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Abstract

Let R be the incidence algebra of a finite partially ordered set T over a
commutative noetherian ring A. Then the spectrum of R is homeomorphic to
the product (Spec A) x T, where Spec A has the usual Zariski topology and
Thas the order topology. An explicit construction is given for the structure
sheaf of R over its spectrum.

Subject classification (Amer. Math. Soc. (MOS) 1970): 16 A 08, 16 A 52.

1. Introduction

In Goldston and Mewborn (1975) we define Speci?, the spectrum of an arbitrary
left noetherian ring R, to be the set of isomorphism classes of indecomposable
injective left i?-modules, and define a topology on Speci? which reduces to the
usual Zariski topology when i? is commutative. In addition, we define a sheaf of
rings over Spec i? which reduces to the usual structure sheaf when i? is commutative.
In this paper we show that the spectrum of the incidence algebra i? of a finite
partially ordered set T over a commutative noetherian ring A is homeomorphic
to (Spec ,4) x T with the product topology, where Spec A has the Zariski topology
and T has the order topology. In addition, we explicitly compute the rings of
sections over arbitrary open subsets of Speci?.

For a detailed description of the spectrum of a left noetherian ring and the
structure sheaf over its spectrum, see Goldston and Mewborn (1977). For standard
notions on torsion theories and quotient rings, see Stenstrom (1971), and for the
notions of Krull dimension and critical modules, refer to Gordon and Robson
(1973).

The isomorphism class of a module M is denoted by [M], the injective hull of
M by E(M). Let i? be a noetherian ring, JST == Speci?. For each xeX we fix a
representative Vx from the isomorphism class x. Thus, x = [Vx]. If £/£ X, we
denote by Vv the direct sum U{Fx|;ce U}. Since i? is noetherian, Vv is injective.
TV(R) denotes the torsion ideal of i? in the torsion theory congenerated by Vv;
Ev denotes the i?-endomorphism ring of Vv and i?^ denotes the biendomorphism
ring of VJJ. If U is a nonempty open subset of X, Rv is the ring of sections over
U in the structure sheaf of rings over X.
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[2] Structure sheaf of an incidence algebra 93

Throughout, A denotes a commutative noetherian ring with unity, T a finite
partially ordered set, R the incidence algebra of T over A. All 2?-modules are left
modules, and all R- and ^-modules are unital. Endomorphisms of /^-modules
are written on the right, and a left /?-module is regarded as a right module over
its endomorphism ring. If A is a commutative noetherian ring, there is a one-to-
one correspondence between prime ideals of A and isomorphism classes of inde-
composable injective ^-modules given by P*-*[E(A/P)]. Therefore, to simplify
notation in this case, we often refer, as is custom, to the point in Spec ,4 as P
rather than [E(A/P)].

2. A special case

We first summarize without proofs the results in the special case where A is a
field k. This case should provide some insight into the general situation.

Let T be a finite partially ordered set, k a field, R the incidence algebra of T
over k. Then R has fc-basis {eStl\s, teT,s^t}, with multiplication defined by
estev>u = &t,wes,u> where 8tw is the Kronecker delta. Denote by V the fc-vector
space with basis {vt 11 e T). Then V is a left i?-module under the module composition
defined by es4vw = Stwv8.

Let n be the number of elements in T. If we choose a linear ordering of T
compatible with the partial ordering, then we can identify R with a subalgebra of
the algebra of n x n upper triangular matrices in such a way that each eSyl is identified
with one of the canonical matrix units. We can also identify V with the set of
n-dimensional column vectors in such a way that each vt is identified with a
canonical basis vector and such that the module action of R on V is given by
matrix multiplication.

For each teT, let M, be the £-subspace of V spanned by {vs\s> t}, and let N,
be the £-subspace of V spanned by {tfs|.s£ t}. Then Mt and Nt are i?-submodules of
Fand Mt/Nt is a one-dimensional simple i?-module. In fact, every simple .R-module
is isomorphic to a module of this form. The module F/N, is an injective envelope
of MJNf Furthermore, if s,teT, then HomR(y/Ns, V/Nt)^0 if and only if s^t,
and in this case HomB(F/Ng, V/Nt) has dimension 1 over the field k. Thus Spec/?
is homeomorphic to T with the order topology.

