Canad. Math. Bull. Vol. 19 (1), 1976

CENTRALIZING AUTOMORPHISMS OF PRIME RINGS

BY

JOSEPH H. MAYNE¹

ABSTRACT. Let R be a prime ring and T be a nontrivial automorphism of R. If $xx^{T}-x^{T}x$ is in the center of the ring for every x in R, then R is a commutative integral domain.

An additive mapping L of a ring R to itself is called *centralizing* if x(xL)-(xL)x is in the center of R for every x in R. In [4] Posner showed that a prime ring must be commutative if it has a nontrivial centralizing derivation (see [1] for another proof). In this note the analogous result for a centralizing automorphism is proved.

THEOREM. If R is a prime ring with a nontrivial centralizing automorphism, then R is a commutative integral domain.

This generalizes the results of Divinsky [2] and Luh [3]. Divinsky showed that a simple ring is commutative if it has a nontrivial automorphism T such that $xx^{T} = x^{T}x$ for all x in the ring and Luh extended this result to prime rings.

Let [x, y] = xy - yx and note that [x, yz] = y[x, z] + [x, y]z. Assume that R is a prime ring and let Z be the center of R. The next two lemmas will be used in the proof of the theorem.

LEMMA 1. [3] Let T be a nontrivial automorphism of R. If $[x, x^T] = 0$ for all x in R, then R is commutative.

Proof. Linearizing $[x, x^T]=0$ gives $[x, y^T]=[x^T, y]$ and thus $[x, (xy)^T]=[x^T, xy]$. But $[x, (xy)^T]=x^T[x, y^T]$ and $[x^T, xy]=x[x^T, y]=x[x, y^T]$. Thus $(x-x^T)[x, y^T]=0$ and since T is an automorphism $(x-x^T)[x, z]=0$ for all x and z in R. Since y[x, z]=[x, yz]-[x, y]z, $(x-x^T)R[x, z]=0$. If $x \neq x^T$, then x is in the center since R is prime. Since T is nontrivial, there must be at least one x such that $x \neq x^T$. Suppose y is not in the center of R. Then x+y is not in the center and $y^T=y$, $(x+y)^T=x+y$. But then $x=x^T$ which is a contradiction. Hence R is commutative.

LEMMA 2. If xy=0 and x is a nonzero element in Z, then y=0.

Proof. If xy=0, then zxy=xzy=0 for all z in R. Since R is prime, and $x\neq 0$, y must be 0.

Proof of the theorem. Let T be a nontrivial automorphism of R such that $[x, x^T]$ is in Z for all x in R. The proof will consist of showing that $[x, x^T]=0$ for

⁽¹⁾ A portion of the research for this paper was done while the author was a Faculty Research Participant at the Argonne National Laboratory.

JOSEPH H. MAYNE

all x in R and then using Lemma 1 to conclude that R is commutative. Linearization of $[x, x^T]$ in Z gives

(1)
$$[x, y^T] + [y, x^T]$$
 is in Z for all x and y in R,

and thus

(2)
$$[x, [x, y^T] + [y, x^T]] = 0$$
 for all x and y in R.

Now R is a prime ring so R is either of characteristic two or 2x=0 implies x=0for x in R.

Suppose R is not of characteristic two and let $y = x^2$ in (2). Then $0 = [x, x, (x^2)^T]$ $+[x^2, x^T]]=[x, 2x^T[x, x^T]]+[x, 2x[x, x^T]]=2[x, x^T]^2$. Hence $[x, x^T]^2=0$. By Lemma 2 $[x, x^T] = 0$ for all x in R and thus R is commutative.

Now suppose that R is of characteristic two. Then $[x^2, x^T] = 2x[x, x^T] = 0$ and $[(x^T)^2, x] = 2x^T [x, x^T] = 0$. Let $y = x^T$ in (1), then $[x, x^{TT}] + [x^T, x^T] =$ $[x, x^{TT}]$ is in Z. Using the Jacobi identity (2) can be rewritten as

