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Bernstein's famous result, that any non-zero module M over the n-th Weyl algebra Ar satisfies
GKdim(M) >GKdim(/l1,)/2, does not carry over to arbitrary simple affine algebras, as is shown by an
example of McConnell. Bavula introduced the notion of filter dimension of simple algebra to explain this
failure. Here, we introduce the faithful dimension of a module, a variant of the filter dimension, to investigate
this phenomenon further and to study a revised definition of holonomic modules. We compute the faithful
dimension for certain modules over a variant of the McConnell example to illustrate the utility of this new
dimension.

1991 Mathematics subject classification: 16P90, 16P40, 16D60, 16S32.

Introduction

In [4], Bernstein proved his famous result that any nonzero module over the Weyl
Algebra An(C) has Gelfand-Kirillov dimension at least n. The finitely generated An(C)-
modules M for which GKdim(M) — n are called holonomic modules. Bernstein used
the fact that holonomic ^4n(C)-modules have finite length to give a beautiful proof of a
result, conjectured by I. M. Gelfand, on the analytic continuity of certain functions defined
on the half plane 5R{z} > 0. A discussion of these results is given in Chapter 8 of [5].

Since GKdim(/ln(C)) = 2w, Bernstein's result can be rewritten in the form
GKdim(,4n(C))/2 < GKdim(M), for all nonzero /4n(C)-modules M.

Gabber, generalising a result of Joseph, extended Bernstein's result to show that if
0 is any finite dimensional algebraic Lie algebra over an algebraically closed field K of
characteristic zero and M is a finitely generated left (/(g)-module, where U(Q) is the
universal enveloping algebra of g, then GKdim(t/(0)/ann(M))/2 < GKdim(M), see [5,
Chapter 9] or [6, Proposition 6.1.4].

In contrast, there is an example, due to McConnell, [7], of a simple affine algebra
such that GKdim(/l) = n but A has a simple module of Gelfand-Kirillov dimension
one. This algebra is a homomorphic image of the enveloping algebra of a finite
dimensional solvable Lie algebra; so the algebraic condition in Gabber's Theorem
cannot be removed.

* This research was done while the first author was visiting the Department of Mathematics at the University
of Edinburgh, supported by a grant from the Centenary Fund of the Edinburgh Mathematical Society.
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In order to reconcile these results, the first author has recently introduced the notion
of the filter dimension of a module, fd(Af), and has shown that if A is any simple affine
algebra then

GKdim(,)
max{fd(/4),l}

for any nonzero finitely generated ,4-module M, [1].
The Krull dimension of a module, in the sense of Gabriel and Rentschler, is one of

the most useful invariants of a module, but it is notoriously difficult to calculate its
exact value in general. Whenever the Gelfand-Kirillov dimension is well-behaved and
one can obtain a lower bound on the Gelfand-Kirillov dimension of nonzero modules
then there is a hope that one can establish upper bounds on Krull dimension. For
example, in [5, Corollary 7.12], it is shown that if A is any almost commutative algebra
then GKdim(X) > Kdim(/1) + s(A), where s(A) is the minimal possible dimension for
nonzero ^-modules. This idea was used by S. P. Smith, [10], to show that the Krull
dimension of the enveloping algebra of sl(2, C) is two, rather than the previously
believed value of three.

In [2], the first author has used the above inequality to establish that

KdimM) < GKdimG4)(l -

for any simple affine left finitely partitive algebra A with GKdim(/4) < oo.
In this paper we address the question of whether there is any reasonable version of

these results in general affine algebras.
If we are going to make a comparison between GKdim(M) and GKdim(/4) then the

first thing to do is to factor out the annihilator of M. Also, if we are interested in lower
bounds for Gelfand-Kirillov dimension then we will be considering simple modules.
Thus, any analysis of the general situation will have to consider the primitive factors of
the algebra. Taking account of these requirements, we introduce a generalisation of
the filter dimension called the left faithful dimension. A lower bound SA on possible
Gelfand-Kirillov dimensions of modules is established, by using the left faithful
dimension. This leads to the standard comparison between Krull and Gelfand-Kirillov
dimension for reasonably behaved rings.

Of course, if there are any finite dimensional simple modules over the algebra A then
these results reveal nothing, since in this case SA = 0. However, if this is the case and
there is a finite dimensional module M then 4/ann(M) is a finite dimensional algebra,
and the study of the modules can safely be left to our finite dimensional colleagues!
Thus, in order to obtain any meaningful interpretation of our results, we will need to
discuss algebras with no finite dimensional images. In later work we hope to return to
the problem of dealing with the non-finite dimensional modules over algebras which
do have some finite dimensional images.

