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THURSTON DISTANCE ON THE TEICHMULLER SPACE
OF HYPERBOLIC 3-MANIFOLDS

INKANG KIM

In this paper we show that the Thurston distance together with the critical exponent
on the Teichmiiller space of a convex cocompact hyperbolic 3-manifold distinguishes
the different points.

1. INTRODUCTION

In [5] Thurston introduced a nonsymmetric Finsler metric K on the Teichmiiller
space T(S) of the closed surface S. It is defined by

where C is the free homotopy classes of closed loops. He showed that K(g, h) is equal
to the minimum of global Lipschitz constants of homeomorphisms in a given homotopy
class. From this it easily follows that K(g, h) ^ 0 and the equality holds if and only if
g = h. To prove that K is the minimal Lipschitz constant, he uses the generalisation
of an earthquake on a surface, namely the cataclysm. For more rigorous definitions and
work, see [1].

But in the higher dimensional case, an appropriate notion like an earthquake does
not exist. However, Thurston's theorem indicates that the comparison of closed geodesic
lengths can be used as some kind of a distance in the Teichmiiller space. Let TcJX) ^ e *n e

set of faithful, discrete convex cocompact representations from F into Iso(H^). Define
the distance K(g, h) as above between g and h in 7LJ(F).

In this paper we show the following theorem.

THEOREM 1 . 5{g) = 6(h) and K(g, h) = 0 if and only if g and h are the same

points in TcdX), where 5 is the critical exponent of the group.
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122 I. Kim [2]

Unfortunately, we cannot show the triangle inequality for this distance K, though
we believe it is the case as in the 2-dimensional case.

To prove this theorem we shall use an ergodic approach like Patterson-Sullivan mea-
sure supported on the limit set of the group, together with the notion of geodesic stretch
introduced by [4].

Another neat theorem about ^ ( F ) , more generally about the space 7£(F) of non-
elementary representations from F into Iso(H%) is the following. See [2, 3].

THEOREM 2 . There is a finite set {gi,... ,gs} in T such that if l((j>(gi)) =

' (£(&)) for all i = 1, • • • ,N, then <j> and f are conjugate.

So for two hyperbolic infinite volume 3-manifolds M and N with the same finitely
generated fundamental group, if they have the same geodesic lengths on the finite set of
closed loops, then they are isometric.

The method of proof of this theorem relies on the concept of the cross-ratio on the
ideal boundary of negatively curved space, which agrees with the Purstenberg boundary
in this case. Another ingredient of the proof is the simple observation that the polynomial
ring over R is Noetherian. See [2, 3]. We should comment that these theorems are still
valid for any rank one symmetric spaces.

2. PRELIMINARIES

Let X = # | and dX = S2 be the ideal boundary of X.

DEFINITION 1: The cross ratio of four points x, y, z, w in dX is defined by:

where x, y, z, w are in R2 when S2 is viewed as the one point compactification of R2.

Note when we use the upper-half space model, the ideal boundary is naturally iden-
tified with the Riemann sphere and this cross ratio coincides with the usual cross ratio
of four complex numbers.

DEFINITION 2: Let a be an isometry of X. The translation length l(a) of a is

defined by:
J(a)

DEFINITION 3: Let F be a subgroup of Iso(X). The limit set of F is defined as:

where Fx is the closure of the orbit Fx in X U dX where X U dX is equipped with the
sphere topology. For a representation p : G —t Iso(X), we denote the limit set of p(G)

by Ap.
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3. M A R K E D L E N G T H S P E C T R U M AS AN INVARIANT O F T E I C H M U L L E R S P A C E

In this section we prove:

THEOREM 3 . Let p,<j>:T-^ Iso(X) be two representations with the same marked

length spectrum. Then there is an element a € Iso(X) such that p = a<t>cc~l.

The proof consists of two simple lemmas.

LEMMA 1 . (Marked length spectrum determines the cross ratio.) Let a and b be
hyperbolic isometries with disjoint fixed points. Tiien

lim e'^n-Ka")-'^) = [a-)6-ia+)b+]
T1-K3O

where a~ is the repelling fixed point of a and a+ is the attracting fixed point of a.