Let U be any open subset of T. We wish to describe the ring Rv of sections
over U. First we note that TV(R), which is the kernel of the restriction map R-*RJJ,

is the A>subspace of R spanned by {esu\s%t, all teU}. Since R/TV(R) is iso-
morphic to the incidence algebra of 7" over k, where T' = {seT\ s ̂  t, some t e U},
we can reduce to the case where TV(R) = (0), that is, where U is dense in T. We
now make this assumption. Let Y be the set of minimal elements of T and note
that the restriction maps R-+Rv and RJJ^-RY are injective. We first describe
Rr and then characterize Rv as a subring of RY.
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94 Beth Goldston Barnwell and A. C. Mewborn [3]

For the open set Y, Vr = HyeY(y/Ny)
 aQd there are no nonzero /^-module

maps from V/Ny to VjNz, y, ze Y, y±z. Thus, EndflFF = r ^ F ^ n d * V/Nv), and
Biend^VV = nj,€r<BiendB ^7^)- Now EndK V/Ny^k, all ye Y and so BiendB

V/Ny is the full ring of A>linear transformations of V/Ny. Therefore, Rr is a product
of full linear rings.

We now return to the characterization of Rv. We must characterize those
elements (qy)eYlVeT(Biend.RVINy) such that (qy) is the restriction to VT of an
element of Biend^F^. For each ye Y, V/Ny has fc-basis {vt+Ny\t^y}. To each
linear transformation qv of V/Ny to itself, we can associate the "matrix" [aQOĝ ]
of qy in this basis: qy(vt+Ny) = S^^aO)s/^+iVv), t^y.

With these notations, the ring Rv of sections over U may be identified with
the subring of YlyeY(BiendR VINy) consisting of those elements (qy) such that the
associated matrices [a(j)g>/] satisfy the following two conditions:

(1) For each ye Yands,t^y, a(j)gj, = 0if there exists s' e U such that j>< s'sS s,
s'^t.

(2) If y,ze Y and s,teT such that s,t^y and s,t^z, then a(y)g>,= a(z)g>, if
there exists s'eU such that s,t^s' and s'^y,z.

When the open set U has a unique minimal element y, the description of the
ring Rv is simpler, since condition (2) above has no content in this case. We
define a binary relation a on T as follows: if s, t e T then sat provided that for each
t'eU, t'^s inplies t'4:t. Then a is a transitive relation on T which extends the
partial order relation. It follows immediately that Rv can be identified with the
incidence algebra of T with the relation a.

For example, let T = {1,2,3,4} be the partially ordered set denned by: 1 < 2 < 4,
1 < 3 < 4. R is the ring of 4 x 4 triangular matrices of the form

* * * *

0 * 0 *

0 0 * *

0 0 0 *

Let U = {1,2}. Then the relation a determined by U is obtained from the partial
order by the addition of the pairs (4,2), (3,1) and (3,2). Hence, Rv can be
identified with the ring of 4 x 4 matrices of the form

* * * *

0 * 0 *

* * * *

0 * 0 *
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3. General case

Let Tbe a finite partially ordered set and A a commutative noetherian ring.
The incidence algebra R of Tover A is the free ^-module with /4-basis {est\s, teT,
s^t}, with multiplication defined by esiewu = 8lwesu, where 8tw is the Kronecker
delta.

Let n be the number of elements of T and choose a linear ordering of T
compatible with partial ordering. Then we can identify R with a subring of the
ring of nxn upper triangular matrices over A in such a way that esi is identified
with one of the canonical matrix units.

If L is an /4-module, define V(L) to be the set of functions from T into L. Let
tvt denote the function veV(L) such that v(t) = € and v{s) = 0, s^t. Let
Lv, = {ve V(L) | v(s) -0,s^ t}. Note that V(L) is a left /{-module under the module
composition ea^

vw~ 8t>w^vs. If we identify V(L) with the set of n-dimensional
column vectors with entries inl-, the module action of R on V(L) is given by matrix
multiplication. For each t e T, we also define

Mt(L) = {ve V(L) | v(s) = 0 if s > t}
and

N,(L) = {ve V(L) | v(s) = Oifs>t}.

