
A. J. Lazarus
Nagoya Math. J.
Vol. 121 (1991), 1-13

ON THE CLASS NUMBER AND UNIT INDEX

OF SIMPLEST QUARTIC FIELDS

ANDREW J. LAZARUS

§ 1. Introduction

The term "simplest" field has been used to describe certain totally
real, cyclic number fields of degrees 2, 3, 4, 5, 6, and 8. For each of
these degrees, the fields are defined by a one-parameter family of poly-
nomials with constant term ±1. The regulator of these "simplest"
fields is small in an asymptotic sense: in consequence, the class number
of these fields tends to be large.

The simplest quartic fields are defined by adjunction to Q of a root of

( * ) Pt = X4 - tX3 - 6X2 + tX + 1, t e Z

where t2 + 16 is not divisible by an odd square [5]. Here t may be speci-
fied greater than zero since Pt and P_t generate the same extension.
This polynomial is reducible precisely when t2 + 16 is a square, which
occurs only for the excluded cases t = 0, 3.

Gras [5] shows that the form T2 + 16 represents infinitely many
square-free integers, so this family is infinite. As an example of why
the odd-square-free restriction is important, note that t — 22, for which
t2 + 16 = 500, defines the same field as t = 2.

Some of the simplest fields arise from torsion elements in PSL(2, Q)
acting as linear fractional transformations on one given root [3]. The

matrix ί- ~~ i) ^ a s o rder 4; the cyclic Galois action on the roots of

(*) is given by ε H-> (e — l)/(ε + 1).

Remark. References to other examples of simplest fields may be
found in [10].

Notation. Throughout K will be a real cyclic quartic field, simplest
unless stated otherwise, and k will be the unique quadratic subfield. Let
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Eκ(Ek) and F(m) be the units and conductor of K(k) respectively. Let εx

be the largest root of (*) and ε2 = eί let εk be the fundamental unit of k.

Let a generate Gal (if/Q) and 1 generate its character group. These groups

are both isomorphic to Z/4Z. The parameter Fjm will occur frequently

so we denote it by G. By the Conductor-Discriminant Theorem the dis-

criminant D = mF2.

§2. Fields with class number at most two

The author published in [11] an effective, unconditional lower bound

on the class number of K in terms of t. The present work continues

with a complete list of simplest quartic fields of even conductor and class

number at most two. Let hK{t) be the class number of the field defined

by (*) and let hm) be the class number of the quadratic subfield.

THEOREM 1. For even F, the class number hκ{t) = 1 if and only if

t e {2, 4, 6, 8,10, 24}. hκω = 2 i/ and only if t e {12,16, 20}. The quadratic

class number hHt) is one in all these cases except t = 16, where it is two.

The proof is a consequence of the calculations at the end of this

paper.

§3. The unit index

The X-relatίve units (a term owing to Leopoldt [13]) are

The unit index Q = Qκ is defined as [Eκ:EχEk].

PROPOSITION 3.1. (A) (Hasse [7]) In any real cyclic quartic field Q

< 2 .

(B) (Gras [5]) In a simplest quartic field, Eχ = <εt, ε2 = eί>, i.e. the

roots of (*) are fundamental relative units, whence Q = [Eκ: <±1, εu ε2, εfc)].

We determine Q in most cases.

THEOREM 2. In a simplest quartic field

F Q

odd, prime 2
odd, composite,

iV3(e f c)=-l 1,2

odd, composite,
N&J = 1 1

F Q

16 2
even =£16 1
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Both possibilities for the undetermined entry appear in Gras's table

Remark. For m a product of primes = 1 mod 4 the determination of

εk) is an open question.

The proof uses the techniques of Section 6 and is therefore post-

poned.