The classical definition of a holonomic module arises from the work of Bernstein
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and Gabber: a module M is holonomic if GKdim(/l/ann(M))/2 = GKdim(M). In the
Bernstein-Gabber setting these modules have least possible Gelfand-Kirillov dimension
and are very well behaved; for example, a finitely generated holonomic module has
finite length. In view of McConnell's example, it is clear that to extend the definition
of holonomic to a wider class of algebras' we should consider modules with least
possible Gelfand-Kirillov dimension SA. This presents difficulties in. that SA is an
infimum, and so it is not clear at the outset that there will be modules which achieve
this dimension. By imposing certain reasonable finiteness conditions, we show that
holonomic modules in the new sense exist and that finitely generated holonomic
modules have finite length.

Of course, simple non-finite dimensional algebras fall within our discussions; so it
is appropriate to consider the relationship between filter dimension and left faithful
dimension in this setting, and to check that our new notion of holonomicity coincides
with the classical definition. One class of algebras where this can be done is the class of
rings of differential operators in the case that the base ring is a commutative regular
integral domain. The first author has considered the behaviour of filter dimension in
this setting [2] and established that the filter dimension is one. We show that the left
faithful dimension is also one for holonomic modules and that in this setting the
classical and new definitions of holonomic module coincide.

One of the difficulties of any of these approaches is that of calculating dimensions
in interesting classes of rings, and even establishing the existence of holonomic
modules. In the penultimate section we consider a class of algebras called Schurian
Algebras. These are K-algebras A such that each simple module M has End^(M) = K.
For a faithful simple module M over such an algebra, the algebra acts as a dense
ring of K-linear transformations on M and we introduce a new growth function, the
Schur dimension, which measures the rate at which the integer j grows so that
Hom(M,, Mj) c Aj, for filtrations {At} of A and {MJ of M. We establish a relationship
between the Schur dimension and the left faithful dimension which we hope will prove
useful in calculating dimensions. In particular, in the differential operator case
mentioned above, we establish that the Schur dimension of a simple module is greater
than or equal to one and if the Schur dimension is one then the module is holonomic.
However, Stafford's examples of nonholonomic modules over Weyl algebras provide
examples of modules with Schur dimension greater than one.

In the final section, we consider a multiplicative analogue A = A(n) of the
McConnell example referred to above, and show that, as with the McConnell example,
A has simple modules MltMn, of Gelfand-Kirillov dimensions 1 and n, respectively.
We also calculate the left faithful dimension for both modules: we show that the left
faithful dimension of M, is n, and that the left faithful dimension of Mn is -.

Left faithful dimension

Let K be a field and let A :— K{xu ...,x,) be an affine JC-algebra. The algebra A is
equipped with a standard finite dimensional filtration F : A = Ul2ftAt, where
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S

Ao = K c Ax = K + Y ^ K x i £ • • • £ A i - = A c . . . .
i=i

Let M be a finitely generated /4-module with a finite dimensional subspace Mo such
that M = AM0. There is a standard finite dimensional filtration, {M,}, of M given by
Af, := A,Ma-

Assume that M is a faithful A-module. For any nonzero element a e A, there exists
a least integer i such that aMt ^ 0. Set nM,FMo(a) to be this least integer i. For
convenience, set nM F Mo(0) := 0.

For any subset V of A, set

I " e V).

Lemma 1. Let A be an affine algebra and let M be a finitely generated faithful A-
module. Then, nMFMo(V) < oo for any finite dimensional subspace V of A.

Proof. Suppose that the result is false, so that nMFM<s{V) = oo for some finite
dimensional space V of A. Choose a sequence a,,a2. • •• °f elements of A such that
M(a,) < 71(02) < .... For each i > 1, set Vi = Y^i<jKaj. Thus, there is a descending
sequence of subspaces

Since V is finite dimensional, this descending sequence must terminate, say at
Vm = Vm+l.... Since am e Vm = ^ + ) , there are scalars a,, for i > m and with only finitely
many a, ^ 0, such that am = £i>maA-

Hence,

a contradiction. •

Since each of the subspaces A, of the standard filtration of A is finite dimensional,
the following definition makes sense.

Definition 2.
'" > 0. (1)

In other words, n(i) is the least integer; such that the K-linear map

A, -*• HomK(Mj, Mj+i), a ->• (m -*• am), (2)

is injective.
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For any function / : N - • R we can measure the rate of growth of the function by
assigning a degree, y(f), to / in the following way.

Definition 3.

y(f) := inf{r € R | /(«) < ri for all n » 0}.