PROOF: The distance between two points x and y in X when we view X as a unit
ball in E3 is

Then it is easy to see that the cross ratio of four points x, y, z, w can be written as:

where {(x,y)) = | l - (x,y)|. Then choose sequences {x"} such that lim x" = Xj for

i = 1,2,3,4. If we put d?3 = d{xt,x%), dj4 = d ^ . z j ) , d%3 = d(x%,x%), d?4 = d(x^,xj)

then

|r ,, ,. .,11\[Xi,X2,X3,XM =
11 J | j . T T 7 7 r r

({X4,Xl))((X3,X2))
.. cosh d?3 cos
lim cosh dj4 cosh cEj3
.. (e^a +e~at*)(ed*

= »ni^r-=—• „ . , j»

= lim _ _ + lim - - 4- lim

Since lim <^3+d54-rfy4-rf53 always exists, both ^-^-d^-d^i and

go to -oo. It is easy to see that lim l(a"bn) - l(an) - l(bn) = lim dj3 + dj4 - dj4 - d?3.
n—ln n—¥oo

For the detailed exposition we refer the reader to [2]. D

LEMMA 2 . (Pairwise distance determines the rigid body.) Let xt and x't be points

in R". If \xi -Xj\ = \x't - x'j\ for each pair, then there is an isometry of R" which sends

X{ tO x\.
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PROOF: This is an easy exercise in linear algebra. D

P R O O F OF THEOREM 3 By the above lemma, if we define the map / from the
limit set of p to the limit set of <j> in the way that for each a 6 F, /(^(a)*) = ^(a)*, /
preserves the cross ratio on the limit set. By conjugating representations if necessary, we
may assume that 0 and oo are in the limit sets and /(0) = 0, /(oo) = oo. Then fix any
point y e Ap and for any I E A ,

So \x\ = |y | / | / (y) | = C\f(x)\ for C = |»|/ | /{»)| . Similarly

Hence d(x, z) = Crf(/(x), / (z) ) . By conjugating one of the representations, we can make
C = 1. So we get the map from Ap to A^ which preserves the pairwise distance in R2.
Since the representations are not elementary, / is actually an isometry of R2 and it came
from an isometry a of X. This shows that two representations are conjugate by a. D

4. GEODESIC STRETCH

In this section we introduce the general notion of the geodesic stretch and prove
some useful connections with the marked length spectrum. Let M = M/G be a manifold,
where G is a deck transformation group of the universal cover M. Fix two Riemannian
metrics g\, <fc. For each vector v in (SM)gi and for each t e R, consider the lift 7,, of
the geodesic 7,, to the universal cover M. Let a(v,t) = rfS2(%(0),%(i)) be the distance
of the endpoints of the segment 7r(s), 0 ̂  s ^ t, with respect to the metric g2 lifted to
M. Then

a{v,ti+h) H a(v,ti) + a(gitlv,h)

for all v e SM.

Define Iu(9i,g2, v) = lim (a(v, t)/t) for a geodesic flow invariant probability measure
t—yoo

li. Define fi((SM)91) to be the set of non-wandering points in (SM)SI that is, the unit
vectors whose forward and backward end points belong to the limit set. Note this is
compact when the manifold is convex cocompact. If M is convex cocompact, negatively
curved and n is the Bowen-Margulis measure, then Iy,{gi,g-2,v) exists for \i almost all
v G Q((SM)gi) and it is a /J, integrable function on Q((SAf)9l) invariant under the
geodesic flow g^.

DEFINITION 4: Geodesic stretch. The geodesic stretch of the metric g^ relative to
<7i and the measure \i is defined as:

U9' , 9 2 ) =
Jn
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LEMMA 3 . If two locally symmetric, negatively curved metrics g\, 02 define convex
cocompact metrics on M, then they are quasi-isometric. So there is a constant R such
that every geodesic in one metric is at most R Hausdorff distance away from the geodesic
in the other metric.