§4. A lower bound for the class number

Both the class number bound and the computation of the list of

specific fields in Theorem 1 come from Dirichlet's analytic class number

formula. For a real quartic this simplifies to

(ACF) h = D

8R

where D is the discriminant, R is the regulator, and the product is over

the non-trivial primitive characters of the Galois group Gal(iί/Q). We

bound the numerator of (ACF) from below and the denominator from

above, thereby bounding h itself from below.

The conductors and discriminants of K and k depend upon the 2-adic

valuation v2(i).

TABLE 4.1.

CASE

1

2

3

4

0

1

2

> 3

f

t2

t2

F

+

2

2

16 *

16

16

16

t2

t2

?

t2

m

I
4

4

16

16 *

16

16

1 6 *

G

1

4

2

D

(t2 + 16)3

(ί2 + 16)3

4

(ί2 + 16)3

16

(t2 + 16)3

64

The stars indicate the odd values of F and m. Cases 1 through 4 will

have the meaning from this table throughout.

LEMMA 4.2. For a simplest quartic field Kt with t > 57, f[ χ # 1 L(l, 1) >

0.066D" 1 / 4 .
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Proof. In [11] this is deduced, with weaker constant, from Theorem

Γ of Stark's famous paper [17]. The constant c2 = 2/log3 in [11,17] may

be replaced by c2 = 0.186 because Stark's proof requires only c2 > 4/logZλ

D

PROPOSITION 4.3 ([9], Chapter 12.13). For any quadratic field k of

conductor m, εfc < (e^rn)^™.

PROPOSITION 4.4 ([3, 11]). When t is even, ek is given by

H <Ξ2mod4

\/5

(ί/4) + V(*/4)2 + 1

We approximate the actual regulator R with

f O

otherwise.

(4.1)

log β! log ε2 — log e,

= — log ε2 — log ex — log ε2

log εfe - log εk log εfc

= 2 log ε*(log2 ej + log2 ε2) .

We see that R > 0 and R/R = Q^. Also define the relative regulator

R' = J?/JSfc; let JR- = JR/i?fc = Q^i?". Define AQ = 0.00826.

THEOREM L ([11], with weaker constant). For Kt a simplest quartic

field with t2 + 16 odd-square-free, the class number hκ(t) is bounded:

t odd

t even
R

Proof. By (ACF), Lemma 4.2 and, for t odd, Proposition 4.3. •
We can rewrite this result in terms of t instead of D using the

quartic formula for εt and ε2, Table 4.1, Equation (4.1), and Propositions

4.3 and 4.4; cf. [11], Corollary 6.

COROLLARY 4.5. There exists a constant C, independent of the field,

such that for Kt as above and t > 0.
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t odd

C t even.
log3*

In particular, we may take C = (0.00338, 0.00288, 0.00204, 0.00143) in Cases

1 to 4, respectively.

COROLLARY 4.6. To ensure hκ > 1 in Theorem L it suffices to take

t > (8.5 1013, 3222, 4356, 5942).

The magnitude of t in the first case corresponds to fields whose dis-

criminants have 84 decimal digits. This is less surprising in view of the

following.

CONJECTURE. The polynomial T2 + 16 represents a prime infinitely

often. (See Hardy and Wright [6], II. 2.8).

CONJECTURE (Gauss). The field QIV^Π has class number one for in-

finitely many primes m = 1 mod 4.

Assuming that these classical conjectures are independent, as seems

likely, it is reasonable to hypothesize:

CONJECTURE. The quadratic subfields have class number one for in-

finitely many simplest quartic fields of Case 1.

This has consequences for the quartic class number computations,

because of class field theory.

PROPOSITION 4.7. hHt)\hκit).

Proof. Since K is cyclic and ramification begins at the top, K/k is

ramified at all primes dividing m. Since Kjk has no non-trivial unrami-

fied abelian subextension, hm)\hKity •

Efficient calculation of the class number and the proof of Theorem 2

both involve writing elements of if in a special basis.