The first thing that we need to establish is that this degree for the function n(i), just
defined, does not depend on the particular choices of filtrations and generating
subspaces for A and M.

Lemma 4. Let F and F' be standard filtrations of an affine algebra A, and let Mo

and M'o be finite dimensional generating subspaces of a faithful A-module M. Then

Proof. Set n(i) = «M,F,MO(0
 an(* "'(') = "M.^.A^O)- Choose integers a, /? such that

Ax c 4 , and A\ c Aa, while Mo c M'p and ° M'o c Mf. Then, Mf c M ^ and
M't c Mp+ai, for i > 0. From this it follows that

"'(0 < /? + «"(»«) and n(i) <fi + om'(ia),

for each i > 0, and the result follows. •

As a consequence of the previous lemma the following definition becomes
appropriate.

Definition 5. The left faithful dimension, lf(M), is defined to be

for any standard filtration F of 4/ann(M) and for any finite dimensional generating
subspace Mo of M.

The behaviour of this growth on passing to faithful submodules is interesting: it
cannot decrease, as the following lemma shows.

Lemma 6. Let A be an affine algebra and let M, N be finitely generated faithful
modules with finite dimensional generating subspaces Mo and NQ, respectively. If either
(0 N is a submodule of M with No C Mo, or (ii) N is an epimorphic image of M with No

being the image of Mo under the epimorphism, then
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for i > 0, and, consequently,

lf(M) <

Proof. This follows easily, for example in case (i) from the fact that if a € A and
j = 0 then aN} = 0 also, since N} c M;. •

Corollary 7. Let A be an affine algebra and let M, N be finitely generated faithful
modules with finite dimensional generating subspaces Mo and No, respectively. Suppose
that N is a subfactor of M {that is, N = X/Y for some submodules Y c X of M), and
suppose that No c Mo + Y. Then

for i > 0 and, consequently,

lf(M) < lf(AO-

We are now able to establish the following estimate on the relationship between
the growth of the algebra A and the growth of the module M.

Theorem 8. Let A be an affine algebra and let M be a finitely generated faithful A-
module. Then

GKdim(/l) < GKdim(M) x (lf(M) + max{lf(M), 1}). (3)

Proof. The linear map

A, -> HomK(M^0, M<i)+i), a ->• (m -> am)

is injective, by (2); so that dim(/l,) < dim(Mn(0) x dim(M,(,)+1). Using elementary
properties of Gelfand-Kirillov dimension, this inequality gives

GKdim(/l) = y(di

< Kdim(M,))y(«(0) + y(dim(M())y(n(0 +«)

= GKdim(M) x (If (M) + max{lf(M), 1}). D

Let A be the set of isomorphism classes of simple /1-modules, and let Pnm(A) be
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the set of primitive ideals of A. For a given J in Prim(/4), let (AJT) denote the subset
of A consisting of modules with annihilator equal to J.

Definition 9.

S, := ii

Corollary 10. Let A be an affine algebra and let M be a finitely generated A-module.
Then

GKdim(M) > SA,

for any nonzero simple A-module M.

The algebra A is said to be left finitely partitive if, given any finitely generated left
y4-module M, there is an integer n > 0 such that for every chain

M 2 M, 2 M2 2 . . . 2 Mm

with GK.dim(M,/M,+1) = GKdim(Af), one has m < n. Many classes of affine noetherian
algebras are known to be finitely partitive. In fact, there are no known examples of
such algebras which are not finitely partitive.

Theorem 11. Let A be an affine left finitely partitive algebra such that
GKdim(>4) < oo and that the Gelfand-Kirillov dimension of every finitely generated A-
module is a natural number. Then,

Kdim(M) < GKdim(M) - SA,

for any finitely generated left A-module M.
In particular,

Kdim(/1) < GKdim(>4) - SA.

Proof. Let a e N and b > 0 and suppose that GKdim(M) > a + b whenever \f is a
finitely generated /1-module such that Kdim(M) = a. Then, GKdim(/4) > Kdim(/4) -1- b,
and if N is any finitely generated /1-module with Kdim(iV) > a then
GKdim(A0 > Kdim(N) + b. Applying this result to the family of finitely generated A-
modules of Krull dimension zero, where a = 0, we can set b = SA and the result follows by
Corollary 10. •
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Holonomic modules

Let / : N - • R1 := {r e K | r > 1} be any function. The leading coefficient, lc(/), of
/ is the nonzero limit (if it exists)

where d = y(/).

