of SL(n, if)-invariants of the umbral space, via the map

The umbral space is Nr-graded by giving each xψ degree ^ e N r.

Then it is clear that, for each d = (du , dr) e N r, the umbral operator

U: K[xf; l<ί<r,l<j<n]4 > (S^..^

is an SL(n, if)-isomorphism of vector spaces and hence we obtain i£-linear

isomorphisms,

K[Qt(jt, r))t ~ K[xf\ 1 < i < r, 1 < ; < n]fi%^
^ /Cf \SL(n,K)
— VOTO,ί/(l . l)

This completes the proof.

For every d = (du , dr) e N r, we set

k — \d\/n and d~ = (k — du -, k — dr).
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NON-COMMUTATIVE INVARIANT THEORY 19

Then it can be easily seen that if άϊmκ(SntJfg?if> > 1, d~ € Nr. For an
rc-tuple (ίu , ίn), 1 < h < ί2 < < in < r, let (& , i'r_n) denote the
complement of (/„ , in) in (1, 2, , r).

To each monomial

we associate the monomial

Then the map p-+p defines a if-linear isomorphism

K[Gτ(n, r)]< ~ K[Gτ(r - n, r)],-.

By Theorem 1.1, we obtain

COROLLARY. If aimK(SnJ^%K) > 1, then

Him (^ \SL(n,K) _ Λ™ /Cf \5L(n,X)

Let us recall some notations and definitions on Young diagrams.
Let λ = (λu λ2, •) be a partition. We identify Λ with the corresponding
Young diagram (denoted also by X). If λn > 0 and Λn+1 = 0, for some n,
we call n the length of λ and denote it by l(λ). A Young diagram whose
squares are filled with some positive integers is called a numbered diagram.
If a numbered diagram is column strict, i.e., the numbers in each row
are non-decreasing from left to right and numbers in each column are
strictly increasing from top down, it is called a Young tableau. If a Young
talbeau T has ix Γs, ί2 2's, etc, then the sequence (ίu i2, •) is called the
weight of T. For a Young diagram λ, we denote its transpose by *λ.

A monomial pil...in-Pjl...jΛ-—pkl...icn is called a standard monomial if
the associated numbered diagram

h h ' ' ' V

inJn ' " h

is a Young tableau. A Young tableau is called an SL(n, if)-tableau if
each column has n squares. Let T be an SL(n, iΓ)-tableau with weight
d = (du d2, , dr) e Nr. We denote the associated monomial in K[Gr(π, r)]
by p(T). Then p(T) has degree d.

PROPOSITION 1.1 ([D-R-S] Theorem 1). For each deN r , the set of
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20 YASUO TERANISHI

monomials {p(T); T is an SL(n, K)-tableau of weight d} is a K-basis of

K[Gτ(n, r)]4.

By Theorem 1.1 and Proposition 1.1 we then obtain the following

THEOREM 1.2. For each d = (du , dr) e N r, the set of elements

{Un,rt$(p(T)); T is an SL(n, K)-tableau of weight d) is a K-basis of the

vector space of multi-linear SL(n, K)4nvariants with type d.

Consider a free algebra K(aa\ α e N " and \a\ = d) generated by aa.

Then this algebra is N-graded by giving each aa degree one. For each

(non-commutative) monomial aaiaa2 aar of degree r, we set Ψr(aaiaa2 αβr)

= a™ a™- - -a{

a

r

r\ then we obtain a ίΓ-linear isomorphism

Ψr :K(aa;aeKn,\a\ = d}r • (Sn,«*>)<i> ,

where <d> = (d d ) e N r . Further we set

Then from Theorem 1.2, we obtain

PROPOSITION 1.2. For each r e N , the set of elements {Un>r>d(p(T)); T

is an SL(n, K)-tableau of weight <c£> e Nr} constitutes a K-basis of K(aa;

aeNn,\a\ = d>r.

Let T be a Young tableau with, say, s columns and let t be a posi-

tive integer with t < 5. Then we denote by Tt the Young tableau taken

from the first t columns of T. An SL(n, i£")-tableau T with, say, s columns

and weight (d d ) e N r is called indecomposable, if there is no positive

integer t, t < s, such that Tt is an SL(n, IQ-tableau of weight (d -d) e Nfc

for some k, 0 < k < r. Then the following result follows from Proposition

1.2 and the Lane-Kharchenko theorem.

