Y. Teranishi Nagoya Math. J. Vol. 121 (1991), 15-34

YOUNG DIAGRAMMATIC METHODS IN NON-COMMUTATIVE INVARIANT THEORY

YASUO TERANISHI

Introduction

In this paper we will study some aspects of non-commutative invariant theory. Let V be a finite-dimensional vector space over a field K of characteristic zero and let

$$K[V] = K \oplus V \oplus S^{2}(V) \oplus \cdots, \text{ and}$$
$$K\langle V \rangle = K \oplus V \oplus \otimes^{2} V \oplus \otimes^{3} V \oplus \cdots$$

be respectively the symmetric algebra and the tensor algebra over V. Let G be a subgroup of GL(V). Then G acts on K[V] and $K\langle V \rangle$. Much of this paper is devoted to the study of the (non-commutative) invariant ring $K\langle V \rangle^{a}$ of G acting on $K\langle V \rangle$.

In the first part of this paper, we shall study the invariant ring in the following situation.

Take a classical group G (i.e., G = SL(n, K), O(n, K) or Sp(n, K)) and the standard G-module K^n . Let V be the d-th symmetric power of K^n . Then G acts on V and we get $K \langle V \rangle^{q}$.

By the Lane-Kharchenko theorem ([L], [Kh]), the invariant ring $K \langle V \rangle^{a}$ is a free algebra. For the construction of explicit free generators, we will develop a symbolic method along the lines of Kung-Rota [K-R].

In the second part of this paper, we will study S-algebras in the sence of A.N. Koryukin. Koryukin [Ko] has proved that if V is a finite-dimensional K-vector space and G is a reductive subgroup of GL(V) then $K\langle V\rangle^{a}$ is finitely generated as an S-algebra. We will prove that a homogeneous system of generators for the (commutative) invariant ring $K[\Lambda^{2}V \oplus V]^{a}$ gives rise to a system of generators for the invariant ring $K\langle V\rangle^{a}$ as an S-algebra.

In the final part of this paper, we will study (non-commutative) in-

Received February 6, 1990.

variants of finite linear groups acting on the ring of 2 by 2 generic matrices with zero trace. In this case, rings of invariants are finitely generated and Cohen-Macaulay modules over their centrers. We will give a formula for the Poincare series of the invariant rings. The formula is analogous to the classical formula of Molien in the commutative case, but more complicated.

§ 1. Umbral derivation of tensor invariants of n-ary forms

1.1. We consider the generic n-ary forms of degree d,

$$f(\xi_1,\xi_2,\cdots,\xi_n)=\sum_{\substack{\alpha\in\mathbb{N}^n\\|\alpha|=d}}\binom{d}{\alpha}a_{\alpha}\xi^{\alpha}$$

with coefficients a_{α} which are indeterminates over a field K of characteristic zero. Here, for an $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$, $|\alpha| = \alpha_1 + \dots + \alpha_n$, $\xi^{\alpha} = \xi^{\alpha_1} \dots \xi^{\alpha_n}$ and $\binom{d}{\alpha} = \frac{d!}{\alpha_1! \dots \alpha_n!}$. Then each transformation

$$\xi_i = \sum_{1 \leq k \leq n} a_{ki} \xi'_k ,$$

carries the generic *n*-ary form $f(\xi_1, \dots, \xi_n)$ into another *n*-ary form

$$f'(\xi_1,\xi_2,\cdots,\xi_n)=\sum_{\alpha\in\mathbb{N}^n}\binom{d}{\alpha}a'_{\alpha}\xi^{\alpha}.$$

The map $a_{\alpha} \to a'_{\alpha}$ defines the *d*-th symmetric tensor representation of the general linear group GL(n, K). Further let d_1, d_2, \dots, d_r be positive integers and consider a system of generic *n*-ary forms f_1, f_2, \dots, f_r of degree d_1, d_2, \dots, d_r , respectively:

$$f_1 = \sum_{\substack{\alpha \in \mathbf{N}^n \\ |\alpha| = d_1}} {d_1 \choose \alpha} a_{\alpha}^{(1)} \xi^{\alpha}, \ f_2 = \sum_{\substack{\beta = \mathbf{N}^n \\ |\beta| = d_2}} {d_2 \choose \beta} a_{\beta}^{(2)} \xi^{\beta}, \ \cdots, \ f_r = \sum_{\substack{\gamma \in \mathbf{N}^n \\ |\gamma| = d_r}} {d_r \choose \gamma} a_{\gamma}^{(r)} \xi^{\gamma}.$$

Viewing the coefficients $a_{\alpha}^{(1)}, a_{\beta}^{(2)}, \dots, a_{\gamma}^{(r)}$ as independent variables over K, we get a linear action of GL(n, K) on the polynomial ring

$$S_{n,d} = K[a_{\alpha}^{(1)}, a_{\beta}^{(2)}, \cdots, a_{\gamma}^{(r)}].$$

Let G be a classical subgroup (i.e., G = SL(n, K), O(n, K), or Sp(n, K)). The invariant ring $S^{G}_{n,d}$ under the group action of G is called the ring of simultaneous G-invariants of n-ary forms f_1, f_2, \dots, f_r . The polynomial ring $S_{n,d}$ is N^r-graded by giving $a^{(i)}_{\alpha}$ multi-degree $\underline{e}_i = (0, \dots, 0, 1, 0, \dots, 0)$, the

i-th unit vector of \mathbf{N}^r , the grading on $S_{n,d}$ induces the same grading on $S_{n,d}^{g}$.

For each $\underline{m} = (m_1, \dots, m_r) \in \mathbf{N}^r$, we denote by $(S_{n,d})^{\mathcal{G}}_{\underline{m}}$ the vector space of degree \underline{m} . If $\underline{m} = (1, 1, \dots, 1)$, the space is called the space of multilinear *G*-invariants of type $d = (d_1, \dots, d_r)$.

Let $x^{(1)} = {}^{t}(x_1^{(1)}, \dots, x_n^{(1)}), x^{(2)} = {}^{t}(x_1^{(2)}, \dots, x_n^{(2)}), \dots, x^{(r)} = {}^{t}(x_1^{(r)}, \dots, x_n^{(r)})$ be the *n*-dimensional column vectors whose entries $x_j^{(i)}$ are independent commuting variables. We call these variable vectors $x^{(1)}, x^{(2)}, \dots, x^{(r)}$ umbral vectors and we call the polynomial ring $K[x_j^{(i)}; 1 \le i \le r, 1 \le j \le n]$ the umbral space. The umbral operator U is the linear operator from the umbral space to the polynomial ring $S_{n,q}$ defined by

$$U(x^{(i)\alpha}) = \begin{cases} a_{\alpha}^{(i)}, \text{ if } |\alpha| = d_i \\ 0, \text{ otherwise }, \end{cases}$$

where $x^{(i)\alpha_1} = x_1^{(i)\alpha_1} \cdots x_n^{(i)\alpha_n}$, for $\alpha \in \mathbf{N}^n$. For a monomial, we set

$$U(x^{(i_1)\alpha_1}\cdots x^{(i_t)\alpha_t}) = U(x^{(i_1)\alpha_1})\cdots U(x^{(i_t)\alpha_t})$$

1.2. We associate to an *n*-tuple $\underline{i} = (i_1, i_2, \dots, i_n)$ of positive integers satisfying $1 \le i_1 < i_2 < \dots < i_n \le r$, an indeterminate $p_i(=p_{i_2i_1\dots i_n})$. Let I be the ideal of the polynomial ring $K[\dots, p_i, \dots]$ generated by the Plücker relations

$$\sum_{1 \le k \le n+1} (-1)^{k+1} p_{j_1 j_2 \cdots j_k \cdots j_{n+1}} p_{i_1 i_2 \cdots i_{n-1} j_k}.$$