PROOF: This follows from the Morse Lemma saving that there is some constant C
such that every quasi-geodesic has a geodesic within C-Hausdorff distance, and the fact
that the geometry of M is completely determined by its convex core since the metric is
locally symmetric. D

We want to prove the following theorem.

THEOREM 4 . Let M be a convex cocompact manifold with a metric gi which is
a quotient of a hyperbolic 3-space. Let 02 be another hyperbolic metric which makes M
convex cocompact. Then /,,,,„ (01,02) ^ % i ) / % 2 ) where JMBM (01,02) is the geodesic
stretch 0/52 reJative to gt and the Bowen-Margulis measure HBM ofgx. Furthermore the
following are equivalent.

2. There is a time preserving conjugacy between fi(gi) and

3. The two manifolds have the same marked length spectrum.

4. </i and 02 are isometric.

PROOF: Let ^(0) denote the critical exponent <5(F) where T realises the metric 0 on
M. Note that as in the closed manifold case, 6(g) is equal to the Hausdorff dimension of
its limit set with respect to the Busemann metric and is realised by

log(volume(B(xt R) n
R-HX) R

where C(g) is the convex hull of the group V realising the convex cocompact metric g
and B(x, R) is the geodesic ball of radius R in the universal cover. If 0! is another metric
which is convex cocompact, since the two metrics are equivalent on the quotient of the
convex hull,

log(volume9l(B*(B(z, R) n C(g))))
h(q) = lim —.

First note that since the geodesic flow is ergodic with respect to the Bowen-Margulis
measure \IBM (since the quotient of the convex hull is compact, consider the geodesic
flow defined on this compact set), we have

,. a(v,t) , .
t—>OO t

for HBM almost all v € (SM)gi. Secondly by Lemma 3, given any number R > 0, there
is C = C(R) such that B<*(p,R) C J3» (p,C).
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Now we want to show that for large t > 0,

B*(p, t) C B"(p, C + *(/„„„(p., ft) + e))

for some constant C". Cover S{p,t) by B9l(xi,R) balls with Xj e 5(p,t). Since

\im a(v,t)/t = /^BM(ffi,ff2) for almost all u, for any B9l(a;i,iJ), there is j / . e B9 l ( i , , i?)n

S(p,«) so that dn{p,Vi) < t(/MBJl,(ffi,S2) + e). Since B^(xuR) C B ^ t e . C ) for some

fixed constant C, B»l(p,f) C B<>*(p,C' + <(/„„„(51,32) +e) ) for some C". Then

\og{voln(B*(p,C + t{l»BM{gug2) + e)) n

> C" + < (/MflM (51, ff2) + e)

= K92) • IpBH (9U92) •

This gives the first part of the theorem.

For the second part of the theorem, it is shown in Proposition 3.7 in [4] that
IIIBM(9I>92) — h{gi)/h(g2) implies the Patterson-Sullivan measures are equivalent and
in turn it implies that geodesic flows are conjugate. This implies that they have the same
marked length spectrum and by Theorem 3 they are isometric. D

5. P R O O F OF THEOREM 1

It suffices to show that 5(g) = S(h), K(g, h) = 0 implies that g and h are isometric.
Then K(g, h) = 0 implies that Z/,(a) ^ lg(a) for any closed loop a.

Let 7u be the lift of the geodesic corresponding to a closed geodesic a. Denote the
lift of the geodesic in the metric h corresponding to a by %. Then by the Morse lemma,
their Hausdorff distance measured in either metric is bounded by the universal constant.
Then a(v,t) = 4 (%(0) ,%W) < 4k(7,(0),%(*)) + C ^ (lh(a))/(lg(a))t + M for some
constant C by the Morse lemma. One should be careful that t is measured in g-distance.
Then lim a(v,t)/t ^ 1. This shows that I^BM(g,h,v) ^ 1 for almost all v e Q(SM)

t—*oo

since closed orbits are dense in fl(SM). Then this will imply that I,iBM{g,h) < 1. But
by Theorem 4, I,iBM(g,h) ^ 1 since S(g) = S(h). This shows that IpBM(g,h) = 1 and
again by the Theorem 4, this implies that g and h are isometric.
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