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The availability of high-brilliance syn-
chrotron x-ray sources, recent develop-
ments in high-precision x-ray focusing
optics, and the development of new x-ray
diffraction and contrast imaging techniques
have stimulated revolutionary advances
in three-dimensional x-ray microscopy
using hard (e.g., �5–6 keV) x-rays. Elec-
tron microscopes have long provided high-
resolution structure and spectroscopy tools
for the investigation of thin-section samples,
and electron backscattering diffraction
(EBSD) microscopy routinely provides
surface or near-surface microstructural in-
formation.1 Similarly, soft x-rays (e.g.,
�3–5 keV) enable a rich variety of two-
dimensional structure and spectroscopic
microscopy tools.2 However, hard x-ray
microscopy tools to probe the interior of
bulk materials with three-dimensional spa-
tial resolution in the micrometer or sub-
micrometer range have, until recently, been
missing from the scientific toolbox for
structure and spectroscopy investigations.

Considering that almost all technologi-
cal and biological materials are inhomo-
geneous on length scales ranging from
nanometers to millimeters, nondestructive
probes with a range of penetration power
and resolutions are needed for the investi-
gation of the structure and evolution of

materials. With single-crystal diamond and
silicon as notable exceptions, the important
technological properties of materials are
often linked directly to inhomogeneous
density and chemical distributions or to
crystal grain-size and grain-orientation dis-
tributions; grain-boundary configurations
and crystalline or noncrystalline second
phases can be important as well. The gen-
eration and control of the evolution of such
microstructural features are of central im-
portance to the structural metals and ce-
ramics industries, and they play critical
roles in determining the properties of mate-
rials such as composites (hard/soft), func-
tionally graded materials, and layered
materials.

The articles in this issue of MRS Bulletin
describe hard x-ray microscopy techniques
that provide 3D spatial resolution ranging
from a few micrometers to nanometers.
The individual articles include (1) x-ray
absorption and phase contrast imaging of
density fluctuations and chemical struc-
tures in both crystalline and nanopatterned
materials with micrometer and submicro-
meter resolution; (2) x-ray diffraction im-
aging of the crystal structure, grain
orientation, and elastic and plastic strain
distributions with resolution from a few
micrometers to the submicrometer range;

and (3) coherent diffraction imaging of both
crystalline and noncrystalline materials
with resolution capabilities below 10 nm.
Each of these techniques is experiencing
rapid progress. The nondestructive nature
of these x-ray techniques makes them
complementary to electron microscopy
techniques. Electron microscopy provides
atomic resolution for structural features
that are not lost by the destructive tech-
nique of slicing samples into thin sections.
However, there are many cases in which
nondestructive measurements are needed.
Spatially resolved measurements of elastic
strain in materials or investigations of
microstructural evolution such as grain
growth and plastic deformation under 
bulk conditions require nondestructive
techniques over sample sizes of up to milli-
meters in some cases. Moreover, irreplace-
able samples or samples in which there is
a potential for contamination or artifact in-
troduction during thinning fall into the
category requiring nondestructive measure-
ments as well.

As indicated here, the high-intensity
and highly collimated x-ray beams from
third-generation* (i.e., high-brilliance) syn-
chrotron sources—such as the European
Synchrotron Radiation Facility (ESRF), the
Advanced Photon Source (APS), the
Japanese SPring-8 synchrotron source and
the Advanced Light Source (ALS)—have
played central roles in driving the devel-
opment of these x-ray microscopies. The
development of high-precision hard x-ray
Fresnel zone plates, multiple refractive
x-ray lenses, and total reflection x-ray mir-
rors has been critical as well. Hard x-ray
Fresnel zone plates and total reflection
mirrors now provide high-intensity x-ray
beams with diameters of �100 nm. Some
scientists predict that beam sizes of a few
tens of nanometers will be possible in the
next few years.

The development of innovative x-ray
imaging and diffraction techniques ex-
ploiting high-resolution CCD area detec-
tors and the development of advanced
computational and analysis techniques in
combination with high-brilliance beams
and high-precision focusing optics have
been the driving force behind the current
revolution in 3D x-ray microscopy. That is,
harnessing all of these aspects simultane-
ously has been the key to the powerful
x-ray microscopies that can now be ap-
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plied routinely in materials investigations.
This has not been possible in the hard
x-ray regime previously.