The quotient ring

$$K[\cdots, p_i, \cdots]/I$$

is the coordinate ring $K[\operatorname{Gr}(n, r)]$ of the Grassmann variety $\operatorname{Gr}(n, r)$. The ring $K[\dots, p_i, \dots]$ (resp. $K[\operatorname{Gr}(n, r)]$) is an N^r-graded ring by giving each p_i degree $\underline{e}_{i_1} + \dots + \underline{e}_{i_n} \in \mathbf{N}^r$. We associate to each monomial

$$p_i \cdot p_j \cdots p_k (i = (i_1, \cdots, i_n), j = (j_1, \cdots, j_n), \cdots, k = (k_1, \cdots, k_n))$$

of degree $\underline{d} = (d_1, \dots, d_r) \in \mathbf{N}^r$, a multi-linear form in $a^{(1)}_{\alpha}, a^{(2)}_{\beta}, \dots, a^{(r)}_{r}$ in the following way. We replace each factor $p_{m_1\dots m_n}$ of a monomial $p_i \cdot p_j$ $\dots \cdot p_k$ by the determinant $|x^{(m_1)} \cdots x^{(m_n)}|$ of the *n* by *n* matrix

$$\begin{pmatrix} x_1^{(m_1)} \cdots x_n^{(m_n)} \\ \vdots & \vdots \\ x_1^{(m_1)} \cdots x_n^{(m_n)} \end{pmatrix}.$$

Then expanding the product of these determinants, we find that

$$U(|x^{(i_1)}\cdots x^{(i_n)}|\cdot |x^{(j_1)}\cdots x^{(j_n)}|\cdots |x^{(k_1)}\cdots x^{(k_n)}|)$$

is a Z-linear combination of terms of the form

$$a^{(1)}_{a} \cdot a^{(2)}_{\beta} \cdots a^{(r)}_{r} (lpha, eta, \cdots, eta \in \mathbf{N}^n) \quad ext{with} \ |lpha| = d_1, |eta| = d_2, \cdots, |eta| = d_r$$

Therefore we can define a K-linear map

$$U_{n,r,d}: K[\cdots, p_i, \cdots]_d \longrightarrow (S_{n,d})_{(1\cdots 1)}$$

by

$$U_{n,r,d}(p_{i_{1}\cdots i_{n}} \cdot p_{j_{1}\cdots j_{n}} \cdots p_{k_{1}\cdots k_{n}}) = U(|x^{(i_{1})} \cdots x^{(i_{n})}| \cdot |x^{(j_{1})} \cdots x^{(j_{n})}| \cdots |x^{(k_{1})} \cdots x^{(k_{n})}|,$$

THEOREM 1.1. The image of $K[\dots, p_i, \dots]_d$ by the K-linear map $U_{n,r,d}$ is the K-vector space $(S_{n,d})_{(1\dots1)}^{SL(n,K)}$ of multi-linear SL(n, K) invariants of type \underline{d} and the kernel is $I \cap K[\dots, p_i, \dots]_d$.

In other words, the map $U_{n,r,d}$ induces a K-linear isomorphism

$$K[\operatorname{Gr}(n,r)]_{\underline{d}} \simeq (S_{n,r,\underline{d}})^{SL(n,K)}_{(1\cdots 1)}.$$

Proof. Consider the standard action of SL(n, K) on the umbral vectors $x^{(1)}, x^{(2)}, \dots, x^{(r)}$. Then the fundamental theorem of vector invariants (cf. [W] Chap. 2) says that the ring K[Gr(n, r)] is isomorphic to the ring of SL(n, K)-invariants of the umbral space, via the map

$$p_{i_1\cdots i_n} \longrightarrow |x^{(i_1)}\cdots x^{(i_n)}|.$$

The umbral space is \mathbf{N}^r -graded by giving each $x_j^{(i)}$ degree $\underline{e}_i \in \mathbf{N}^r$. Then it is clear that, for each $\underline{d} = (d_1, \dots, d_r) \in \mathbf{N}^r$, the umbral operator

$$U: K[x_j^{(i)}; 1 \le i \le r, 1 \le j \le n]_{\mathfrak{q}} \longrightarrow (S_{n,\mathfrak{q}})_{(1\cdots 1)}$$

is an SL(n, K)-isomorphism of vector spaces and hence we obtain K-linear isomorphisms,

$$\begin{split} K[\operatorname{Gr}(n,r)]_{\mathfrak{d}} &\simeq K[x_{j}^{(i)}; 1 \leq i \leq r, 1 \leq j \leq n]_{(1\cdots1)}^{SL(n,K)} \\ &\simeq (S_{n,\mathfrak{d}})^{SL(n,K)}_{(1\cdots1)} \,. \end{split}$$

This completes the proof.

For every $d = (d_1, \dots, d_r) \in \mathbf{N}^r$, we set

$$k = |\underline{d}|/n$$
 and $\underline{d}^{\sim} = (k - d_1, \cdots, k - d_r)$.

Then it can be easily seen that if $\dim_{\kappa}(S_{n,d})_{(1\cdots,1)}^{SL(n,K)} \geq 1$, $\underline{d}^{\sim} \in \mathbf{N}^{r}$. For an *n*-tuple $(i_{1}, \cdots, i_{n}), 1 \leq i_{1} \leq i_{2} < \cdots < i_{n} \leq r$, let $(i'_{1}, \cdots, i'_{r-n})$ denote the complement of (i_{1}, \cdots, i_{n}) in $(1, 2, \cdots, r)$.

To each monomial

$$p = p_{i_1\cdots i_n} \cdot p_{j_1\cdots j_n} \cdot \cdots \cdot p_{k_1\cdots k_n}$$

we associate the monomial

$$\hat{p} = p_{i_1'\cdots i_{r-n}} \cdot p_{j_1'\cdots j_{r-n}'} \cdot \cdots \cdot p_{k_1'\cdots k_{r-n}'}$$

Then the map $p \rightarrow \hat{p}$ defines a K-linear isomorphism

$$K[\operatorname{Gr}(n, r)]_{d} \simeq K[\operatorname{Gr}(r - n, r)]_{d}.$$

By Theorem 1.1, we obtain

COROLLARY. If $\dim_{K}(S_{n,d})_{(1\cdots 1)}^{SL(n,K)} \geq 1$, then

$$\dim_{K}(S_{n,d})_{(1\cdots 1)}^{SL(n,K)} = \dim_{K}(S_{r-n,d})_{(1\cdots 1)}^{SL(n,K)}.$$

Let us recall some notations and definitions on Young diagrams. Let $\lambda = (\lambda_1, \lambda_2, \cdots)$ be a partition. We identify λ with the corresponding Young diagram (denoted also by λ). If $\lambda_n > 0$ and $\lambda_{n+1} = 0$, for some n, we call n the length of λ and denote it by $l(\lambda)$. A Young diagram whose squares are filled with some positive integers is called a numbered diagram. If a numbered diagram is column strict, i.e., the numbers in each row are non-decreasing from left to right and numbers in each column are strictly increasing from top down, it is called a Young tableau. If a Young talbeau T has i_1 l's, i_2 2's, etc, then the sequence (i_1, i_2, \cdots) is called the weight of T. For a Young diagram λ , we denote its transpose by ' λ .