THEOREM 1.3 ([Te2] Theorem 3.3). The set {Un>r>d(p(T)); r e N and T

is an indecomposable SL(ny K)-tableau of weight (d d)eN r } constitutes

a set of free generators of the non-commutative) invariant ring K(aa; a e Nn,

|α| = dyτι* κ>.

Let A(n, d, r) = άimκK[aa; a e Nw, | α | = d]SL(n>K) and

A(n, d, r) = dim,JK:<σβ; a e N*, \a\ = d)SL^K).

In the commutative case, the classical Hermite reciprocity theorem says

that A(2, d, r) — A(2, r, d) for all d and r. On the other hand, in the
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NON-COMMUTATIVE INVARIANT THEORY 21

non-commutative case, we obtain the following reciprocity theorem.

PROPOSITION 1.3. If r> n, then

A(n, d, r) = A(r - n, d~y r),

where d~ = rd/n — d.

Proof, This follows from the corollary of Theorem 1.1.

1.3. In this section we shall be concerned with simultaneous in-

variants of the orthogonal group O(n, K). Let n and r be positive integers

with n <; r and xijf 1 < i, j <> r, independent variables. Let I be an ideal

of the polynomial ring K[x{J; 1 <> ifj <, r] generated by the following

elements:

( 1 ) xtJ — xJt, 1 < i, j < r, and

( 2 ) the (n + 1) X (n + 1) minors of the r x r matrix X = (xtj),

The polynomial ring K[xiS; 1 <; i, j <, r] has an Nr-graded structure

by giving each xtj degree et + ejt Here, as before, et and eό denote

respectively the i-th and j-th. unit vectors of N r.

For each monomial xuhxUH- -xikjk of degree d e N r , we set

where x ω , •••,x(r) are umbral vectors and U the umbral operator, and

(x,y) = 2]i<i^n Wi, ^he standard inner product.

Then we get a iί-linear map

U%tTΛ : K[xtj; 1 < /, j < r] > (Sn,X...X).

The fundamental theorem of vector invariants (cf. [W] Chap. 2) for the

orthogonal group O(n, K) says that the ring K[xtj; 1 < i, j < r]/I is iso-

morphic to the ring K[xf\ 1 < i < r, 1 < j < n]oin'K) of orthogonal vector

invariants, via the map xij-^(x<i)xU)). By the same argument as in the

proof of Theorem 1.1, we then obtain the following result.

THEOREM 1.4. For each d e N r, the image of the KΊinear map UnyTA

is the vector space (Sny4)
0(nyK) of multi-linear O(n, K)4nvariants of type d,

and

Ker Un>τA = I n K[xtJ; 1 < i, j < r]4 .

In other words, the if-linear map C7nfΓϊί induces a if-linear isomorphism
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22 YASUO TERANISHI

from the if-vector space (K[xiS; 1 < i, j < r]/I)4 to the if-vector space of

multi-linear O(n, if)-invariants of type d.

Let, as before, <d> = (d- d ) e N " and ϋn,r,d = Ψ^U^^y

COROLLARY. For all d, r e N,

ft,,,* : (K[XiJ; 1 < ί, j < r]/I)<d> > K(aa; a e N», |α| = d}°r^

is a KΊinear isomorphism.

Let λ be a Young diagram. A Young tableau T with shape λ of

length < 7i is called an O(n, K)-tableau if Λ is an even partition. Given

(h, hy " , U 6 Nm and (ju j l 9 •, jm) e Nm with 1 < ίfc, ;fc < r, we denote by

(^h" -ik\j\jι- - -Jm) the determinant of the minor of the r by r symmetric

matrix

X = \Xij\ Xij = Xji)

with row indices (iu iZy , im) and column indices (juj2, ,im).

To each O(n, iί)-tableau of weight d e N r

n bn a2l b21

we associate an element x(T) of K[xtj; 1 < i, j < r] by

Λ(Γ) = Πt*i ( α ϋ α " aim 16416<2 bim.).