Note that M,(L) and Nt(L) are U-submodules of V(L) and Mt(L)/Nt(L) is ̂ 4-isomorphic
to L. To simplify notation, we let K£L) denote Mt(L)/Nt(L).

An .R-module M is critical if the Krull dimension of every proper factor of M
is less than the Krull dimension of M (see Gordon and Robson, 1973). If P e Spec A
then Kt(A/P) is a critical jR-module for each teT. Two critical modules are
equivalent if they have isomorphic injective envelopes.

PROPOSITION 3.1. The set {K,(A/P) \teT,Pe Spec A} is a complete set of equivalence
class representatives of critical R-modules. The R-module V(E(A/P))/Nt(E(A/P)) is
an injective envelope ofKt(A/P).

PROOF. First note that if R is critical as a module over itself, then R^A and T
has only one element. In this case, the result is well known. Now assume C is a
nonzero cyclic critical .R-module; C^RjI, where / is a proper left ideal of R.
Choose teT such that e,, £ /. Then Ret J{ReiJt n /) is isomorphic to a submodule of C,
and we may assume C is of this form. Write Reltnl= T,s^f(hest\ where Is is an
ideal in A for all s</ in Tand /„£Is if s<u in T. Choose ueTminimal such that
u < t and A/Iu¥= (0). Then KU(A/Q ^ (2Ssgu Ae^)/^^ Is eSfl), and this is isomorphic
to a submodule of C. Thus we can reduce to the case C^KJA/I) where / is an
ideal of A. Since C is uniform as an .R-module, A/I is a uniform ,4-niodule. Thus
AjIc,E(A/P) for some prime ideal P of A. Furthermore, there is an injection
A/P-+A/I. This induces an injection of the /{-module KU(A/P) into C. Thus C
is equivalent to a critical module of the required form.
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Let VPt= V(E(A/P)INt(E(A/P)), where teT, PeSpecA; and note that every
nonzero submodule of VPi must have nonzero intersection with Kt(A/P). Thus
Vpj is indecomposable. We must show that VPt is injective as an /^-module.

If VPjl is not injective, there is a proper left ideal Iof R and an R-mapf: /->VPt

which has no extension as an .R-module map to a left ideal properly containing I.
Choose seT such that eSiS$I. First suppose that Re^nl^Kerf. Then define
g: ReSiS+I-+Vpttbyg: reSiS+a-+af, ael, reR. If regjS+a = 0,

a = — res<s e Ress n / £ Ker/,

and af= 0. Hence g is a well-defined U-map properly extending/, a contradiction.
Therefore, Ressnl^kevf. Since VPjl is uniform, we may choose roeR such

that r0evf=I*ad0¥'(r0eaJfeKAAlP). Thus (roe8j8)/= av,+Nt(E(AIP)), aeA/P.
But then also (et>troesj)f= ocvt+Nt(E{AjPy). Write ewroe^ = a^e<jg, o^e^, and
let / = {a6^4 \aetsel}. Then / is an ideal of A and the composition g: J-*E{AIP)
given by

j^jet^(je^)f= po,+NtE(AIP))*+P, whereje/, peE(A/P),

is a nonzero ,4-map. Since /S/4, g extends to a map g*: A-+E(A/P). Let c = 1#*,
and define h: I+Ress->VP<1 by h: a+re8iS\^-af+crva+Nt(E(A/P)), ael, reR.
Suppose that a = -reStSeInReSig, and write r ='£u^vauveu>v, aUiVeA. Then
reSj = 2 u ^a«, 8 e w ! rvs+Nt(E(A/P)) = S^[a^fB+N((£(^/P))]. Now

for all «<5 and so au^eUigeI. Further, if aus^0,

(eUttauseu^f= (au^eus)f= puvu+Nt(E(A/P)),

wherepueE(A/P). Uu%t, (aUiSeUJS)f= 0. If u>t,

(etuausea,)f= (auaet>a)f= Pu

But since aUfieJ, we also have (aUtSetJ)f= au^cvt+Nt(E(A/P)). Thus oUjSc = jSu,
and

= - S [(a

= - S K,8c t ; u+N((^/P))]+cS [aUtSvu+Nt(E(AIP))]

= 0.