A monomial $p_{i_1...i_n} \cdot p_{j_1...j_n} \cdot \cdot \cdot p_{k_1...k_n}$ is called a standard monomial if the associated numbered diagram

$$\begin{pmatrix} i_1 & j_1 & \cdots & k_1 \\ \vdots & \vdots & & \vdots \\ i_n & j_n & \cdots & k_n \end{pmatrix}$$

is a Young tableau. A Young tableau is called an SL(n, K)-tableau if each column has n squares. Let T be an SL(n, K)-tableau with weight $\underline{d} = (d_1, d_2, \dots, d_r) \in \mathbb{N}^r$. We denote the associated monomial in $K[\operatorname{Gr}(n, r)]$ by p(T). Then p(T) has degree \underline{d} .

PROPOSITION 1.1 ([D-R-S] Theorem 1). For each $\underline{d} \in \mathbf{N}^r$, the set of

monomials $\{p(T); T \text{ is an } SL(n, K)\text{-tableau of weight } \underline{d}\}\$ is a K-basis of $K[\operatorname{Gr}(n, r)]_d$.

By Theorem 1.1 and Proposition 1.1 we then obtain the following

THEOREM 1.2. For each $\underline{d} = (d_1, \dots, d_r) \in \mathbf{N}^r$, the set of elements $\{U_{n,r,d}(p(T)); T \text{ is an } SL(n, K)\text{-tableau of weight } \underline{d}\}$ is a K-basis of the vector space of multi-linear $SL(n, K)\text{-invariants with type } \underline{d}$.

Consider a free algebra $K\langle a_{\alpha}; \alpha \in \mathbb{N}^n$ and $|\alpha| = d \rangle$ generated by a_{α} . Then this algebra is N-graded by giving each a_{α} degree one. For each (non-commutative) monomial $a_{\alpha_1}a_{\alpha_2}\cdots a_{\alpha_r}$ of degree *r*, we set $\Psi_r(a_{\alpha_1}a_{\alpha_2}\cdots a_{\alpha_r}) = a_{\alpha_1}^{(1)}a_{\alpha_2}^{(2)}\cdots a_{\alpha_r}^{(r)}$, then we obtain a *K*-linear isomorphism

$$\Psi_r: K\langle a_{\alpha}; \alpha \in \mathbf{N}^n, |\alpha| = d \rangle_r \longrightarrow (S_{n,\langle d \rangle})_{\langle 1 \rangle},$$

where $\langle d \rangle = (d \cdots d) \in \mathbf{N}^r$. Further we set

$$\hat{U}_{n,r,d} = \Psi_r^{-1} U_{n,r,\langle d \rangle}.$$

Then from Theorem 1.2, we obtain

PROPOSITION 1.2. For each $r \in \mathbb{N}$, the set of elements $\{\hat{U}_{n,r,d}(p(T)); T$ is an SL(n, K)-tableau of weight $\langle d \rangle \in \mathbb{N}^r$ constitutes a K-basis of $K \langle a_a; \alpha \in \mathbb{N}^n, |\alpha| = d \rangle_r$.

Let T be a Young tableau with, say, s columns and let t be a positive integer with t < s. Then we denote by T_t the Young tableau taken from the first t columns of T. An SL(n, K)-tableau T with, say, s columns and weight $(d \cdots d) \in \mathbf{N}^r$ is called indecomposable, if there is no positive integer t, t < s, such that T_t is an SL(n, K)-tableau of weight $(d \cdots d) \in \mathbf{N}^k$ for some k, 0 < k < r. Then the following result follows from Proposition 1.2 and the Lane-Kharchenko theorem.

THEOREM 1.3 ([Te2] Theorem 3.3). The set $\{\hat{U}_{n,r,d}(p(T)); r \in \mathbb{N} \text{ and } T$ is an indecomposable SL(n, K)-tableau of weight $(d \cdots d) \in \mathbb{N}^r\}$ constitutes a set of free generators of the non-commutative) invariant ring $K\langle a_a; \alpha \in \mathbb{N}^n,$ $|\alpha| = d\rangle^{ST(n,K)}$.

Let
$$A(n, d, r) = \dim_{\kappa} K[a_{\alpha}; \alpha \in \mathbb{N}^{n}, |\alpha| = d]^{SL(n,K)}$$
 and
 $\hat{A}(n, d, r) = \dim_{\kappa} K\langle a_{\alpha}; \alpha \in \mathbb{N}^{n}, |\alpha| = d \rangle^{SL(n,K)}$.

In the commutative case, the classical Hermite reciprocity theorem says that A(2, d, r) = A(2, r, d) for all d and r. On the other hand, in the

non-commutative case, we obtain the following reciprocity theorem.

PROPOSITION 1.3. If r > n, then

$$\hat{A}(n, d, r) = \hat{A}(r - n, d^{\sim}, r),$$

where $d^{\sim} = rd/n - d$.

Proof. This follows from the corollary of Theorem 1.1.

1.3. In this section we shall be concerned with simultaneous invariants of the orthogonal group O(n, K). Let n and r be positive integers with $n \leq r$ and x_{ij} , $1 \leq i, j \leq r$, independent variables. Let I be an ideal of the polynomial ring $K[x_{ij}; 1 \leq i, j \leq r]$ generated by the following elements:

- (1) $x_{ij} x_{ji}, 1 \le i, j \le r$, and
- (2) the $(n + 1) \times (n + 1)$ minors of the $r \times r$ matrix $X = (x_{ij}), 1 \le i, j \le r.$

The polynomial ring $K[x_{ij}; 1 \le i, j \le r]$ has an \mathbf{N}^r -graded structure by giving each x_{ij} degree $\underline{e}_i + \underline{e}_j$. Here, as before, \underline{e}_i and \underline{e}_j denote respectively the *i*-th and *j*-th unit vectors of \mathbf{N}^r .

For each monomial $x_{i_1j_1}x_{i_2j_2}\cdots x_{i_kj_k}$ of degree $\underline{d} \in \mathbf{N}^r$, we set

$$U_{n,r,q}(x_{i_1j_1}x_{i_2j_2}\cdots x_{i_kj_k}) = U((x^{(i_1)}, x^{(j_1)})(x^{(i_2)}, x^{(j_2)})\cdots (x^{(i_k)}, x^{(j_k)})),$$

where $x^{(1)}, \dots, x^{(r)}$ are umbral vectors and U the umbral operator, and $(x, y) = \sum_{1 \le i \le n} x_i y_i$, the standard inner product.

Then we get a K-linear map

$$U_{n,r,d}: K[x_{ij}; 1 \leq i, j \leq r] \longrightarrow (S_{n,d})_{(1\cdots 1)}.$$

The fundamental theorem of vector invariants (cf. [W] Chap. 2) for the orthogonal group O(n, K) says that the ring $K[x_{ij}; 1 \le i, j \le r]/I$ is isomorphic to the ring $K[x_j^{(1)}; 1 \le i \le r, 1 \le j \le n]^{o(n,K)}$ of orthogonal vector invariants, via the map $x_{ij} \to (x^{(i)}x^{(j)})$. By the same argument as in the proof of Theorem 1.1, we then obtain the following result.

THEOREM 1.4. For each $\underline{d} \in \mathbf{N}^r$, the image of the K-linear map $U_{n,r,\underline{d}}$ is the vector space $(S_{n,\underline{d}})^{o(n,K)}$ of multi-linear O(n, K)-invariants of type \underline{d} , and

Ker
$$U_{n,r,d} = I \cap K[x_{ij}; 1 \leq i, j \leq r]_d$$
.