Then by Theorem 5.1 of [D-P], the set

{x(T); T is an O(n, ίQ-tableau of weight d}

constitutes a if-basis of (K[xtj; 1 < i, j < r]//)^. Combining this with the

fundamental theorem of vector invariants for the orthogonal group O(n, K),

we obtain

PROPOSITION 1.4. The set

{Unir^(x(T)); T is an O(n, K)-tableau of weight d}

is a K-basίs of the vector space of simultaneous O(n, K)-invariants of type d.

In particular, we have the following

PROPOSITION 1.5. The set
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{Un,rtd(x(T))l T is an O(n, K)-tableau of weight (d> <2)eNr}

is a K-basis of the vector space K(aa; αreNn, \a\ = d}?(n'K).

An O(n, i£)-tableau T of weight (d- d ) e N r with, say, s columns is

called indecomposable if, for any 0 < t < s, the sub-tableau Tt is not an

O(n, i£)-tabJeau of weight (d >d) e Nfc, 0 < A < r. Then the following

theorem follows from Proposition 1.5 and the Lane-Kharchenko theorem.

THEOREM 1.5. The set

{Untrid(x(T)); r e N and T is an indecomposable O(n, K)-tableau of

weight (d d)eN r } constitutes a set of free generators of the (non-com-

mutative) invariant ring K(aa\ # e N n , \a\ = d}0(n'κ).

1.4. In this section we shall be concerned with simultaneous in-

variants for the symplectic group Sp(ra, K). Let n be an even positive

integer and r an integer with r > n. Let xiJy 1 <, i, j <, r, i = j , be inde-

pendent commutative variables and let / be an ideal of the polynomial

ring K[xtj; 1 < i, j < r] generated by

( 1 ) x xji9
1 < i, j < r, and

( 2) the PfafRans of the (n + 2) X (n + 2) principal minors taken from

the upper corner of the skew-symmetric matrix

0 xn xlr '

— xn 0 x2r

- x l r 0

By giving each x^ degree ^ + e5 e N r, iT[xfj; 1 <; i, j < r] has an

Nr-graded structure. For each monomial xixixxi%i%' 'Xikjk of degree d e N r ,

we set

r ( i f c )

where L7" is the umbral operator and

[*, y] = (^ijί - ^ίyi) + + (χ ), "> = 2 ^ ^ w i t h

X =

Then we obtain a if-linear map

Untrt4: K [ x t J ; l<ίj < r ] t f > (Sn,α)(1...1} ,

and, by using the fundamental theorem of vector invariants for the
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symplectic group Sp(ra, K), we obtain the following

THEOREM 1.6. For each d e N r , the image of Un%rΛ is the vector space

of simultaneous Sp(n, K)-invariants of type d and

Ker E7n,r,< = / Π K[Xij; 1 < ίj < r], .

In other words the if-linear map UntTt4 induces a iί-linear isomorphism

from the space (Klx^; 1 < i, j < r]II)4 to the space of all multi-linear

simultaneous Sp(n, if)-invariants of type d.

For a 2/n-tuple (iu i2, , i2m) of positive integers with l<sίί<ί2<

- - - < hm < r> w e denote by [h i2 hm] the Pfaffian of the principal minor

taken from the upper corner of the r by r skew-symmetric matrix X =

{xtj\ xi} = — xSi)9 with row and column indices iu ί2ί , i2m. Let 2be a

partition of length < n. A Young tableau T of shape λ is called an

Sp(n, lf)-tableau if the transpose ιλ of λ is an even partition. To each

Sp(n, i?)-tableau

Γ =

an a2i

of weight d e Nr, we associate an element x(T) of K[xi}\ I <* i, j <, r] by

= [σn alkl] [a2ι α2fca]

Note that, since ιλ is an even partition, ku k2, are even integer. Then

it follows from Theorem 6.5 of [D-P] the set

{x(T); T is an Sp(n, ίQ-tableau of weight d}

is a i£-basis of the vector space (Klx^; 1 < i, j < r]//)^. Therefore by the

fundamental theorem of vector invariants for the symplectic group Sp(n> K),

we obtain the following two propositions.