Lemma 12. Let A be an affine algebra equipped with the standard finite dimensional
filtration F = {At} and let M be a finitely generated A-module with two finite dimensional
generating subspaces Mo and M'Q. If lc(nM,F.w0) exists then so does lc(nM FiM-o), and both
numbers are equal. Also, if lc(dim(.4,M0)) exists then so does lc(dim(>4,Mo)), and both
numbers are equal.

Proof. In the notation of the proof of Lemma 4, we can put a = 1; so that
«'(0 < /? + "(0. and n(i) < /? + n(i). for i > 0. The first statement follows easily from this
observation. The proof of the second statement is standard, see [1, Lemma 3.1]. •

Thus, since the leading coefficients of nMF Mo and dim(/4,M0) do not depend on the
choice of the generating subspace Mo, and since we normally deal with a fixed standard
filtration F of A, we denote the leading coefficient of the function nMFMo by

i = LFiM) and the leading coefficient of the function dim(/l,M0) by /(M) = lFiM).

Definition 13. A finitely generated module M over the affine algebra A is holonomic
providing that GKdim(M) = SA. The set of all holonomic modules is denoted by

It is not clear that holonomic modules exist in general. However, if M is a
holonomic module then so is any nonzero finitely generated submodule, and any
nonzero homomorphic image.

Proposition 14. Let A be an affine algebra with GKdim(/l) < oo and let M be a
simple faithful holonomic A-module. IfliA), 1{M) and LiM) all exist then

KA) < liM)\L(M)L'iM))SA,

where

L'iM) =
if lf(M) > 1;

1, i f l f (M)=l ;
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Proof. Let n(i) = nMFMo(A) for some finite dimensional generating subspace Mo of
the module M. The embedding (2) of A{ into HomK(M^0, MKl>H), for i > 0 gives

dim(At) < dim(Mn(0) x di

This inequality can be rewritten as

by using the equations

and

dim(M;) = /(M);GKdim(M) + . . .

with j — «(i) and j = n(i) + i.
However, GKdim(M) = SA, since M is holonomic, and GKdim(^) = GKdim(M)

{lf(M) + max{lf(M), 1}}, since A is simple and the infimum in Definition 8 is achieved
by M.

Hence, the inequality can be written as

l(A)iGKiimlA) + . . . < l(M)\L(M)L'(M))SAiOKiimW + ...,

and the result follows. •

The previous Proposition has the potential to provide a lower bound on /(M). We
now look at conditions that are sufficient to establish such a lower bound.

We study affine algebras A that satisfy the following conditions (N), (D) and (H).

(N): There exists a standard finite dimensional filtration F :— A{ such that the
associated graded algebra gr(i4) := ®AJAM is left noetherian.

(D): GKdim(y4) < oo; l(A/J) = lF(A/J) exists, for each J e Pnm(A), and XA :=
inf{l(A/J) | J e ?nm(A)} > 0.

(H): For each holonomic X-module M both l(M) - lF(M) and L(M) = LF(M) exist,
and

hA :— sup{L(M) | M is a simple holonomic module} < oo.

Note that condition (N) guarantees that the algebra A will also be left noetherian.
Condition (H) might seem to be an unreasonable assumption at first sight: there is

nothing in the definition of L(M) which suggests a restriction on its size. However, we
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will see, in the section on Differential Operators, that for a well-known class of rings
this condition holds.

For an algebra A with these properties, let cA be the positive real number such that

Corollary 15. Let A be an algebra with properties (N), (D) and (H). Then

KM) > cA.

Proof. This follows immediately from Proposition 14. •

Lemma 16. Let A be an algebra with properties (N), (D) and (H). Let
0 —*• N —*• M —> L —>0 be a short exact sequence of holonomic A-modules. Then
KM) = l(N) + l(L).

Proof. The proof of [8, 8.3.11] shows that one can choose finite dimensional
generating subspaces No, Mo and Lo of N, M and L, respectively, in such a way that,
for each i > 0 there are induced short exact sequences

0 ->- TV, ->• Mt -» L, -»• 0,

where N, := A,N0, etc. Hence, dim(Mf) = dim(N() + dim(L,), and the result follows. •

Theorem 17. Suppose that A is an algebra with properties (TV), (D) and (//). Then
each holonomic A-module has finite length, and this length is less than or equal to
KM)/cA.