§5. Hasse's basis and τ(X)

In the following proposition the quartic field is real cyclic but not

necessarily simplest. For convenience, however, we restrict to the case

that G is a power of 2. Similar results obtain in general. Since G (G/2

if and only if 2\m) is the conductor of a primitive quadratic character

[7], p£(G)e{0,l,2,3}.
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PROPOSITION 5.1 ([12]). For m odd and G a fixed power of 2, there

is a one-to-one correspondence between

1. Real quartic fields of conductor F.

2. Conjugate pairs of even numerical quartic characters of conductor

F.

3. Representation of m = a2 + b2 where a + bi is primary and fur-

thermore b > 0. Here m = 1 mod 8 if G = 1, m = 5 mod 8 // G = 4,

ίmd m is unrestricted if G = 8.

4. Primary Gaussian integers ψ = a + bi of norm m, up to complex

conjugation, with m restricted as in 3.

The restrictions on m insure that K is real. The case m even is

handled similarly, except that ψ = 2(1 + ϊ)ψ0, ψ0 primary, with each choice

of ψ0 corresponding to a different field of conductor F.

Hasse [7] expressed elements of real cyclic fields in terms of a Q-

basis of four elements. The 4-tuple [xQ, xu y0, yt] represents the number

(5.1) i-(*b ± xίΛ/m + (y0 + ίyx)τ(l) + (y0 " OΊ
4

where τ = τ(X) is the Gauss sum ^uZl ^(JXF The ambiguous sign is de-

termined below. An element is an integer of K if and only if x0, xu y0, yx

e Z and

m odd x0 = Xl, -° + ^ = Gy0,
 x° ^ X l = Gy, mod 2

m even x0 = 0 mod 4 , ^ = 0 mod 2 .

Galois action is described easily in this basis:

σ: [χ0, Xn y*, yj i—• ta, - Xu - yi, JΌ]

Define μ2 to be μ(ml2V2{nι)), where μ is the Mobius function. (The sub-

script is selected to emphasize use of the 2-free-part.) Assign δ to the

ambiguous sign in (5.1). Then from [7], § 7 Equation (12) we deduce that

δ = μ2 except when G = 8, where δ = (— l)(w~1)/4μ2.

Write -ψ = a + bi, as defined and normalized in Proposition 5.1. Mul-

tiplication of elements can be accomplished by the following table1.

1This table appears in Hasse [7] the similar table in Gras [5] confuses Hasse's
sign factor σ [our δ] with Galois action, which Hasse called S. As a result, Gras's
tuples for the relative fundamental units incorrectly lack sign factors although her
formula for the minimal polynomial of a generic element is correct.
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(5.2) ττ = F, r2 = Gψδ^m , f2 = Gψδy/m , <Jmτ =

PROPOSITION 5.2. 7%e following elements and parameter assignments

satisfy (*), ami mwsί therefore be one of the fundamental relative units.

Case 1. G = 1, 6 = 4: [|α|, sgn α, 1, 0]

Case 2. G = 4, 6 = 2: [2|a|,2sgna, 1, 0]

Case 3. G = 2, a = ± 2: [26, - 2, 1, 1]

Case 4. G = 8, a = ± 1: [46, - 4,1,1] .

Proof. This is shown in [12] using the formula for the minimal pol-

ynomial over Q of a generic element of K\k. For these elements the

minimal polynomial is (#). •

Remark. The first component equals Tr^β = t.

This proposition shows how to pick out the character of simplest

field from other characters of the same conductor: either a or 6 is

predetermined.

§ 6. Proof of Theorem 2

Until Proposition 6.6 if is a real cyclic quartic field, not necessarily

simplest.

LEMMA 6.1 (Hasse [7]). The following are equivalent:

1. Q = 2.

2. There exists έ such that Eκ = <— 1, έ, ε% έσ2>

3. There exists έ such that Ek = < - 1, ε1+ff2>.

4. There exists έ such that Eχ = < - 1, έ1+σ, έσ0+σ)).

Each ε appearing above is the same, up to sign and conjugation by

± σ. Such an element έ is called a Minkowski unit.