(3)
$$[x, [y^T, x]] + [x^T, [x, y]] = 0.$$

Letting $v = x^3 x^T$ in (3) gives

(4)
$$[x, [(x^3x^T)^T, x]] + [x^T, [x, x^3x^T]] = 0.$$

Now $[x, [(x^3x^T)^T, x]] = [x, (x^3x^T)^T x + x(x^3x^T)^T] = [x^2, (x^3x^T)^T]$. But expanding the last commutator gives

$$\begin{aligned} x[x, (x^{3}x^{T})^{T}] + [x, (x^{3}x^{T})^{T}]x \\ &= x(x^{T})^{3}[x, x^{TT}] + x[x, (x^{T})^{3}]x^{TT} + (x^{T})^{3}[x, x^{TT}]x + [x, (x^{T})^{3}]x^{TT}x \\ &= [x, (x^{T})^{3}][x, x^{TT}] + x(x^{T})^{2}[x, x^{T}]x^{TT} + (x^{T})^{2}[x, x^{T}]x^{TT}x \end{aligned}$$

since

Hence

$$[x, (x^T)^2] = 0.$$

$$[x, [(x^{3}x^{T})^{T}, x]] = [x, (x^{T})^{3}][x, x^{TT}] + (x^{T})^{2}[x, x^{T}][x, x^{T}]$$
$$= 2[x, (x^{T})^{3}][x, x^{TT}] = 0.$$

Thus (4) reduces to

 $[x^{T}, [x, x^{3}x^{T}]] = 0.$ (5)

But then $0 = [x^T, x^3[x, x^T]] = [x^T, x^3][x, x^T]$ and using $[x^T, x^2] = 0$ results in

(6)
$$x^{2}[x, x^{T}]^{2} = 0$$
 for all x in R.

By Lemma 2, if $[x, x^T] \neq 0$, then $x^2=0$. So assume $x^2=0$, then $(x^T)^2=0$ and $(x^{TT})^2 = 0$. Now $(x^Tx)(xx^T) = 0$ and $[x, x^T] = xx^T + x^Tx = z$ for some z in Z. Therefore $(xx^T+z)(xx^T)=0$ and thus $(xx^T)^2=z(xx^T)$. If $(xx^T)^2=0$, then $z(xx^T)=0$ 0 and so either $z=0=[x, x^T]$ or $xx^T=0$. But if $xx^T=0$, then $[x, x^T]x=(x^Tx)x=0$ and hence $[x, x^T] = 0$ or x = 0. So from now on, assume that $x^2 = 0$ and $(xx^T)^2 \neq 0$.

March

 T_1

$$[x, (x^T)^2] =$$

Now (6) with xx^T replacing x implies that $[xx^T, (xx^T)^T]=0$. Expanding gives $x[x^T, x^Tx^{TT}] + [x, x^Tx^{TT}]x^T=0$. If this equation is left multiplied by x, then $x[x, x^Tx^{TT}]x^T=0$ and so $xx^T[x, x^{TT}]x^T + x[x, x^T]x^{TT}x^T=0$. But $xx^T[x, x^{TT}]x^T = x(x^T)^2[x, x^{TT}]=0$. Thus $x[x, x^T]x^{TT}x^T = [x, x^T]xx^{TT}x^T=0$. If $[x, x^T]\neq 0$, then $xx^{TT}x^T=0$.

Thus $[x, x^{TT}]x^T = x^{TT}xx^T$, and so $x^{TT}[x, x^{TT}]x^T = (x^{TT})^2xx^T = 0$. Hence if $[x, x^{TT}] \neq 0$, then $x^{TT}x^T = 0$. But this forces $x^Tx = 0$ and so x = 0 or $[x, x^T] = 0$. Suppose then that $[x, x^{TT}] = 0$. Letting $y = xx^T$ in (2) results in $[x, [x^T, xx^T] + [x, (xx^T)^T]] = 0$. Thus $[x, x^T[x, x^T] + x^T[x, x^{TT}] + [x, x^T]x^{TT}] = 0$. But then $[x, x^T]^2 + 2[x, x^T][x, x^{TT}] = [x, x^T]^2 = 0$. Therefore $[x, x^T] = 0$ for all x in R and by Lemma 1, R is commutative.

References

1. R. Awtar, "On a Theorem of Posner," Proc. Cambridge Philos. Soc. 73 (1973), 25-27.

2. N. Divinsky, "On commuting automorphisms of rings," Trans. Roy. Soc. Canada, Sect. III, 49 (1955), 19-22.

3. J. Luh, "A note on commuting automorphisms of rings," Amer. Math. Monthly 77 (1970), 61-62.

4. E. Posner, "Derivations in prime rings," Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

Applied Mathematics Division Argonne National Laboratory

ARGONNE INATIONAL LABORATORY ARGONNE, ILLINOIS 60439 U.S.A. DEPARTMENT OF MATHEMATICS LOYOLA UNIVERSITY CHICAGO, ILLINOIS 60626 U.S.A.