Proof. Suppose that

M = MtDM2D...DMnD Mn+1

is a strictly descending sequence of submodules of M such that each subfactor
M(/MI+i is simple. Then, by Lemma 16 and Corollary 15,

l(M)>J2KMi)/KMi+i)>ncA.
1=1

Hence, n < l(M)/cA. •

A technical point: the important point is to establish a lower bound on the possible
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values of l(M) in order to prove that holonomic modules have finite length and to
put a bound on the length, as in Theorem 17. If we re-arrange the inequality in
Proposition 14 to read

KMf>
(L(M)L'(M)fA '

then we see that it is enough to know that we have an upper bound on the quantity
""•yft, which is used in the definition of L(M), and a lower bound on Jim^Mo> which is
used in the definition of l(A). Thus, if we set L(M) = LF(M) to be the limsup of
""•*«*>(0, or any suitable upper bound, and J(A) to be the liminf of dimft'M°)> or any
suitable lower bound, together with a similar definition of l(A/J), for each
J € Prim(/4), then we can prove a version of Theorem 17 using these values, providing
we replace (D) and (H) by the following conditions.

(D'): GKdim(/l) < oo; I(A/J) = JF(A/J) exists, for each J e Prim(A), and lA :=
mi{\A/J) | J 6 Prim(/4)} > 0.

(H'): For each holonomic A-module M both KM) = lF(M) and L = LF(M) exist,
and

hA := sup{L(M) | M is a simple holonomic module} < oo.

The point here is that even if the limits exist in a particular example, it may be difficult
to get an exact value, but relatively easy to obtain the relevant upper and lower bounds.
We record the versions of the previous results under these weaker conditions. The proofs
are omitted, since they are merely rewritings of the earlier proofs.

Let cA be defined by

Corollary 18. Let A be an algebra with properties (N), (D') and (#'). Then

cA.

Lemma 19. Let A be an algebra with properties (N), (D1) and (//'). Let
0 - > N - > M - > - L - > 0 be a short exact sequence of holonomic A-modules. Then
KM) = l(N) + KL).

Theorem 20. Suppose that A is an algebra with properties (N), (£)') and (H'). Then
each holonomic A-module has finite length, and this length is less than or equal to
KM)/cA.
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Comparison with filter dimension

The left faithful dimension has been introduced mainly to attempt to deal with
nonsimple algebras; however, it certainly applies to simple algebras and should be
compared in this setting to the left filter dimension introduced by the first author.
First, we recall the definition of the left filter dimension.

Let A be a simple affine algebra with a standard filtration F := {A,}. The left return
function XF : No -*• No U {00} of the algebra A is defined as

AF(i) := min{; e No U {00} | 1 e AaA,, for all 0 ^ a e A,}.

Definition 21. The degree of kF is called the left filter dimension of A, [3], i.e.,

fd(,4) := y(kF).

The left filter dimension of A does not depend on the choice of F.

Lemma 22. Let A be a simple affine algebra and let Mo be a finite dimensional
generating subspace for an A-module M. Then

(i) "M.F.MO(0 < *F(i),for all i > 0; hence, lf(M) < fd(/l), and,

GKdim(/t)
fdC4) + max{fd(/l), 1} " A'

(ii) Suppose that

GKdim(/4)
fd(/l) + max{fd(/4),l}~ A

and that lc(AF) exists (respectively, lc(^F) := l imsup^) then, for any holonomic A-
module M,

LF(M) < lc(AF) (respectively LF(M) < \c(XF)).

Hence,

hA < lc(Af) (respectively hA < \c(?.F)).

Proof, (i) This follows the argument of [2, Theorem 1]. From the fact that
1 e AaAm, setting k = XF, we obtain
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Mo = 1MO c AaAmM0 = AaMl({),

and, hence, the linear map

At -v Hom^M^, M ^ , ) , a -+ (m -> am),

is injective. Thus, nM FMo(i) < Af(i), for all i > 0, as required.
(ii) This is evident. •

Remark 23. Part (ii) of the previous lemma shows that the condition (H) is not as
restrictive as it might seem.

Differential operators

Let B be a commutative regular integral domain of Krull dimension n, affine over
a field K of characteristic zero. Let £>(B) be its ring of differential operators. It is well-
known that T>(B) is a simple affine noetherian algebra, [8, Chapter 15]. Also,

and

GKdim(X>(B))
< GKdim(M), (5)

for any nonzero finitely generated X>(B)-module M. If there is equality in this inequality
then the module M is holonomic.

In this setting, X»(B) has well-behaved growth properties. It is pointed out in [8,
15.1.21] that V{B) is a somewhat commutative algebra, and it then follows from [9]
that each finitely generated module has a rational Hilbert Series, and hence integer
Gelfand-Kirillov dimension and a well-defined leading coefficient. Further, the first
author has shown in [3] that the left filter dimension of V(B) is one. This follows from
the next lemma, which gives more specific information.