The availability of these microscopies is
creating new opportunities in materials
research and in the broader (biological,
geological, physical, environmental, etc.)
areas of materials science as well. The dy-
namics and evolution of the nonuniform
structure of materials on mesoscopic length
scales of tenths of micrometers up to
hundreds of micrometers and down to
subnanoscale sizes are in general not pre-
dictable in detail with our present theoreti-
cal understanding and computational
capabilities.3 Accordingly, quantitative 3D
x-ray microscopy measurements are criti-
cally needed over these size ranges. Such
measurements will provide the (currently
missing) link with increasingly powerful
computer simulation and multiscale mod-
eling required for continued progress to-
ward a fundamental understanding of
materials properties and advanced mate-
rials processing on all length scales.

The articles that follow provide a cross-
cut of developments and activities in their
respective microscopies. As has been the
case with electron and soft x-ray micros-
copy, the hard x-ray microscopies discussed
in these articles are vibrant and progressing
at an ever-quickening pace as instrument
technologies advance and new techniques
develop and mature.

The first article, by Schroer et al., dis-
cusses absorption and phase contrast
imaging microscopy and fluorescence
microscopy. These techniques are sensi-
tive to electron density and chemical-
specie distributions and are independent
of the presence or absence of crystallinity
in the sample. Combining tomography
with imaging makes it possible to deter-
mine the three-dimensional structure of
opaque samples nondestructively. More-
over, when tomographic imaging is com-
bined with absorption or fluorescence
spectroscopy, 3D imaging with chemical
specificity is possible, and in some cases,
the valences of atoms can be determined
in addition to their spatial distribution.
This is a completely novel approach that
will be of great interest for many areas such
as chemistry, environmental sciences, ma-
terials science, and physiology. Examples
chosen for illustration include the structure
and composition of micrometeorites, radio-
active uranium particles released during
the Chernobyl accident, eutectic binary
alloys, and the internal structure of inter-
connect circuits with multiple planes of in-
tegration, the last of which was performed
using a laboratory-scale x-ray generator.

The imaging process used for determin-
ing 3D structure is described by two char-

acteristic parameters: contrast and lateral
resolution. Absorption contrast is deter-
mined by the absorptive term in the re-
fractive index. The dispersive term in the
refractive index is much larger for hard
x-rays, and as a result, phase contrast is
determined by the dispersive term in the
refractive index. This provides much higher
sensitivity, particularly for low-atomic-
number (low-Z) materials. However, phase
contrast requires coherent illumination of
the sample, which in turn requires a dis-
tant x-ray source of small dimensions. The
second characteristic of an image is the lat-
eral resolution. From optics, spatial reso-
lution is given by �0.61 �/NA, where � is
the x-ray wavelength and NA is the nu-
merical aperture. Since the NA is �10–3 for
hard x-rays, structural features comparable
in size to the wavelength cannot be re-
solved, and in particular, hard x-rays with
wavelengths of �1 Å cannot provide
atomic-resolution imaging using forward
scattering. Electron microscopes also have
rather small NAs, but atomic resolution is
achieved by using electrons with energy
of a few hundred kiloelectronvolts, so that
� �� 1 Å. The limiting “image resolution”
that can be reached with x-rays is a point
of discussion at present, but it seems to be
somewhere between 10 nm and 20 nm.

The second article exploits Bragg dif-
fraction from the periodic lattice structure
of grains in polycrystalline materials to
perform 3D x-ray structural microscopy.
Poulsen et al. describe the development of a
high-energy (�50 keV) 3D x-ray diffraction
(3DXRD) microscope that is capable of im-
aging crystal structures in millimeter- to
centimeter-thick samples with 3D spatial
resolution of �5 �m, with the sensitivity
to detect the presence of grains as small as
150 nm. High-resolution CCD detectors
play a critical role, as both the spatial pro-
jection and the angular orientation of indi-
vidual grains in polycrystalline materials
are collected on CCDs using Bragg reflec-
tions excited as the sample is rotated in the
x-ray beam. This information is analyzed
by computer and collated such that the 3D
position, orientation, and elastic and plas-
tic strains can be obtained for individual
grains and grain boundaries. The isolation
of size and orientation information for in-
dividual grains in polycrystalline mate-
rials is extremely powerful, as it makes it
possible to perform in situ measurements
of plastic deformation, grain nucleation,
and grain growth in bulk materials. Quan-
titative measurements of this nature are
providing new tests of theoretical models
of processes ranging from deformation to
nucleation and growth in polycrystalline
materials. Three-dimensional x-ray micros-
copy instruments similar to the 3DXRD