In other words, the K-linear map $U_{n,r,d}$ induces a K-linear isomorphism

from the K-vector space $(K[x_{ij}; 1 \le i, j \le r]/I)_d$ to the K-vector space of multi-linear O(n, K)-invariants of type \underline{d} .

Let, as before, $\langle d \rangle = (d \cdots d) \in \mathbf{N}^r$ and $\hat{U}_{n,r,d} = \Psi_r^{-1} U_{n,r,\langle d \rangle}$.

COROLLARY. For all $d, r \in \mathbb{N}$,

$$\hat{U}_{n,r,d}: (K[x_{ij}; 1 \le i, j \le r]/I)_{\langle d \rangle} \longrightarrow K \langle a_{\alpha}; \alpha \in \mathbf{N}^n, |\alpha| = d \rangle_r^{O(n,K)}$$

is a K-linear isomorphism.

Let λ be a Young diagram. A Young tableau T with shape λ of length $\leq n$ is called an O(n, K)-tableau if λ is an even partition. Given $(i_1, i_2, \dots, i_m) \in \mathbb{N}^m$ and $(j_1, j_2, \dots, j_m) \in \mathbb{N}^m$ with $1 \leq i_k, j_k \leq r$, we denote by $(i_1 i_2 \cdots i_k | j_1 j_2 \cdots j_m)$ the determinant of the minor of the r by r symmetric matrix

$$X = (x_{ij}; x_{ij} = x_{ji})$$

with row indices (i_1, i_2, \dots, i_m) and column indices (j_1, j_2, \dots, j_m) .

To each O(n, K)-tableau of weight $\underline{d} \in \mathbf{N}^r$;

	$[a_{11}]$	$b_{_{11}}$	a_{21}	$b_{{}_{21}}$	·	•	•]
	•	•	·	•	•	•	•
T =	•	•	•	•	•	•	•
	•	•	•	•	•	•	•
	a_{1m_1}	$b_{1m_{1}}$	$a_{2m_{2}}$	b_{2m_2}	•	•	۰J

we associate an element x(T) of $K[x_{ij}; 1 \le i, j \le r]$ by

 $x(T) = \prod_{i\geq 1} (a_{i1}a_{i2}\cdots a_{im_i} | b_{i1}b_{i2}\cdots b_{im_i}).$

Then by Theorem 5.1 of [D-P], the set

 $\{x(T); T \text{ is an } O(n, K)\text{-tableau of weight } \underline{d}\}$

constitutes a K-basis of $(K[x_{ij}; 1 \le i, j \le r]/I)_d$. Combining this with the fundamental theorem of vector invariants for the orthogonal group O(n, K), we obtain

PROPOSITION 1.4. The set

 $\{U_{n,r,d}(x(T)); T \text{ is an } O(n, K)\text{-tableau of weight } d\}$

is a K-basis of the vector space of simultaneous O(n, K)-invariants of type \underline{d} . In particular, we have the following

PROPOSITION 1.5. The set

 $\{\hat{U}_{n,r,d}(x(T)); T \text{ is an } O(n, K)\text{-tableau of weight } (d \cdots d) \in \mathbb{N}^r\}$

is a K-basis of the vector space $K\langle a_{\alpha}; \alpha \in \mathbb{N}^n, |\alpha| = d \rangle_r^{O(n.K)}$.

An O(n, K)-tableau T of weight $(d \cdots d) \in \mathbf{N}^r$ with, say, s columns is called indecomposable if, for any 0 < t < s, the sub-tableau T_t is not an O(n, K)-tableau of weight $(d \cdots d) \in \mathbf{N}^k$, 0 < k < r. Then the following theorem follows from Proposition 1.5 and the Lane-Kharchenko theorem.

THEOREM 1.5. The set

 $\{\hat{U}_{n,r,d}(x(T)); r \in \mathbb{N} \text{ and } T \text{ is an indecomposable } O(n, K)\text{-tableau of weight } (d \cdots d) \in \mathbb{N}^r\}$ constitutes a set of free generators of the (non-commutative) invariant ring $K\langle a_{\alpha}; \alpha \in \mathbb{N}^n, |\alpha| = d\rangle^{o(n,K)}$.

1.4. In this section we shall be concerned with simultaneous invariants for the symplectic group Sp(n, K). Let n be an even positive integer and r an integer with r > n. Let x_{ij} , $1 \le i, j \le r, i = j$, be independent commutative variables and let I be an ideal of the polynomial ring $K[x_{ij}; 1 \le i, j \le r]$ generated by

(1) $x_{ij} + x_{ji}, 1 \le i, j \le r$, and

(2) the Pfaffians of the $(n + 2) \times (n + 2)$ principal minors taken from the upper corner of the skew-symmetric matrix

$$\begin{pmatrix} 0 & x_{12} \cdots x_{1r} \\ -x_{12} & 0 & \cdots & x_{2r} \\ & & & \ddots & \ddots \\ -x_{1r} & & \cdots & 0 \end{pmatrix}$$

By giving each x_{ij} degree $\underline{e}_i + \underline{e}_j \in \mathbf{N}^r$, $K[x_{ij}; 1 \le i, j \le r]$ has an \mathbf{N}^r -graded structure. For each monomial $x_{i_1j_1}x_{i_2j_2}\cdots x_{i_kj_k}$ of degree $\underline{d} \in \mathbf{N}^r$, we set

$$U_{n,r,d}(x_{i_1j_1}x_{i_2j_2}\cdots x_{i_kj_k}) = U([x^{(i_1)}, x^{(j_1)}]\cdots [x^{(i_k)}, x^{(j_k)}]),$$

where U is the umbral operator and

$$[x, y] = (x_1y'_1 - x'_1y_1) + \dots + (x_my'_m - x'_my_m), \quad n = 2m, \text{ with} x = (x_1x'_1x_2x'_2 \cdots x_mx'_m), \quad y = (y_1y'_1y_2y_2 \cdots y_my'_m).$$

Then we obtain a K-linear map

$$U_{n,r,d}: K[x_{ij}; 1 \le i, j \le r]_d \longrightarrow (S_{n,d})_{(1\dots 1)},$$

and, by using the fundamental theorem of vector invariants for the

symplectic group Sp(n, K), we obtain the following

THEOREM 1.6. For each $\underline{d} \in \mathbf{N}^r$, the image of $U_{n,r,d}$ is the vector space of simultaneous Sp(n, K)-invariants of type \underline{d} and

Ker
$$U_{n,r,d} = I \cap K[x_{ij}; 1 \leq i, j \leq r]_d$$
.

In other words the K-linear map $U_{n,r,d}$ induces a K-linear isomorphism from the space $(K[x_{ij}; 1 \le i, j \le r]/I)_d$ to the space of all multi-linear simultaneous $\operatorname{Sp}(n, K)$ -invariants of type \underline{d} .