LEMMA 6.2 (Hasse [7]). // there exist a Minkowski unit έ, then

(A) ε2 = ± εkε\-\

(B) Nf(εχ) = N£(εk) = Nζ(έ).

Proof. (A) From Lemma 6.1, we have ε1+σ = ± εk and έ1+*2 = ± εχ.

It follows that εhk

ιεa

χ-
1 = ± 1.

(B) Immediate from Lemma 6.1.

LEMMA 6.3.

1. K has a Minkowski unit.
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2. Q = 2.

3. Every totally positive unit is a square.

4. There exists a unit ε with N£(ε) = — 1.

1. & 2., 3. 44 4., ami 4. φ 2. If either iV£(εχ) = - 1 or N£(εk) = - 1,

aZso 2. =φ 4.

Proo/. 1. φ 2 . is Lemma 6.1; 3. φ 4. is Garbanati [4] Theorem 1.

Nξ{EtEj) = {1} so 4. => 2. By the previous lemmas if 4. is false and 2. is

true all three norms must be + 1. •

In a simplest field Nf(εt) = — 1 and all four conditions are equivalent.

§ 6.1. Sufficient conditions for Q = 2

PROPOSITION 6.4. // the conductor of K is a prime power then Q — 2.

Proof. This is [4], Corollary 1, or Hasse [8], page 29. For a module-

theoretic proof see Bouvier and Pay an [2], Theorem II. 2. •

The converse is false. The only possible non-prime prime power is

16.

§ 6.2. Sufficient conditions for Q = 1

PROPOSITION 6.5. Suppose m is odd, and the quadratic character ξG

of conductor G is odd, i.e. ξ(— 1) = — 1. Then not every totally positive

unit is a square.

Proof. If m is odd then gcd (m, G) — 1. The result therefore follows

from [4], Lemmas 4 and 12. •

PROPOSITION 6.6. In Case 2 simplest fields, Q = 1.

Proof. Since f4 is odd, use Lemma 6.3 and the previous Proposition.

D

PROPOSITION 6.7. In a simplest field, if N^(εk) = 1 then Q = 1.

Proof. Immediate from Lemmas 6.2 and 6.3. •

The converse is false.

PROPOSITION 6.8. In a simplest field of even conductor, Q = 1, with

the unique exception F = 16, in which Q = 2.

Proof. We already know this is true for Case 2 and the field of
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conductor 16, so we need only consider Cases 3 and 4. For a Minkowski

unit έ, (Trξ(έ))2 is a square in Z. Gras [5] computes a form for this

trace using Lemma 6.2. Write

^ , s = N*(εx),

r == 2s + χ2° - m x i

Q = 2 if and only if the following expression is a nonzero perfect square

for some choice of sign.

In any simplest field s = — 1 and r = — 6. In Case 3, G — 2, α = ± 2,

εχ = [26, — 2, 1, 1], u = b and ι> = 1, using Propositions 4.4 and 5.2.

Evaluation of (6.1) gives the possibilities

± 2(6 ± 2)2, ± 2(62 + 4).

Recalling that b is positive and even, the second expression is a perfect

square only when 6 = 2 (the field of conductor 16) and the first is never

a nonzero square.

For Case 4 the parameters are G = 8, α = ± 1, εχ = [46, — 4, 1, 1],

u = 26, and υ = 2, except for the special case £ = 8, m = 5, for which

Q = 1 in Gras's table [5]. Evaluation of (6.1) yields

± 8(62 + 1), ± 8(6 ± I)2

which can never be perfect squares for postive even 6. •

Remark. The conditions of this proposition can not be readily

weakened. In Gras's table Q may be either 1 or 2 for non-simplest

fields with

Nϊ(εt) = N&εk) = - 1, v2(G) e {1, 3}.