microscope developed at the ESRF have
been built and are now operating at the
HASYLAB (Hamburger Synchrotron-
strahlungslabor) synchrotron facility in
Hamburg, Germany, and at the APS.

The third article, by Ice and Larson,
presents an overview of a polychromatic
(i.e., white) x-ray microbeam technique
that provides submicrometer 3D spatial-
resolution measurements of the structure,
orientation, grain size, morphology, and
both elastic and plastic strain tensors in
single crystals, polycrystals, composites, and
deformed materials. Through the use of a
platinum wire as a knife-edge profiler of
white microbeam Laue diffraction patterns,
this differential-aperture x-ray microscopy
(DAXM) achieves submicrometer point-
to-point intragrain and intergrain 3D spa-
tial resolution. Examples are shown of
micrometer-resolved measurements of local
grain and subgrain orientations and mor-
phologies in polycrystalline aluminum,
micrometer-resolution spatially resolved
strain tensor measurements in cylindri-
cally bent silicon, and measurements of
nanoindentation-induced deformation in
copper. These capabilities provide a direct
link to computer simulations and multi-
scale modeling investigations of polycrys-
tal grain growth, plastic deformation, and
microstructural evolution on mesoscopic
length scales. This technique is currently
optimized for energies of 8–25 keV, which
yields depth ranges of tens of micrometers
in high-Z materials to several hundreds of
micrometers in lower-Z materials such as
aluminum.

In the final article, Robinson and Miao
address what might be referred to as the
holy grail of 3D x-ray imaging microscopy,
in the sense that it makes use of direct
Fourier transformation of x-ray diffraction
patterns to extract both the phase and am-
plitude of the illuminated sample. Al-
though both practical and technological
considerations limit this approach to
sample sizes in the micrometer range, co-
herent diffraction imaging opens the pos-
sibility for structure determinations beyond
the normal imaging and diffraction capa-
bilities discussed in the other articles in
this issue. Robinson and Miao show that
when sample volumes smaller than the
coherence volume of the beam are illumi-
nated, the diffraction pattern contains de-
tailed, full-field information on the structure
of the sample, limited by the extent to
which the full angular range of the dif-
fraction patterns can be collected. While
this technique is in an early stage of devel-
opment, the fundamental importance of
the method has attracted intense interest.
This article demonstrates 3D coherent dif-
fraction imaging first through an example
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of non-crystallographic (small-angle scat-
tering) imaging of nanopatterned Ni struc-
tures with �8 nm resolution and then
through an example of (large-angle) co-
herent Bragg diffraction imaging of a
micrometer-sized gold particle. Work using
softer x-rays at the ALS has demonstrated
2D coherent diffraction imaging of artifi-
cially arranged 50 nm gold spheres, with
3D image reconstructions in progress.4
These examples are just the beginning of
what is certain to become an enormously
rich field of microstructural research, as
numerical analysis techniques, x-ray
sources, and CCD detector technologies
develop. Moreover, the effective NA asso-
ciated with large-angle x-ray diffraction
imaging as discussed in this article is, in
principle, capable eventually of achieving
atomic resolution.

While single-atom imaging has been re-
ported for the case of double-walled car-
bon nanotubes using electron diffraction,5
atomic-resolution imaging using x-rays
has significant hurdles to overcome, includ-
ing the requirement of x-ray beams with
even higher brilliance than exist today, such
as the so-called fourth-generation free-
electron laser x-ray sources.4 Although
significant radiation damage issues are
anticipated for biological structures, less
problematic applications to inorganic
micro- and nanostructured materials can be
envisioned in ultrahigh-resolution, in situ
investigations of processing-induced struc-
tural evolution.
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