For a 2m-tuple $(i_1, i_2, \dots, i_{2m})$ of positive integers with $1 \le i_1 < i_2 < \dots < i_{2m} \le r$, we denote by $[i_1 i_2 \cdots i_{2m}]$ the Pfaffian of the principal minor taken from the upper corner of the r by r skew-symmetric matrix $X = (x_{ij}; x_{ij} = -x_{ji})$, with row and column indices i_1, i_2, \dots, i_{2m} . Let λ be a partition of length $\le n$. A Young tableau T of shape λ is called an Sp(n, K)-tableau if the transpose λ of λ is an even partition. To each Sp(n, K)-tableau

$$T = \begin{pmatrix} a_{11} & a_{21} & \cdots \\ \vdots & \vdots & \cdots \\ \vdots & \vdots & \cdots \\ a_{1k_1} & a_{2k_2} & \cdots \end{pmatrix}$$

of weight $\underline{d} \in N^r$, we associate an element x(T) of $K[x_{ij}; 1 \le i, j \le r]$ by

$$x(T) = [a_{11} \cdots a_{1k_1}] [a_{21} \cdots a_{2k_2}] \cdots$$

Note that, since ' λ is an even partition, k_1, k_2, \cdots are even integer. Then it follows from Theorem 6.5 of [D-P] the set

 $\{x(T); T \text{ is an } Sp(n, K)\text{-tableau of weight } d\}$

is a K-basis of the vector space $(K[x_{ij}; 1 \le i, j \le r]/I)_d$. Therefore by the fundamental theorem of vector invariants for the symplectic group Sp(n, K), we obtain the following two propositions.

PROPOSITION 1.6. The set

 $\{U_{n,\tau,d}(x(T)); T \text{ is an } Sp(n, K)\text{-tableau of weight } d\}$

constitutes a K-basis of the vector space of all simulataneous multi-linear Sp(n, K)-invariants of type \underline{d} .

PROPOSITION 1.7. For $d \in \mathbf{N}$, let $\hat{U}_{n,r,d}$ be the K-linear map defined by $\hat{U}_{n,r,d} = \Psi_r U_{n,r,(d...d)}$. Then the set

 $\{\hat{U}_{n,r,d}(x(T)); T \text{ is an } Sp(n, K)\text{-tableau of weight } (d \cdots d) \in \mathbf{N}^r\}$

is a K-basis of the vector space $K\langle a_{\alpha}; \alpha \in \mathbf{N}^{n}, |\alpha| = d \rangle_{\tau}$.

An Sp(n, K)-tableau of weight $(d \cdots d) \in \mathbf{N}^r$ with, say, s columns is called indecomposable if, for any 0 < t < s, the sub-tableau T_t is not an Sp(n, K)-tableau. Then we, as before, obtain

THEOREM 1.7. The set

 $\{\hat{U}_{n,r,d}(x(T)); r \in \mathbb{N} \text{ and } T \text{ is an indecomposable } Sp(n, K)\text{-tableau of weight } (d \cdots d) \in \mathbb{N}^r\}$ is a set of free generators of the (non-commutative) invariant ring $K\langle a_a; \alpha \in \mathbb{N}^n, |\alpha| = d\rangle^{Sp(n,K)}$.

§ 2. S-Generators of tensor invariants

2.1. Let V be a finite dimensional K-vector space and G a subgroup of GL(V) acting on $K\langle V\rangle$ as a group of graded algebra homomorphisms on $K\langle V\rangle$. For each $m \in N$, the symmetric group S_m acts on the space $\otimes^m V$ by

$$\sigma(v_1 \otimes \cdots \otimes v_m) = v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(m)}, \quad \sigma \in S_m.$$

In general a graded sub-algebra $R = \bigoplus_{m\geq 0} R_m$ of $K\langle V \rangle$ is called an S-algebra if each R_m is a sub- S_m -module of $\otimes^m V$. The invariant ring $K\langle V \rangle^a$ is an S-algebra, since the actions of GL(n, K) and S_m on $\otimes^m V$ centralize each other. Let $\{f_i\}_{i\in I}$ be a system of homogeneous elements of $K\langle V \rangle^a$. We denote by $SK\langle f_i; i\in I \rangle$ the algebra generated by the f_i , $i\in I$, together with the actions of the symmetric groups. If $SK\langle f_i; i\in I \rangle = K\langle V \rangle^a$, then $\{f_i; i\in I\}$ is called a homogeneous system of S-generators. If $K\langle V \rangle^a$ has a homogeneous system of S-generators consisting of finitely many tensor invariants, then $K\langle V \rangle^a$ is called finitely generated as an S-algebra. A. N. Koryukin [Ko] proved that if G is a reductive algebraic subgroup of GL(V), the invariant ring $K\langle V \rangle^a$ is finitely generated as an S-algebra. We now consider the commutative ring $K[\bigoplus^n V]^a$, $n = \dim V$, of all simultaneous polynomial invariants. To each homogeneous element f of $K[\bigoplus^n V]^a$, we can associate an element \hat{f} , called complete polarization, of $K\langle V \rangle^a$. For details, consult [Te1].

THEOREM 2.1. (Theorem 2.1 [Te1]). Let G be a subgroup of GL(V) and $\{f_i\}_{i\in I}$ a homogeneous system of generators of the (commutative) invariant ring $K[\bigoplus {}^nV]^{\sigma}$, $n = \dim V$. Then $\{\hat{f}\}_{i\in I}$ is a homogeneous system of S-generators of $K\langle V\rangle^{\sigma}$.

Theorem 2.1 enables us to find such a number $N_{\tilde{G},V}$ that the invariant ring $K\langle V\rangle^a$ is generated as an S-algebra by invariants of degree $\leq N_{\tilde{G},V}$.

THEOREM 2.2. If the field K is algebraically closed and G is an algebraic subgroup of GL(V), then

- (1) if G is a finite group, we can take $N_{\widetilde{G},v} = \# G$,
- (2) if G is a torus, we can take $N_{G,V} = n^2 C(n^2 s! t^s)$,
- (3) if G is semi-simple and connected, we can take

$$N_{\widetilde{G}, V} = n^2 C \Big(rac{2^{r+s} n^{2(s+1)} (n^2 - 1)^{s-r} t^r (s+1)!}{3^s (((s-r)/2))!)^2} \Big) \,.$$

Here $n = \dim V$, $s = \dim G$, and $r = \operatorname{rank}$ of G. For a positive integer k, $C(k) = \operatorname{L.C.M.}\{a \in \mathbb{N}; 0 < a \leq k\}$. For the definition of t, see [P1] Theorem 2.

Proof. By Theorem 2.1, the problem can be reduced to the commutative case, and we obtain the desired result by Theorem 2 of [P1].

Remark. T. Tambour (Theorem 7 [T]) proved (1) by a different method. In the commutative case, the proof of (1) was given by E. Noether [N], of (2) by G. Kempf [K], and of (3) by V. L. Popov [P1].

2.2. T. Tambour [T] has investigated a generating function associated with the graded S-algebra $K\langle V\rangle^{\sigma}$ and proved that the generating function is equal to the Poincare series of the graded ring $K[\Lambda^2 V \oplus V]^{\sigma}$, $\Lambda^2 =$ the exterior square. Then one can naturally expect some relationship between structure of the S-algebra and that of $K[\Lambda^2 V \oplus V]^{\sigma}$. In this section we will establish a relationship between them. For a partition λ , we denote by $s_{\lambda}(x_1, x_2, \cdots)$ the Schur function corresponding to λ . The Littlewood identity ([M] Chap. 1)

$$\sum_{\lambda} s_{\lambda}(x_1, x_2, \cdots) = \prod_{i} (1 - x_i)^{-1} \prod_{i < j} (1 - x_i x_j)^{-1}$$

shows that the GL(n, K) (= GL(V))-module $K[\Lambda^2 V \oplus V]$ is decomposed into the irreducible parts

$$K[\Lambda^2 V \oplus V] = \oplus_{\lambda} W_{\lambda},$$

where λ is over all the partitions of length $\leq n$ and W_{λ} denotes the irreducible GL(n, K)-submodule corresponding to λ . Let