Let {B,} and F := {P(B)J be standard finite dimensional filtrations on B and T>(B),
respectively, such that B, c V(B)t, for all i > 0. The enveloping algebra T>(B)' :=
V{B) <g> V(B)°, where V(B)° is the opposite algebra, can be equipped with a standard
finite dimensional filtration {2?(B)f}, which is the tensor product of the filtrations F
and F°. Note that the algebra V(B) is a filtered left X»(B)e-module.

Lemma 24 [2, 2.1]. There exist natural numbers a and b such that for any d 6 X>(B),
there exists w € V{B)'ai+b satisfying wd = \.

Note that this result establishes that P(B) is a simple algebra in a strong sense: the
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necessary elements to show that any element d generates V(B) as a two sided ideal
can be found a linear distance up in the standard filtration. This lemma is also useful
in the following result which demonstrates that h^^ is finite in this class of algebras,
and also demonstrates that our new notion of holonomic coincides with the old notion
in this important class of rings.

Corollary 25. Let M be a holonomic V(B)-module. Then lf(M) = 1 and L(M) < a,
so that

/Jp(B) < a < oo.

Proof. It follows from Theorem 8 and (5) that lf(M) > 1 and from the previous
lemma that lf(M) < 1. Also, there is an embedding

V(B), ^ Hom(Mfli+fc, Mai+b+i), u -* (m -> urn),

so that L(M) <a. •

The above corollary shows: firstly, each classical holonomic module for the ring
V(B) is holonomic in the sense of Definition 13, and vice-versa; secondly, that
requiring the finiteness of hA (or hA) is a reasonable restriction, in that it certainly holds
for this important class of rings.

Schurian modules

Let K be an algebraically closed field and let A be an affine .K-algebra. An >4-module
M is called schurian if End^M) = K. An algebra A is said to be schurian if each simple
^4-module is schurian.

The class of schurian algebras is a wide class of algebras containing many interesting
and important rings. For example, if the field K is uncountable and algebraically
closed then all affine algebras are schurian. (In fact, they satisfy the Nullstellensatz, a
stronger requirement, see [8, Chapter 9].) In addition, for any algebraically closed field
K, any constructive algebra is schurian; again, see [8, Chapter 9].

Let A be an affine algebra with standard finite dimensional filtration F = {/I,} and
let M be a faithful schurian simple module with standard finite dimensional filtration
{M, = AjM0], where Mo is a finite dimensional generating subspace of M. The map

A -*• HomK(M, M), a -*• (m ->• am),

is injective, since the module M is faithful. We identify A with its image under this
injection, and note that A acts as a dense ring of K-linear transformations, since M is a
faithful schurian simple /4-module. This terminology will be used throughout this section.
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Consider the following function.

Definition 26.

( 0 = min{7 I HomK(M,., Af,) c A,}, (6)

where the inclusion above means that for any K-linear map (j>: Mi, -* M, there exists
an element a e At such that

(f>(m) = am,

for all m e M,.

In this notation,

HomK(M,., M,) C AM\ (7)

and so

2 ), (8)

As usual, we need to check that the rate of growth of this function is independent
of the standard filtrations involved.

Lemma 27. Let F and F' be standard filtrations of an a/fine algebra A, and let Mo

and M'o be finite dimensional generating subspaces of a faithful simple schurian A-module
M. Then

Proof. Set n = \iMfMo and \i = \iMy^ • Let a, /? be as in the proof of Lemma 4.
Then M, c M'fi+ai and M't c Mf+ttt, and similarly, A{ c A'* and A\ c A^, for all i > 0.

Thus,

HomK(M,., M,) c Homx(M^+a/, M'fi+ai) c A'M+al) c

Hence,

for i > 0; and so y(ji) < y(ji). The opposite inequality follows by a symmetrical
argument. •

Definition 28. The Schur dimension, sd(M), of a module M is given by
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sd(M) := y(jiM,FMo).

Theorem 29. Let A be an affine algebra and let M be a faithful simple schurian A-
module. Then

GKdim(M)<GKdf(/4)sd(M).

Proof. Using (8), we have

2GKdim(M) = y((dim(Af,))2) < y(dim(v4;<0))

= GKdimO4)sd(/i). D

Corollary 30. Let A be an affine algebra and let M be a faithful simple schurian
A-module, and suppose that M is not a finite dimensional A-module, so that
GKdim(M) > 0. Then

2 < sd(M){lf(JVf) -t- max{lf(Af), 1}}.

Proof. The claim follows from the previous theorem and Theorem 8. •

Now, fix a filtration F = {>4,}.

Lemma 31. Let A be an affine algebra and let M be a faithful simple schurian A-
module. Let Mo and M'o be two finite dimensional generating subspaces of the module M.
If the leading coefficient \z(jiM FMo) exists then so does lc(jiM FM>), and the two numbers
are equal.