This concludes the proof of Theorem 2.

§ 7. Proof of Theorem 1

RESTKICTION. Because of the Gauss Conjecture and the intracta-

bility of εk when t is odd, in this section we will assume that if is a
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simplest quartic of even conductor not 16. Hence k is a simplest quad-

ratic field as defined by Shanks [16].

Since Q = 1, the only parameter in (ACF) remaining to be calculated

is L(l, X). The odd part of X is determined easily by factoring m in Z[i]

and computing quartic residue symbols. The even part is determined by

G and the condition that X(— 1) = 1. The obvious methods of evaluating

L(l, X) are far from optimal, so let us review a preferable technique.

The familiar expressions for L(l, X) are

£(1, X) = Σ ^~ (Additive form)

= Π ( l - ^M-V1 (Euler product).
p prime \ p /

Recall the following standard functions [1]:

Eί(z) = dx, erfc (2) = -—^ e~xldx
J z X Y 7Γ v z

Let % have conductor F. A formula of Lerch is

erfc (n^π/F) (method of θ-functions)

The Euler product works fairly well in practice but has large theo-

retical error as a function of the largest prime actually used in finite

approximation to the infinite product, even on the Generalized Riemann

Hypothesis [3]. On the other hand, the error in replacing the infinite

sums in (7.1) with the partial sum to N is at most F2π~2N~* exp (— N2πF)

[15] from which it follows that an excellent approximation to h can be

obtained with N ~ F~ 1 / 2 + e. As with the Euler product, observed conver-

gence is better than theory. In practice, even though τ is known from

(5.2) only up to a root of unity, only one possibility gives h sufficiently

close to an integer.

The number of quartic fields to be checked for a fixed class number

is greatly reduced by Proposition 4.7. To find all fields with hκ < 2 we

need to consider

hk = 1, h- = 1 hk = 1, h- = 2 hk = 2, h~ = 1.
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Mollin and Williams [14] compiled an on-GRH list of quadratic fields

with class number one whose discriminant was of the Richaud-Degert

form t2 + r, r e { ± 1, ± 4}. This includes all the fields k which arise in

Cases 2, 3, and 4.

PROPOSITION 7.1 (Mollin-Williams [14]). On GRH, if k has class num-

ber one then

m e {5, 8, 17, 29, 37, 53, 101, 173, 197, 293, 677}.

If GRH is false, there may be one more such field, but a computer

search shows that it would have conductor m > 1013. The simplest quartic

field lying over this hypothetical counterexample to GRH would have

class number greater than one because its conductor would exceed the

unconditional bound of Theorem L. All fields K for which these eleven

k are the quadratic subfield appear in the tables of Gras [5] so the

hκ < 2, hk — 1 problems are settled without any further calculation.

From Theorem L we have that t > 12000 is a sufficiently large value

to guarantee hκ > 2.

LEMMA 7.2. For t < 12000 the class number hk is two if and only if

m e {40, 65, 85,104, 365, 485, 488, 533, 629, 965,

1157, 1448, 1685, 1853, 2117, 2813, 3365}.

Proof. For hk = 2, m can have at most two factors. The class num-

bers of all such k were computed with the results above. •

The three largest m do not appear in [5], so we calculated h~ =

hκlhk by (7.1), with the results

t

106

184

232

m

2813

2117

3365

F

11252

16 936

20 920

h-

50

90

82

Because no new values with h~ = 1 were found, the verification of Theo-

rem 1 is complete.

The following table displays the amount of real time and the accu-

racy of three different computations of γ\χφlL(l,X) for t = 136. The
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infinite sums and product were approximated with upper limit N. All

calculations were performed on a Macintosh Plus.

TABLE 7.3.

Method

Additive

Euler Π

Θ-functions

N | % error | seconds

10 000 0.4917% 20.68

15 000 0.1525% 15.83

200 < 10-4% 17.42
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