PROPOSITION 1.6. The set

{UUiTΛ{x{T))\ T is an Sp(n, K)-tableau of weight d)

constitutes a K-basis of the vector space of all simultaneous multi-linear

Sp(n, K)4nvariants of type d.

PROPOSITION 1.7. For d e N , let ί?π,r,d be the K-linear map defined by

Un,r,d = Ψτ Un>rΛd...d). Then the set
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{UntTid(x(T)); T is an Sp(n, K)-tableau of weight (d d)eN r }

is a K'basis of the vector space K(aΛ\ aeNn, \a\ = d)r.

An Sp(n, i£)-tableau of weight (d d ) e N r with, say, s columns is

called indecomposable if, for any 0 < t < s, the sub-tableau Tt is not an

Sp(n, ϋΓ)-tableau. Then we, as before, obtain

THEOKEM 1.7. The set

{UniTid(x(T)); r e N and T is an indecomposable Sp(n, K)-tableau of

weight (d d)eN r } is a set of free generators of the (non-commutative)

invariant ring K(aa; <*eNn, |α| = d)Sp^κ\

§ 2. iS-Generators of tensor invariants

2.1. Let V be a finite dimensional If-vector space and G a subgroup

of GL(V) acting on K(V} as a group of graded algebra homomorphisms

on K(Vy. For each meN, the symmetric group Sm acts on the space

®mV by

a{vx ® ® i J = iVi(i) ® ® ^-l(m), σ 6 Sw .

In general a graded sub-algebra i? = ®mS>0 Ĵ m °f ^< V") is called an

iS-algebra if each Rm is a sub-Sm-module of ®m V. The invariant ring

K(V}° is an S-algebra, since the actions of GL(n,K) and Sm on ® m V

centralize each other. Let {fi}ieI be a system of homogeneous elements

of K(V)G. We denote by SK^; iel} the algebra generated by the fu

i e /, together with the actions of the symmetric groups. If SK(ft ίel}

= K(V}σ, then {/̂  i e/} is called a homogeneous system of S-generators.

If K(V}G has a homogeneous system of S-generators consisting of finitely

many tensor invariants, then K(V}G is called finitely generated as an

S-algebra. A. N. Koryukin [Ko] proved that if G is a reductive algebraic

subgroup of GL(V), the invariant ring K(λ/y° is finitely generated as an

S-algebra. We now consider the commutative ring K[®nV]G, n = dim V,

of all simultaneous polynomial invariants. To each homogeneous element

/ of K[®nV]°, we can associate an element/, called complete polarization,

of K(Vy. For details, consult [Tel].

THEOREM 2.1. (Theorem 2.1 [Tel]). Let G be a subgroup of GL(V) and

{fί}ιei a homogeneous system of generators of the (commutative) invariant

ring K[ξ&nV]G, n = dim V. Then {f}ieI is a homogeneous system of S-

generators of K(V}°.
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26 YASUO TERANISHI

Theorem 2.1 enables us to find such a number NgyV that the invariant

ring K(VyQ is generated as an S-algebra by invariants of degree <NQ>V.

THEOREM 2.2. If the field K is algebraically closed and G is an

algebraic subgroup of GL(V), then

( 1 ) if G is a finite group, we can take N^yV = # G,

( 2 ) if G is a torus, we can take N^)V = n2C(n2s\ts),

( 3 ) if G is semi-simple and connected, we can take

N~ - ^r( Zr*srΐ{s+1)(n* - l)s-rr(s + 1)!
*'F ~ n V n«s - r)/2))iy

Here n = dimV, s = dim G, and r = rank of G. For a positive integer k,

C(k) = L.C.M.{α e N; 0 < a < k}. For the definition of t, see [PI] Theorem 2.

Proof. By Theorem 2.1, the problem can be reduced to the commu-

tative case, and we obtain the desired result by Theorem 2 of [PI].

Remark. T. Tambour (Theorem 7 [T]) proved (1) by a different method.

In the commutative case, the proof of (1) was given by E. Noether [N],

of (2) by G. Kempf [K], and of (3) by V. L. Popov [PI].