$$x_{ij}, \ 1 \leq i < j \leq n$$
, and $x_k, \ 1 \leq k \leq n$

be indeterminates, then

 $\mathbf{26}$

$$K[\Lambda^2 V \oplus V] = K[x_{ij}, x_k; 1 \le i < j \le n, 1 \le k \le n].$$

For each m, $1 \le m \le n$, we define a polynomial J_m in x_{ij} and x_k by

$$J_m = \begin{cases} \sum_{i_1\cdots i_m} \varepsilon^{i_1\cdots i_m} x_{i_1i_2}\cdots x_{i_{m-1}i_m}, & \text{if } m \text{ is even,} \\ \sum_{i_1\cdots i_m} \varepsilon^{i_1\cdots i_m} x_{i_1i_2}\cdots x_{i_{m-2}i_{m-1}}x_{i_m}, & \text{if } m \text{ is odd,} \end{cases}$$

where

$$\varepsilon^{i_1\cdots i_m} = \begin{cases} 1, \text{ if } (i_1, \cdots, i_m) \text{ is an even permutation of } 1, \cdots, m \\ -1, \text{ if } (i_1, \cdots, i_m) \text{ is an odd permutation of } 1, \cdots, m \\ 0, \text{ otherwise.} \end{cases}$$

When m is even, J_m is the Pfaffian relative to the principal m by m minor taken from the upper corner of the n by n skew-symmetric matrix $X = (x_{ij}; x_{ij} = -x_{ij})$.

For a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ of length $\leq n$, we set

$$f_{\lambda}(x_{ij}, x_k) = J_1^{l_1} J_2^{l_2} \cdots J_n^{l_n},$$

where $l_i = \lambda_i - \lambda_{i+1}$, $1 \le i \le n$, with $\lambda_{n+1} = 0$. Then it is easily seen that $f_i(x_{ij}, x_k)$ is an weight vector under the action of the group of all upper triangular n by n matrices and

$$\begin{pmatrix} t_1 & & \\ & \ddots & t_{ij} \\ & & t_n \end{pmatrix} f_i(x_{ij}, x_k) = t_1^{\lambda_1} t_2^{\lambda_2} \cdots t_n^{\lambda_n} f_i(x_{ij}, x_k) .$$

Therefore $f_i(x_{ij}, x_k)$ is the highest weight vector of the irreducible GL(n, K)-module W_i and hence we have

$$W_{\lambda} = GL(n, K) \cdot f_{\lambda}(x_{ij}, x_k) \, .$$

We denote by e_{λ} the Young idempotent corresponding to a partition λ . Let

$$T_{i} = e_{i} \cdot \otimes {}^{m} V.$$

Then T_{λ} is an irreducible GL(n, K)-submodule of $\otimes^{m} V$ and hence there exists a GL(n, K)-isomorphism

$$a_{\lambda}: W_{\lambda} \longrightarrow T_{\lambda},$$

for each partition λ of length $\leq n$. We define an isomorphism of GL(n, K)-modules

$$a: K[\Lambda^2 V \oplus V] \longrightarrow \bigoplus_{\iota(\mathfrak{k}) \leq n} T_{\mathfrak{k}},$$

by $a = \bigoplus_{l(l) \leq n} a_l$.

For partitions λ and μ of length $\leq n$, consider the GL(n, K)-map Ψ and $\Psi': W_{\lambda} \otimes W_{\mu} \to W_{\lambda+\mu}$, defined as follows: for $f_1 \in W_{\lambda}$ and $f_2 \in W_{\mu}$,

$$\Psi(f_1 \otimes f_2) = f_1 \cdot f_2$$
 (usual multiplication of polynomials)

and

$$\Psi'(f_1 \otimes f_2) = a_{\lambda+\mu}^{-1}(e_{\lambda+\mu} \cdot (a_{\lambda}(f_1) \otimes a_{\mu}(f_2)))$$

where $e_{\lambda+\mu}$ the Young idempotent associated with the partition $\lambda + \mu$. Since $W_{\lambda} = GL(n, K) \cdot f_{\lambda}(x_{ij}, x_{k})$ and $f_{\lambda}(x_{ij}, x_{k}) \cdot f_{\mu}(x_{ij}, x_{\mu}) = f_{\lambda+\mu}(x_{ij}, x_{k})$, the map Ψ is well-defined.

Hereafter we assume that the field K is algebraically closed. Because W_{λ} and W_{μ} are irreducible GL(n, K)-modules and the decomposition of the tensor product $W_{\lambda} \otimes W_{\mu}$ into irreducible parts contains the irreducible GL(n, K)-module $W_{\lambda+\mu}$ with multiplicity one, it follows from Schur's lemma that Ψ and Ψ' coincide, up to a non-zero scalar in K. Therefore the following diagram of GL(n, K)-isomorphisms is commutative up to a non-zero scalar:

where ψ is defined by $\psi(x \otimes y) = e_{\lambda+\mu}(x \otimes y), x \in T_{\lambda}, y \in T_{\mu}$.

THEOREM 2.3. Let the field K be algebraically closed and G a subgroup of GL(V). If $\{f_i\}_{i \in I}$ a homogeneous system of generators for the (commutative) invariant ring $K[\Lambda^2 V \oplus V]^a$, then $\{a(f_i)\}_{i \in I}$ is a homogeneous system of S-generators for the (non-commutative) invariant ring $K \langle V \rangle^a$.

Proof. For each $k \in \mathbb{N}$, we regard $\otimes^{k} V$ as a $GL(n, K) \times S_{k}$ -module. Then by H. Weyl's reciprocity theorem, it decomposes as

$$\otimes {}^{*}V = \bigoplus_{\substack{\iota(\lambda) \leq n \\ |\lambda| = k}} T_{\lambda} \otimes V_{\lambda}^{s_{k}}, \quad n = \dim_{\kappa} V.$$

Here $V_{\lambda}^{S_k}$ denotes the irreducible S_k -module corresponding to the partition λ . Denoting by $K[S_k]$ the group ring of S_k , we have

$$T_{\iota} \otimes V_{\iota}^{S_k} \simeq (K[S_k]e_{\iota}) \cdot T_{\iota},$$

and hence

$$(\otimes^k V)^{\scriptscriptstyle G} = \bigoplus_{\substack{\iota(\lambda) \leq n \\ |\lambda| = k}} (K[S_k]e_{\lambda}) \cdot (T_{\lambda})^{\scriptscriptstyle G} \,.$$

This together with the diagram above completes the proof.

§ 3. Non-commutative invariants of rings of 2 by 2 generic matrices with zero trace

In this section we will study invariant rings of 2 by 2 generic matrices with zero trace under linear actions of finite groups. Let K be a field of characteristic zero and let X_1, X_2, \dots, X_n $(n \ge 2)$ be 2 by 2 generic matrices with trace zero over K. That is

$$X_1 = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & -x_{11} \end{bmatrix}, \quad X_2 = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & -y_{11} \end{bmatrix}, \quad \cdots, \quad X_n = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & -z_{11} \end{bmatrix},$$

where x_{11} , x_{12} , x_{21} , y_{11} , y_{12} , y_{21} , \cdots , z_{11} , z_{12} , z_{21} are commuting indeterminates over K. The K-subalgebra

$$R_n = K[X_1, X_2, \cdots, X_n]$$

generated by X_1, X_2, \dots, X_n is called the ring of *n* generic 2 by 2 matrices with zero trace. This is a *K*-subalgebra of the 2 by 2 matrix algebra $M_2(K[x_{ij}, y_{ij}, z_{ij}])$ over the polynomial ring $K[x_{ij}, y_{ij}, z_{ij}]$.