Therefore, h is well defined and properly extends/. This contradiction implies that
VPt is injective, and the proof is complete.

https://doi.org/10.1017/S1446788700038969 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038969


[6] Structure sheaf of an incidence algebra 97

PROPOSITION 3.2. Ifs,teT, P,QeSpecA, then RomR(VP>s,VQt)^(0) if and only
ifs^tandPsQ.

PROOF. Assume that s^t, P^Q. Then Nt(E(A/P))^Ns(E(A/Py) and there is a
surjection n : VPtS-*VPit. Since P^Q, there is a natural surjection A/P^A/Q
which induces a nonzero i?-map from Kt(A\P) to K^A/Q). This in turn induces a
nonzero /?-map from VP, to Kg,. The composition of those two maps is a nonzero
map in HomR(VPiS,VQJ).

Conversely, assume that 0^fe}iomR(VPtS, VQJ). Then there exists oceA/Q such
that 0^av,+N^EiA/Q)) = u/, some veVPrS. Thus

(*«»)/= Wvt+NS(E(A/P))]f= avt+Nt(E(A/Q)), peE(A/P).

Since / is well defined, fivt$N$(E(AIP)) and hence s^t. Secondly, the map
/ : A(fivt)+NS(E(A/P))->A(ocvt)+Nt(E(A/Q)) induces a nonzero ,4-map from E(A/P)
to E(A/Q). Thus P s 0. This completes the proof.

COROLLARY 3.3. SpecR with theZariski topology is homeomorphic to (Spec^l) x T
with the product topology where Spec A has the Zariski topology and T has the
order topology.

PROOF. The result follows immediately from Propositions 3.1 and 3.2.
Note that an arbitrary open set U in Speci? may be expressed as a union

U = ule T(0(t) x t), where 0(t) is an open subset of Spec A for each t and 0(.y)£ 6{t)
if / < J in T. Let T* denote the set of minimal elements of T and if teT*, let «,
denote the number of seT such that t<s. If U is an open subset of Speci?, let
YlT(U) be the set of teT such that (9(t)^& in the decomposition above.

PROPOSITION 3.4. With notations as above, let U= U < £ T ( 0 ( O X O be an open
subset of Spec R, and let

PROOF. Let a e R, a $&~. Then some "coordinate" au-s of a is not in f\w^u Te{w)(A).
Hence, for some /»<«, a^^^T^^iA); and there exists PeO(j>) such that
aUfE(A/P)J=(0). But then, since s>p, O^aUi8eu^svs+Np(E(A/P))eVPiP for
some pseE(A/P). Thus a$Tv(R) and 7^(7?)£^.

Now let aeR, a$Tv(R). There exists [Fpjet/, veVPi8 such that fli>^0. Write
= HUSJPUVU+NJ(M4/P))] and choose weTsuch that apwvw+Ns(E(A/P))?0.
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Then
O*apwvu+NJLE(A1P)) = S [aUwetiWpwvw+Ns(E(AIP))]

= S KwA^+AiW/p))].
fa=w

Choose t^s such that attWfiw^0. Then a,„,^Te(8)(i4). Since s^t, this implies that
a £ ^ \ Thus 9~ = TV(R) and the proof is complete.

Let S*(U) = r * n l l r ( ^ ) and note that sincej<^ implies that TeU){A)^Tm{A),
ltP e(J)}, where the coefficients atp range over the set

Thus if U = U{0(0xf|fel1} and *7* = U{#(0x t\teS*(U)}, where £/and U*
are open subsets of Spec./?, then TV(R) = TUt(R). This implies that the restriction
map <pUtU*'- RJJ-^-RXJ* is an injection. We first describe the rings Rv, where
£/* = U<es(0(OxO. S 'cr*; then we describe the rings Rv where £/ is an
arbitrary open set in SpecR.

PROPOSITION 3.5. IfteT*, <P(t) is an open subset of Spec A, and U= (P(t)xt,
then Rv is isomorphic to the ring of nt x n( matrices over AeU). More generally, if
ScT* and U= Uies(0(Ox0. 0(0 °Pen in Spec^ for each teS, then

Note: The proofs of this proposition and of the following Theorem 3.6 are
quite technical. We give only outlines of the proofs.