2.2. T. Tambour [T] has investigated a generating function associated

with the graded S-algebra K(VyG and proved that the generating function

is equal to the Poincare series of the graded ring K[Λ2VφV]G, A2 = the

exterior square. Then one can naturally expect some relationship between

structure of the S-algebra and that of K[A2V®V]G. In this section we

will establish a relationship between them. For a partition λ, we denote

by sx(xu x2, - •) the Schur function corresponding to λ. The Little wood

identity ([M] Chap. 1)

Σ ; «i(*i> *2, •) = Πt(l - XίY'Π^il - x.Xj)-1

shows that the GL(n, K) ( = GL(V))-module K[A2V®V] is decomposed

into the irreducible parts

K[A2V®V] = ®ιWι,

where λ is over all the partitions of length < n and Wλ denotes the

irreducible GL(n, IQ-submodule corresponding to λ. Let

Xtj, 1 <i<j <n, and xk, 1 < k < n ,

be indeterminates, then
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K[A2V®V] = K[xij9 xk;l<ί<j<n,l<k<n].

For each m, 1 < m < n, we define a polynomial Jm in # t J and #fc by

is odd,

where

I I, if (iu , im) is an even permutation of 1, , m

— 1, if (iu , ίm) is an odd permutation of 1, , m

0, otherwise.

When m is even, Jm is the Pfaffian relative to the principal m by m minor

taken from the upper corner of the n by n skew-symmetric matrix X =

For a partition λ = (Λj, /12> * * •> Ό of length < n, we set

where lt = λt — λi+1, 1 < i < n, with ^n + 1 = 0. Then it is easily seen that

fx{xi5y xk) is an weight vector under the action of the group of all upper

triangular n by n matrices and

• t4
ft(xij9 xk) = t£t£> tλ

n»fλ(xi}, x k ) .

Therefore fλ(xij9 xk) is the highest weight vector of the irreducible GL(n, K)-

module Wλ and hence we have

Wι = GL(n,K) fι(xij9xJ.

We denote by eλ the Young idempotent corresponding to a partition λ.

Let

Then 3^ is an irreducible GL( ι̂, K)-submodule of ® m F and hence there

exists a GL(n, if)-isomorphism

ax:Wλ >Tl9

for each partition λ of length < n. We define an isomorphism of GL(n, K)-

modules
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by a = ®m*n aλ.

For partitions λ and μ of length < τι, consider the GL(n> ίQ-map 3F

and 5Γ: Wλ ® W, -> W^,, defined as follows: for /• e Wa and /, e W,,

=/i*Λ (usual multiplication of polynomials)

and

where ea+/l the Young idempotent associated with the partition λ + μ.

Since Wx = GL(Λ, K)-fx(xij9 xk) and /^Λ:^, x,) fμ{xijy xμ) = fx+μixu, «*), the

map 3Γ is well-defined.

Hereafter we asssume that the field if is algebraically closed. Because

W; and WΛ are irreducible GL(n, jK>modules and the decomposition of

the tensor product Wλ<g>Wμ into irreducible parts contains the irreducible

GL(n, ίQ-module Wι+μ with multiplicity one, it follows from Schur's lemma

that Ψ and W coincide, up to a non-zero scalar in K. Therefore the

following diagram of GL(n, ^-isomorphisms is commutative up to a non-

zero scalar:

Wt®Wμ—+Wι+μ

I ψ

ax ® aμ\

where ψ is defined by ψ(x<g>y) = eλ+μ(x<g)y), xeTx, ye Tμ.

THEOREM 2.3. Let the field K be algebraically closed and G a sub-

group of GL(V). If {fi}ieI a homogeneous system of generators for the

(commutative) invariant ring K[Λ2V®V]G, then {a(fi)}ieI is a homogeneous

system of S-generators for the {non-commutative) invariant ring K(V}°.

Proof. For each &eN, we regard ®kV as a GL{n, K) x Sfc-module.

Then by H. WeyΓs reciprocity theorem, it decomposes as

Here Vfk denotes the irreducible Sk-module corresponding to the partition

λ. Denoting by K[Sk] the group ring of Sk, we have
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and hence

This together with the diagram above completes the proof.