Let $M_2^{\circ}(K)$ denote the set of 2 by 2 matrices with zero trace. The group GL(2, K) acts on $\bigoplus^n M_2^{\circ}(K)$ by

$$g \cdot (A_1, A_2, \dots, A_n) = (g A_1 g^{-1}, g A_2 g^{-1}, \dots, g A_n g^{-1}),$$
 with $g \in GL(2, K)$ and $(A_1, A_2, \dots, A_n) \in \bigoplus^n M_2^o(K)$.

Then in a natural manner (cf. [Pr]), R_n can be identified with the ring of polynomial GL(2, K)-concomitants

$$f: \oplus^n M_2^o(K) \longrightarrow M_2(K)$$
.

We denote by C_n the invariant ring $K[\bigoplus^n M_2(K)]^{aL(2,K)}$. C_n can be identified with center of R_n (cf. [Pr] Sec. 2). The general linear group GL(n, K) acts on R_n and C_n by the left multiplication on the column vector ' (X_1, X_2, \dots, X_n) of 2 by 2 generic matrices with zero trace X_1, X_2, \dots, X_n .

THEOREM 3.1. Let G be a reductive subgroup of GL(n, K). Then the invariant ring R_n^G is a finitely generated K-algebra.

Proof. By a well-known theorem in invariant theory, C_n^{g} is finitely generated K-algebra. Since R_n^{g} is a finitely generated C_n^{g} -module, R_n^{g} is finitely generated K-algebra.

We now prove that for any finite subgroup G of GL(n, K), R_n^G is a Cohen-Macaulay module over C_n^G . First we recall a result of Le Bruyn.

THEOREM 3.2 ([L] Theorem 5.1). R_n is Cohen-Macaulay over C_n .

We are going to prove the following

THEOREM 3.3. If G is a finite subgroup of GL(n, K), then R_n^g is a Cohen-Macaulay C_n^g module.

Proof. Because

$$C_n^{\scriptscriptstyle G}=K[\oplus^n M_2(K)]^{\scriptscriptstyle G imes SL(2,K)}$$
 ,

 $C_n^{\mathcal{G}}$ is a Cohen-Macaulay ring, by the fundamental theorem of Hochstar and Roberts. Let $(\theta_1, \dots, \theta_s)$ be a homogeneous system of parameters of $C_n^{\mathcal{G}}$. By a standard argument, we see that $(\theta_1, \dots, \theta_s)$ is a homogeneous system of parameters for C_n . By Le Bruyn's theorem, R_n is a Cohen-Macaulay module over C_n . Hence $R_n/(\theta_1, \dots, \theta_n)$ is a finite dimensional *K*-vector space. Since the group $G \times SL(2, K)$ is reductive, there exists a Raynord's operator

Let $W = \{f \in R_n; f^* = 0\}$. Then W is an R_n^{σ} -module and

 $R_n = R_n^G \oplus W.$

 $\sharp: R_n \longrightarrow R_n^G$.

We choose a basis $(\bar{f}_1, \dots, \bar{f}_t)$ of $R_n/(\theta_1, \dots, \theta_s)$ so that $(\bar{f}, \dots, \bar{f}_u)$ is a basis of $R_n^G/(\theta_1, \dots, \theta_s)$ and $\bar{f}_{u+1}, \dots, \bar{f}_t$ is a basis of $W/(\theta_1, \dots, \theta_s)W$. Let f_1, \dots, f_u be representative in R_n^G for $\bar{f}_1, \dots, \bar{f}_u$, respectively. Then we have

$$R_n^G = \bigoplus_{i=1}^u f_i K[\theta_1, \cdots, \theta_s].$$

This completes the proof.

For a Young diagram λ (possibly $\lambda = \phi$) of length ≤ 1 and a Young diagram μ , we define an integer $\kappa(\mu, \lambda) \in \{-1, 0, 1\}$ as follows:

- (1) if $l(\mu) \leq 1$, $\kappa(\mu, \lambda) = \begin{cases} 1, & \text{if } \mu = \lambda. \\ 0, & \text{otherwise} \end{cases}$
- (2) if $l(\mu) > 1$ and μ has no skew-hook of length $2l(\mu) 3$ through the node $(l(\mu), 1)$, then $\kappa(\mu, \lambda) = 0$,

(3) if $l(\mu) > 1$ and μ has a skew-hook h of length $2l(\mu) - 3$ through the node $(l(\mu), 1)$, then $\kappa(\mu, \lambda) = (-1)^{\omega(h)} \kappa(\mu \setminus h, \lambda)$, where $\omega(h)$ denotes the leg length of h.

Let G be a finite subgroup of GL(n, K). In the commutative case, the Poincare series of the invariant ring $K[x_1, \dots, x_n]^{a}$ is given by Molien's classical formula

$$P(K[x_1, \cdots, x_n]^d, t) = \frac{1}{|G|} \sum_{g \in G} \frac{1}{\det(1_n - g \cdot t)}$$

The invariant ring R_n^G is an N-graded ring by giving each X_i degree 1. We consider the Poincare series of R_n^G :

$$P(R_n^G, t) = \sum_{r \in N} \dim_K(R_n^G)_r t^r$$
.

THEOREM 3.4. Let G be a finite subgroup of GL(n, K). Then the Poincare series of the invariant ring R_n^G is given by

$$P(R_n^G, t) = \frac{1}{|G|} \sum_{g \in G} \sum_{\mu} \frac{(\kappa(\mu, \phi) + \kappa(\mu, \Box)) \operatorname{Tr}(\rho_{\mu}(g)) t^{|\lambda|}}{\det(1_N - \rho_{\Box\Box}(g) t^2)}$$

where N = n(n + 1)/2, μ is over all the partitions of length $\leq n$ and ρ_{μ} denotes the irreducible representation of GL(n, K) corresponding to μ .

Proof. We denote by R_n^o the K-vector space of polynomial concomitants:

$$f: \oplus^n M_2^o(K) \longrightarrow M_2^o(K)$$
.

Since $M_2(K) = M_2^o(K) \oplus K \cdot 1_2$, we have a direct decomposition

$$R_n = R_n^o \oplus C_n \, .$$

We can make R_n an N^n -graded ring by giving each X_i degree $\underline{e}_i \in \mathbf{N}^n$, and consider the Poincare series

$$P(R_n, t_1, t_2, \cdots, t_n) = \sum_{d \in \mathbf{N}^n} \dim_{\kappa}(R_n)_d t_1^{d_1} \cdots t_n^{d_n}$$

of R_n in this multi-gradation.

In general, let G be a group and let V and W be G-modules of finite rank. G acts on $\bigoplus^{n} V$, $n \in \mathbb{N}$, diagonaly. We denote by $K[\bigoplus^{n} V, W]^{G}$ the K-vector space of G-equivariant polynomial maps

$$f: \oplus^n V \longrightarrow W.$$

Let $M (= K^{3})$ be the standard SO(3, K)-module. Because SL(2, K)

,

and SO(3, K) are isogenous, we have

$$R_n = K[\oplus^n M_2^o(K), M_2(K)]^{SL(2,K)}$$

= $K[\oplus^n M_2^o(K), M_2^o(K)]^{SL(2,K)} + K[\oplus^n M_2^o(K)]^{SL(2,K)}$
= $K[\oplus^n M, M]^{SO(3,K)} \oplus K[\oplus^n M]^{SO(3,K)}$.