Proof. In the notation of Lemma 27, we can put a = 1; and so fi(i) < /? + (i'(i + /?)
and (i'(i) ^ P + M(' + P)> f ° r ' ^ 0. The result then follows easily. •

Definition 32. Set

C(jx) = £ 0 0 := lcO«M.F,Mo).

Theorem 33. Le/ /4 be an affine algebra with GKdim(/4) < oo and let M be a faithful
simple schurian A-module. Suppose that each of l(A), l(M) and C(M) exists and that
GKdim(M) = GK*mW sd(M). Then

KM)1

£(M)'
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Proof. Let fi(i) = HMFMJS), for some finite dimensional generating subspace Mo of
M. The inequality (8) can be rewritten as

Z(M)2i2GKd'm(M) +

Comparing leading coefficients, using the assumption that GKdim(M) = GKd™W sd(M),
we obtain

l(Mf < l(A)£(M)GKiimlA). D

Let B be a commutative regular integral domain of Krull dimension n, affine over
an algebraically closed field K of characteristic zero. Let V(B) be its ring of differential
operators. Then V(B) is a schurian algebra.

Corollary 34. If M is a simple V{B)-module, then sd(M) > 1. If sd(M) = 1, then M
is holonomic.

Proof. The statement follows from the inequalities

< GKdim(M) <

Remark 35. In contrast, the famous simple nonholonomic modules for the Weyl
algebra An, for n > 2, discovered by Stafford, [11] or [5, Theorem 8.7, Proposition 8.8],
have sd(M) > 1.

An example

Let K be an algebraically closed field and let D := K[Hfl,..., Hf] be the
commutative Laurent polynomial ring in n indeterminates. Let A, , . . . , kn e K be
such that the multiplicative subgroup of K generated by kx,...,Xn is free abelian of
rank n. Set A — An := D[X±l; a], the skew-Laurent polynomial ring, where
a(H,) = Ar'tff, so that XHt = ^lH,X. Alternatively, we can present A as A = K[X±l]
[Hfl Hf; a , , . . . , an) where o(X) = XtX.

The algebra A = ®t&A' is a central simple Z-graded algebra, where A' := DX', for
i e Z.

The algebras A and D have standard filtrations

A = \J A,, A, := A\, A,:=Y^ KHi + £ KH^ + KX

i>0 i=l i=l

and
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D = \jD,. Dr.= D\, DI:=^KHI + ^

i>0 i=l i=l

Clearly,

A, = ®{KirX> I |a| + |;| < «} and D, = ®{KHa | |a| < i},
where IT := H"^ ...H"n", |a| = |a,| + . . . + |an|, and D, = Dn /I, for i > 0. It can easily
be checked that dim(Df) is a polynomial with leading term

7 « + . . . .
n\

The map

Maxspec(D) -> {K*)\ M, := (H, - p, /f, - /i.) - • A* = 0*i. • • •. A*.).

is a bijection.
For each /i, consider the simple D-module K = P̂ , := D/M^ = K. The induced

module

i€Z

is a Z-graded module:

The action of elements of A on this induced module is as follows: Xet = eM and
H'e, = it'X"elf for all a = («„ . . . , aB) e Z", where H" = f] H)*, /Z" = U tf> Ah = fl ^*-

Each graded component X(K)' is a simple D-module that is isomorphic to
. The /4-module A(V) is equipped with the standard filtration

where

It follows that GKdim(A(V)) = 1, since dim(/l(K),) = 2i + 1.
The D-modules A(V)', for i e Z, are pairwise non-isomorphic, by the choice of {A,}.
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Hence, the X-module A(V) is simple, since X acts bijectively on A(V), and the H° act
on e, by distinct scalars.

Lemma 36. For every simple D-module V^, the A-module A^VJ is a simple A-module
of Gelfand-Kirillov dimension one. Two such A-modules A^) and A(VV) are isomorphic if
and only if M, = <r'(Al̂ ), for some i e Z; that is, v, = AJ/z;, for allj and for some i e Z.

Lemma 37. Let M = A(V) be as above. The natural map

At -> HomK(Mj, Mj+i), a - • (a : m -*• am)

is injective if and only if the natural map

D, -»• HomK(M;, Mj), d -+ {d : m -> dm)

is injective.

Proof. (=>•) The second map is the restriction of the First map to Dt, since the A-
module M is Z-graded and D, c Ao, so that D{Mj c M;.