§ 3 Non-commutative invariants of rings of 2 by 2 generic matrices

with zero trace

In this section we will study invariant rings of 2 by 2 generic matrices

with zero trace under linear actions of finite groups. Let K be a field

of characteristic zero and let Xu X2, ---9Xn {n > 2) be 2 by 2 generic

matrices with trace zero over K. That is

χ ^ \ x n x12] χ%=sϊyu Λ.1 , . . , * . = [*ιi *«
Lx21 — χnΛ Ly21 — ynl lzu —zn

where xlί9 xn, x2l9 yll9 yι2f y21, , zn, z12, z2ί are commuting indeterminates

over K. The if-subalgebra

Rn — K[XU X2, , Xn]

generated by Xu X2, , Xn is called the ring of n generic 2 by 2 matrices

with zero trace. This is a if-subalgebra of the 2 by 2 matrix algebra

M2(K[xίjf yijf Zij]) over the polynomial ring K[xij9yij9ztJ].

Let M&K) denote the set of 2 by 2 matrices with zero trace. The

group GL(2, K) acts on φnM°2(K) by

g-(Al9 A29 , An) = (g Axg'\ g A,g-\ ^gAag-1), with

ί e GL(2, X) and (A,, A8, , An) e ®nM°(K).

Then in a natural manner (cf. [Pr]), Rn can be identified with the ring

of polynomial GL(2, if )-concomitants

f:®*MS(K) >Mt(K).

We denote by Cn the invariant ring K[®nM2{K)]GL^κ\ Cn can be

identified with center of Rn (cf. [Pr] Sec. 2). The general linear group

GL(n, K) acts on Rn and Cn by the left multiplication on the column

vector t(Xl9 X2ί , Xn) of 2 by 2 generic matrices with zero trace Xu X2,

THEOREM 3.1. Lβί G be a reductive subgroup of GL(n, K). Then the

invariant ring R% is a finitely generated K-algebra.
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Proof. By a well-known theorem in invariant theory, CG is finitely

generated i£-algebra. Since RG is a finitely generated C^-module, R% is

finitely generated if-algebra.

We now prove that for any finite subgroup G of GL(n, K)> RG is a

Cohen-Macaulay module over C%. First we recall a result of Le Bruyn.

THEOREM 3.2 ([L] Theorem 5.1). Rn is Cohen-Macaulay over Cn.

We are going to prove the following

THEOREM 3.3. If G is a finite subgroup of GL(n, K), then RG is a

Cohen-Macaulay C-^module.

Proof. Because

c° = κ[®nM2(κ)]°χsL«>v,

Cn is a Cohen-Macaulay ring, by the fundamental theorem of Hochstar

and Roberts. Let (θu , θs) be a homogeneous system of parameters of

C%. By a standard argument, we see that (θu -,θs) is a homogeneous

system of parameters for Cn. By Le Bruyn's theorem, Rn is a Cohen-

Macaulay module over Cn. Hence RJ(θl9 •••,#„) is a finite dimensional

K-vector space. Since the group GχSL(2, K) is reductive, there exists

a Raynord's operator

ft: Rn > R G .

Let W = {fe Rn; f* = 0}. Then W is an i^-module and

We choose a basis (fu , ft) of RJ(ΘU , #,) so that (/, , fu) is a basis

of RGJ(θu ••-,«.) and /;+ ι, . : Λ is ajbasis of Wl(βu -"9Θ§)W. Let Λ, ., fu

be representative in i?^ for fί9 - - -,fu, respectively. Then we have

This completes the proof.

For a Young diagram λ (possibly λ = φ) of length < 1 and a Young

diagram μ, we define an integer κ(μ, X) e {— 1, 0, 1} as follows:

( i ) if

(2 ) if Z(μ) > 1 and μ has no skew-hook of length 2l(μ) — 3 through

the node (l(μ), 1), then κ{μ, λ) = 0,
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( 3 ) if l(μ) > 1 and μ has a skew-hook h of length 21 (μ) — 3 through

the node (l(μ), 1), then κ(μ, X) = (— l)ω{ h)κ(μ\h, X), where ω(h)

denotes the leg length of h.

Let G be a finite subgroup of GL(n, K), In the commutative case,

the Poincare series of the invariant ring K[xu , xn]° is given by Molien's

classical formula

\G\ ^g*

The invariant ring R® is an N-graded ring by giving each Xt degree 1.