Then by Theorem 5.3 [Te3], we obtain

$$P(R_n, t_1, \cdots, t_2) = \sum_{\mu} \frac{(\kappa(\mu, \phi) + \kappa(\mu, \Box) s_{\mu}(t_1, \cdots, t_n))}{\prod_{1 \le 1, j \le n} (1 - t_i t_j)},$$

where μ is over all the partition of length $\leq n$.

Let, in general, V be a finite dimensional K-vector space and G a finite subgroup of GL(V). If M is a GL(V)-module of finite rank, we denote by M^{a} the fixed subspace of M under the action of G. Then we have

$$\dim_{\kappa} M^{a} = \frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}(M, g)$$

where Tr(M, g) denotes the trace of g as a linear operator on M. Therefore

$$\begin{split} P(R_n^g,t) &= \frac{1}{|G|} \sum_{g \in \mathcal{G}} \sum_{\iota(\mu) \leq n} \frac{(\kappa(\mu,\phi) + \kappa(\mu,\Box) s_{\mu}(t_1 \cdots t_n)}{\Pi_{1 \leq i,j \leq n}(1 - t_i t_j t^2)} t^{|\mu|}, \\ &= \frac{1}{|G|} \sum_{g \in \mathcal{G}} \sum_{\iota(\mu) \leq n} \frac{(\kappa(\mu,\phi) + \kappa(\mu,\Box) \operatorname{Tr}(\rho_{\mu}(g))}{\det(1_N - \rho_{\Box\Box}(g) t^2)} t^{|\mu|}. \end{split}$$

This completes the proof.

By a result of L. Le Bruyn ([L] Chap. 4), the Poincare series of R_n satisfies the functional equation

$$P(R_n, 1/t) = (-1)^{n-1} t^{3n} P(R_n, t), \quad n \ge 3$$

It follows from Theorem 3.5 with an easy verification that the Poincare series of the invariant ring R_n^G satisfies the same functional equation as $P(R_n, t)$, if G is a finite subgroup of SL(n, K).

PROPOSITION 3.1. If G is a finite subgroup of SL(n, K), then the Poincare series of R_n^g satisfies the functional equation

$$P(R_n^G, 1/t) = \begin{cases} (-1)^{n-1} t^{3n} P(R_n^G, t), & \text{if } n \ge 3 \\ -t^4 P(R_n^G, t), & \text{if } n = 2 \end{cases}.$$

The following theorem is a generalization of [L] (Chap. 3, Theorem 4.2).

THEOREM 3.6. Let G be a finite subgroup of SL(n, K). Then the invariant ring R_n^{σ} $(n \ge 2)$ has finite global dimension if and only if $n \le 3$ and $G = \{e\}$.

Proof. By [L] (Chap. 3. Theorem 4.2), R_n has finite global dimension if and only if $n \leq 3$. Hence it is enough to prove the "only if" part. Suppose that the invariant ring R_n^g has finite global dimension. Then its Poincase series $P(R_n^g, t)$ has the form

$$P(R_n^g,t)=\frac{1}{f(t)},$$

for some monic polynomial with integer coefficients (cf. [L], p. 87). Since R_n^G is a Cohen-Macaulay module over C_n^G , the Poincare series has the form

$$P(R_n^G, t) = \frac{F(t)}{(1 - t^{\alpha_1})(1 - t^{\alpha_2}) \cdots (1 - t^{\alpha_r})},$$

where F(t) is a monic polynomial with no-negative integer coefficients and $\alpha_1, \dots, \alpha_r$ are some positive integers. Therefore f(t) is product of some cyclotomic polynomials. By the functional equation, we see that

$$\deg f(t) = \begin{cases} 3n, & \text{if } n \ge 3\\ 4, & \text{if } n = 2 \end{cases}.$$

If $n \ge 3$, then one sees easily that $P(R_n^{\sigma}, t)$ has a pole of order 3n - 3 at t = 1 and hence f(t) has the form

$$f(t) = (1-t)^{3n-3}g(t),$$

for some $g(t) \in \mathbb{Z}[t]$ of degree 3 with $g(t) \neq 0$. Moreover, since g(t) is product of cyclotomic polynomials, one sees that

$$g(t) = 1 + t^3$$
, $(1 + t)(1 \pm t + t^2)$, or $(1 + t)^3$.

This implies that $3n - 6 \leq \dim_{\kappa}(R_n^G)_1$, $(R_n^G)_1$ is the vector space of invariants of degree one. Since, clearly, $\dim_{\kappa}(R_n^G) \leq n$, we have $n \leq 3$. If n = 3, we have $\dim_{\kappa}(R_n^G)_1 = \dim_{\kappa}(R_n)_1 = 3$, and hence $G = \{e\}$. If n = 2, by the same argument as before, we find that

$$f(t) = (1 - t)^{3}(1 + t)$$
.

This implies, $\dim_{\kappa}(R_2^G)_1 = \dim_{\kappa}(R_2)_1 = 2$, and hence $G = \{e\}$.

References

- [D-P] C. De Contini and C. Procesi, A characteristic free approach to invariant theory, Adv. in Math., 21 (1976), 330-354.
- [D-R-S] P. Doubilet, G. -C. Rota, and J. Stein, On the foundation of combinatorial theory: IX. Combinatorial method in invariant theory, Stud. Appl. Math., 53 (1974), 185-216.
- [K] G. R. Kempf, Computing invariants, pp. 81–94 in "Invariant Theory", Lecture Notes in Math., No. 1273, Springer, 1987.
- [Kh] V. K. Kharchenko, Algebras of invariants of free algebras, Algebra i Logika, 17 (1978), 478-487 (Russian); English translation: Algebra and Logic 17 (1978), 316-321.
- [Ko] A. N. Koryukin, Noncommutative invariants of reductive groups, Algebra i Logika, 23 (1984, 419-429 (Russian); English translation: Algebra and Logic, 23 (1984), 290-296.
- [K-R] J. P. S. Kung and G. -C. Rota, The invariant theory of binary forms, Bull. Amer. Math. Soc. (New Series), 10 (1985), 27-85.
- [L] D. R. Lane, Free algebras of rank two and their automorphisms, Ph. D. Thesis, Betford College, London, 1976.
- [Le] L. Le Bruyn, Trace rings of generic 2 by 2 matrices, Mem. Ams Amer. Math. Soc. 363 (1987).
- [M] I. G. MacDonald, "Symmetric Functions and Hall Polynomials", Oxford University Press, Oxford, 1979.
- [N] E. Noether, Der Endlichkeitessatz der Invarianten endlichen Gruppen, Math. Ann., 77 (1916), 89-92.
- [P1] V. Popov, Modern development in invariant theory, pp. 394-406 in "Proc. of I. C. M. Barkeley 1986".
- [P2] —, Constructive invariant theory, Asterisque, 87-88 (1981), 303-334.
- [Pr] C. Procesi, The invariant theory of $n \times n$ matrices, Adv. of Math., 19 (1976), 306-381.
- [T] T. Tambour, Examples of S-algebras and generating functions, preprint.
- [Te1] Y. Teranishi, Noncommutative invariant theory, 321–332, in "Perspectives in Ring Theory", Nato ASI Series 233, Kluwer Academic Publishers, 1988.
- [Te2] —, Noncommutative classical invariant theory, Nagoya Math. J., 112 (1988), 153-169.
- [Te3] —, Universal induced characters and restriction rules for the classical groups, Nagoya Math. J., 117 (1990), 173-205.
- [W] H. Weyl, "The Classical Groups", Princeton University Press, Princeton, 1946.

Department of Mathematics School of Science Nagoya University Chikusa-ku, Nagoya, 464-01 Japan