(^=) Let a — OQ + Xa{ + ... + Xkak, with a, e D, belong to the kernel of the first
map. Then ae, = 0, for all i = 0, . . . , ±/, or, equivalently, Xmamet = 0, for all possible
m, i (since M is Z-graded and e, e M'). Observe that X is a bijection, hence, 2m = 0, for
all m; that is, a. = 0. •

Proposition 38. Ler n = (jit,..., i*n) e (K*)n and let V be the D-module
D/{H{ — nit..., Hn — fin). Then the left faithful dimension of the A-module
A(V) = A <8>D V is n.

Proof. Set M = A{V) and keep the notation introduced above. Let n(i) be the
function nMFMa(i) defined in (1), where F = {A{} and Mo = Ke0. The module M is Z-
graded and D c Ao, so, by (2) we have the inclusion

D , c-> H o m K ( M < 0 , M < t ) ) , d^(d:d^ dm).

Using the basis {e, | i = 0, ± 1 , . . . , ±n(i)} of the K-vector space M^o, we may identify
HomK(M^0, M<0) with the matrix ring of dim(Mn(0) x dim(M^0) matrices over K.
Under this identification, every d is identified with a diagonal matrix, so, in fact, we
have an inclusion

of £>, into a vector space of dimension dim(Mn(0) = 2n(i) + 1. Hence, n = y(dim(Dj)) <
y(n(i)) = lf(M), so that n < lf(M).

Next, we prove the opposite inequality. The idea is to show that the map
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D, -* Homjc(M,V,, Mjo_,), d^d

is injective, where d(i) = dim(D,) and M^o_, = @o<]<dio-\^ej ' s a subspace of M,jW.
Suppose for the moment that we have already achieved this, so that the above map is
injective. Then, by the previous lemma, n(i) < d(i), so that

lf(M) = y(n(0) < •Kdim(Z),)) = n,

and so lf(M) = n.
Fix the basis {e, \j = 0,..., d(i) — 1} of the space Mj(0_,. By repeating the argument

above, the algebra homomorphism

Z), -* HomK(Mj{0_,, Mjo_,), d-+d

can be viewed as the algebra homomorphism

* : ! > , - • Diag,(0(X) - K™, H' -+ ^(/T) = ^ ( 1 , A", A2*,..., A**0"1*).

The basis {H°} of D, can be ordered lexicographically, and then the d(i) x d(i) matrix
[ip] of the map \j/ has rows lACH*) and so is of the form

/*

M"

where n = d(i). This is almost a Van der Monde determinant, and so is easy to
evaluate. We have,

where A0 = 1.
Thus Det[i^] ̂  0, since A"

monomorphism.

p, for a / )S. Hence the map ty is an algebra

•

The algebra A can also be described as the skew Laurent extension
A = K[X±}][Hf\ • • •, Hf; a, , . . . , on] where at{X) = A,AT. Set R := K[X±l]. The algebra
/I is a Z"-graded algebra via
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«€Z"

For fi 6 K', consider the induced X-module formed from the simple R-module
I/, := R/(X -n)^K. So

The module /4 ( iy is Z"-graded by AiU^ :- Kea, for a € Z". The action of elements
of A on v4(t/^) is defined by H^ex = e1+p and Xex = fiA.~"ea, for a, ft e Z \ As a D-module,

is free of rank 1. The standard filtration on X(L^) = \Jjl0A(Ull)i, where
Jp), = /4,e0 = £>,e0, "coincides" with the standard filtration of the algebra D, so that

dim A^l = dimDi = ^i" + ..., and so GKdim/!([/„) = n.
Repeating the arguments as in the previous case, we establish the following lemma.

Lemma 39. The A-module A^U^) is simple of Gelfand-Kirillov dimension n, for each
\i € K*. Two such modules AiU^) and A(UV) are isomorphic if and only if v = k*n, for
some CL e Z".

Proposition 40. Let \i e K\ and set [/„ = R/(X - n). The left faithful dimension of

Proof. Let d, - dim(/4([/„),) = dim(Dj) = ^i" + .... We will show that the following
map is an inclusion:

Adl_, -+ Uomk(A(UX AiUJ^), a ̂  a.

Once this has been demonstrated, it follows that

On the other hand, by (3),

1 + \= n -^r
so lf(/l(C/^)) > 1. Therefore, \f(A(UJ) = {.

Suppose that a = X!/aH°, where fa e KJAT*1] belongs to the kernel of the map
above; that is, a = 0. The modules AiUJ is Z"-graded and isomorphic to D as a
D-module, so 2 = 0 if and only if each fx = 0. This implies that the polynomial
9ii = YIM<I(X - ^~") divides each fa. However, degfo) = dt, while fa € Adl_u a
contradiction. •
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