PROOF. Let U = 0(t) x t, as in the statement of the proposition. Let
W,= Ure*wE(A/n Then Vv = I IP S « I>*WS V0Vt)/Nt(Wt). Let 9eEv. Then
for each s^t and each u^t we define a map y>su: W -̂>Wi as follows: if weWt

then w$ssu is the wth "coordinate" of {wvs+Nt(W,)}<p. Hence

{wvs+Nt(Wt)} ? =

Then <psueEndA(W(). It can be verified that (psu = 0 if u^s and that <pSiS = <ptt for
all s^t. This permits us to identify Ev with End^(W,) via the map (p-^cptJt.

Let B= [bTtS\, r,s^t, be an ntxnt matrix with entries in Am = BiendA(Wt).
Define a map qB: Vu-^-Vu by

qB: wvs + Nffl)^ 2 ((*v w) yr + A5W)), all
t

Then one can check that qBeRu. Conversely, if qeRv, weWt, we let br^(w)
denote the rth "coordinate" of q{wvs+Nt(Wt)}. Then it can be shown that £rs can
be chosen independent of w, and b^eA^D, for all r,s^t. Thus we obtain an
isomorphism between Rv and the ring of ntxnt matrices over Aeu).
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Now suppose that S<=T*, U= \JleS(fi(
t)xt\ where <P(t) is an open subset of

Spec A for each teS. Proposition 3.2 implies that if s, teS, s^t, then there are
no nonzero .R-maps between V{mm) and Vle(s)Xs). Hence

les

which implies that Biend^F^ = n<6sBiendB(K<(P(<)x0) = UtesRwt)xt)- T h i s con-
cludes the proof.

We now turn to the computation of Rv, where U = \JteT{0(t) x t) is an arbitrary
open subset of Spec/?. If S*(U) and U* are denned as above, then we must
characterize those elements (gp)e]JPeS*(U)BiendR(V(e(p)Xp)) such that (gp) is
the restriction to Vv. of an element of BiendB Vv. As in the proof of Proposition
3.5, we let WP = UPS«IP)E(4IP) and note that V(e(p)Xp) = V(Wp)/Np(Wp). By
Proposition 3.5, we may associate to each biendomorphism qp of Vcip)Xp an np x np

matrix [b(p)Sil] with entries in Ae(p) such that

qp[wv, + Np(Wp)] = S [(b(p)s4 w) vs + Np(Wp)],

THEOREM 3.6. With notations as above, the ring Rv of sections over U may be
identified with the subring ofJJpest{V) Biendij(F((!,(J))Xp)) consisting of those elements
(qp) such that the associated matrices [b(j>)sj\ satisfy the following two conditions:

(1) For each peS*(U) and s,t^p such that there exists ke]JT(U) withp^k^s
but k^t, it is true that

e D {Teir)(Ae(P))\reJl

(2) If p,meS*(U) and s,teT such that s,t^p, s,t^m, and if there exists
kenT(£0 such that s,t^k and k^p,m, then

where p<nP)Mk) and p<mm)>enk) are the restriction maps from Ae{p) to Ac(k) and from
Aeim) t° AeM> respectively.

PROOF. For s,teT, s^t, let 0sy. Ws->Wt be the natural projection; and define

For qeRv let qp be the restriction of q to V(Wp)/Np(Wp), and let [b(p)sj] be the
matrix associated with qp, peS*(U). Let peS*(U), s,t^p and ke]JT(U) such
thatp^k^s, s^t. Then one can show that {qp(wvt+Np(Wp))}Fpk = 0. From this
one can deduce that b(p)8leTmk)(Ae(p)).

Now suppose that p, m, s, t, k are as in (2). Then
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So Pe(P),enk)(Kp)iJ) = Pe(m),e(k)(b(p)iJ), for all l^k. Hence

Pe(p),CHk)(Kp)sJ) = Po(m) CHk)(Km)sJ)-

Now assume that (.qp)eHPESHU)BiendB(V(Wp)/Np(Wp)) and assume that the
matrices [b(p)si] associated with the qp satisfy (1) and (2). For every te]lT(U)
choose peS*(U) such that p^t, and define qteBiendR(V(Wt)/N,(W,)) by

= S

where s^t. Then #, is well defined independent of p by (1) and (2). Now
{<lt\ ^ ITTC^O}

 = <7 defines an A-lmeax map of Vv to itself, and the restriction of
q to V(Wp)/Np(Wp),peS*(£/), is qp. It can be verified that, for r,weIlT(U),
one has

{qr(wt v, + Nr(Wr))} cpr>w = qw{(wt vt + Nr(Wr))} 9rJ.