We consider the Poincare series of R%:

THEOREM 3.4. Let G be a finite subgroup of GL(n, K). Then the

Poincare series of the invariant ring R% is given by

fy _ 1 v v (*(μ, φ) + κ(μ
) ZeG Z\G\ det(l^ - pππ(g)t2)

where N = n(n + l)/2, μ is over all the partitions of length < n and pμ

denotes the irreducible representation of GL{n, K) corresponding to μ.

Proof. We denote by R°n the i£-vector space of polynomial concomi-

tants :

• M°2(K).

Since M2(K) = Ml{K)®KΛ2, we have a direct decomposition

We can make Rn an iVw-graded ring by giving each Xt degree et e Nn,

and consider the Poincare series

P(Rn, tu t2, , O = Zde^dimK(Rn)^' .#>

of Rn in this multi-gradation.

In general, let G be a group and let V and W be G-modules of finite

rank. G acts on ®nV, weN, diagonaly. We denote by K[®nV, W]° the

if-vector space of G-equivariant polynomial maps

Let M (=UL3> be the standard SO(3, 2Γ)-module. Because SL(2, K)
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and SO(3, K) are isogenous, we have

Rn =

Then by Theorem 5.3 [Te3], we obtain

where μ is over all the partition of length < n.

Let, in general, V be a finite dimensional i£-vector space and G a

finite subgroup of GL(V). If M is a GL(V)-module of finite rank, we

denote by MG the fixed subspace of M under the action of G. Then we

have

where Tr(M, g) denotes the trace of g as a linear operator on M.

Therefore

1 (/c(/i, φ) + tc(μ, \ 3 ) s μ ( t r - -tn) {μl

, ίn are eigenvalues of g)

det(l* - pnaig)?)

This completes the proof.

By a result of L. Le Bruyn ([L] Chap. 4), the Poincare series of Rn

satisfies the functional equation

P ( R n , lit) = ( - ΐ)n-H3nP(Rn, t), n>3.

It follows from Theorem 3.5 with an easy verification that the Poincare

series of the invariant ring R% satisfies the same functional equation as

P(Rn, t), if G is a finite subgroup of SL(n, K).

PROPOSITION 3.1. If G is a finite subgroup of SL(n, K), then the

Poincare series of R® satisfies the functional equation
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The following theorem is a generalization of [L] (Chap. 3, Theorem 4.2).

THEOREM 3.6. Let G be a finite subgroup of SL(n, K). Then the

invariant ring R® (n > 2) has finite global dimension if and only if n < 3

and G = {e}.

Proof. By [L] (Chap. 3. Theorem 4.2), Rn has finite global dimension

if and only if n < 3. Hence it is enough to prove the "only if" part.

Suppose that the invariant ring R% has finite global dimension. Then its

Poincase series P(Rn, t) has the form

for some monic polynomial with integer coefficients (cf. [L], p. 87). Since

R% is a Cohen-Macaulay module over C?, the Poincare series has the form

•*v*^n> ί) =z ~jz :—cjz :—r 71 7ΓV »

where F(t) is a monic polynomial with no-negative integer coefficients

and au* ,ar are some positive integers. Therefore f(t) is product of

some cyclotomic polynomials. By the functional equation, we see that

3n, iίn>3

4, if n = 2 .

If 7i > 3, then one sees easily that P(R%, t) has a pole of order

3n — 3 at t = 1 and hence /(£) has the form

for some ^(OeZM of degree 3 with g(i) Φ 0. Moreover, since g(£) is

product of cyclotomic polynomials, one sees that

g(t) = 1 + f, (1 + ί)(l ± « + ί2), or (1 + 03

This implies that 3π — 6 < dim^(i?^)!, (R^ is the vector space of in-

variants of degree one. Since, clearly, dimκ(R%) < n, we have n < 3. If

n = 3, we have dim^iϊ^X = άimκ(Rn\ = 3, and hence G = {β}. If n = 2,

by the same argument as before, we find that

f(t) = (1 - 03(l + t).

This implies, dimκiR%)λ = dim^(i?2)i = 2, and hence G = {e}.
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