From this one deduces that q e Biend^Fp). This completes the proof.

4. Examples

(la) Let Tbe a linearly ordered set of n elements, T— {1,2,...,«}, R the incidence
algebra of T over a field k. Then /? is the algebra of n x n upper triangular matrices
over k. An open set t/ is of the form U{i) = {1,2,...,/}, U i < » . Then .R^n) = i?,
and i?u(1) is the full ring of n x n matrices over k. Let 1 <i<n. The relation a on T
defined by U(i) (see Section 2) is such that jerk whenever j < k and also whenever
k^i. Thus .Ruu) can be identified with the ring of all n x n matrices [a f̂c] such that
a3,k = 0 if k < i and k <j.

(lb) Let T be as above, i? the incidence algebra of T over a commutative
noetherian ring A. Then i? is the algebra of n x n upper triangular matrices over A.
An open set U in Speci? is of the form U = LWW/) x 0» where 0 ^ 0(f)£ 0(.s)
if f ̂  J. If / = 1, /?j7 is the full ring of n x n matrices over Ae(1). If i> 1, Rv is the
ring of nxn matrices over Ae(1) of the form [aJjfc] where ocjikeTmk+1)(Ac(1)) if
k <j and fc < i.

(2) Let Tbe the linearly ordered set {1,2,3}, A = k[x,y\l(xy), where A: is a field, x
and y are indeterminates. Let i? be the incidence algebra of T over A, and let U be
the open set U = (Spec ̂  x {1}) u (^(y) x {2}), where 0(y) = {Pe Spec A \ y $P).
Then by (lb) above, Rv is the ring of 3 x 3 matrices over A of the form

an a12 a13

a3 2 033

(3) If A is an integral domain and 0^@£@' are open subsets of Spec .4, then
Te(Ae,) = (0). Thus condition (1) of Theorem 3.6 reduces to: (1*) For each
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yeS*(U) and s,t>y such that there exists s'eRT(U) with y^s'^s, but s'^t,

Hence if T= {1,2,3,4,5} is the partially ordered set defined by:
2<4s?5, 1 <4, 2<3, A = Z, and R is the incidence algebra of T over Z, then R
is the ring of 5 x 5 matrices over Z of the form

0

0

0

0

0

0

0

0

0

0 0 *55 J

Let 17 = (0(2)x{l})u(0(3)x{2})u(0(6)x{4}), where <9(i) = {PeSpec|/£P}. Then
iJp is the set of ordered pairs of the form

0
0
0

«44

a 5 4

a 1 6 "

0=35

"45

«55 .

9

0
0
0

0

0 fl'65

towith each a ^ e Z m i , each A^eZflO), and the restrictions of 0(44,0:45, ofo, fo
z«(«) agr^ with the restrictions of AM, /^ , &4>&5 to Z,p(6), respectively.

If ,4 is a field &, 71 the partially ordered set above, R the incidence algebra of T
over k and £/ the open set {1,2,4}; then Ro is the set of ordered pairs of matrices
over k of the form

'11

0

0

0

"is

<*33

0

o

a 1 4

«34

«44

«54

«15 '

<*35

«45

«5S .

9

P22

0

0

0

& 3

1833

0

0

0 0
P24 P25
^34 ^85

«44 «45

a54 a55 .

(4) Let T= {1,2,3,4,5} be the partially ordered set defined by: 1<3<5,
2<4<5, 1<4 and A = k[x,y,z]/(xyz), where A: is a field and x, y and z are
indeterminates. Let R be the incidence algebra of T over A, U the open set
(^)x{l})u(fi'(z)x{2})u(fi'(^)x{3})u(fi'(xz)x{4}), where 0(a)={PeSpec,4|a£P}.
Then Rv is the set of ordered paris of matrices of the form

3^ a44

3y aMZ

«45

«55 J

Pz
Pu P45
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such that each <xiikeAx, each ^eA^, and such that the restrictions of a^, a^,

aM, a65 to Axz agree respectively with the restrictions of fiu> fi^, fiM, j865 to An

(Aa is used to denote A ff(o).)
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