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Abs t r ac t . I present a new method to test determinism, in particular the nonlinear behav
ior, in observed time series of pulsating stars, based on a recent prediction method which 
exploits the dynamical system theory. A method for filling gaps in data has thereby been 
constructed. Estimated bounds to the necessary embedding dimension can be obtained 
and chaotic divergences can be estimated. 

1. Principles of the Prediction Method 

This method uses a reconstructed representation of the signal s(t), with vec
tors "K(iM) — ($(i6t),s(i6t + r ) , . . .,s(i6t + (m - l)r)) in a m-dimensional 
state space with r = dSt, the time delay and St, the time step of the signal, 
by using the time delay method Takens (1980). The reconstructed attractor 
is equivalent to an attractor constructed with the true variables describing 
the dynamics of the underlying physical process. In order to faithfully repro
duce the attractor, this reconstruction requires a sufficiently large number 
of observed cycles and low noise level, that depend on dynamics complexity. 

The true local law, F, in the neighbourhood of a point of an attractor, 
links a past vector X(i^i), to its future vectors ~X.(i6t + T), with a time 
step T, i.e. X(i6t + T) = F(X(i6t)). In this neighbourhood, the closest 
vectors (this learning set is found by fast sorting and searching methods), 
are used to perform a least square approximation F 0 of F, once the order of 
Taylor expansion for F a is fixed. This process is then iterated by estimating 
F at each predicted point (Farmer and Sidorowich, 1988, see the review 
of Casdagli et al. 1991). The basic assumption of this method is that a 
deterministic behavior must be present to assure the existence of a stationary 
structure, i.e. an attractor, in the state space. 

2. Astrophysical Interests of This Method 

The above method enables to fill short gaps, which are seen as a missing 
trajectory in the attractor, in an observed signal. It can be of interest for 
signals resulting from multisite campaigns, by identifying aliases. It differs 
from the MEM (Maximum Entropy) Method (Fahlman and Ulrych 1982) 
mainly in the fact that it uses local fits: the predictions are made by inter
polations on the reconstructed attractor and local extrapolations where the 
goodness is controled by using neighbor vectors, instead that MEM uses an 
ARMA predictor with global fits, which gives an extrapolation in the gaps, 
with statistical controls, based in an interpolation on the available signal. 
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The method used here does not create information if a successful dynamics 
approximation on the known parts is performed in the limit of the prediction 
time. Random or unknown dynamics are not predictable if not contained in 
the available recorded signal. Applications on artificial signals are successful 
(Serre et al. 1992). 

Applications in identifying aliases in RV Tauri star are successful, but 
are more difficult when applied to light curve of a 6 Scuti star GX Peg. 
Successful aliases reduction on a model of this star (5 artificial frequencies) 
shows that the noise level is the principal limitation and further studies are 
needed. 

This prediction method is also used for testing divergences in the chaotic 
attractors. The tests on Rossler chaotic attractor are successful. An appli
cation on a hydrodynamical model of type II cepheids (from Kovacs and 
Buchler 1987) confirms his chaotic nature. A method for estimating the 
correct embedding dimension or a lower bound (the efficient embedding di
mension), by testing the best predictions, is adapted (Serre and Buchler, 
1992) from a method of Casdagli et al. (1991). A test on the RV Tauri star, 
R Scuti, has thereby given only a lower bound, 4 or 5, for the embedding 
dimension, because of the stochastic perturbations. 

3. Conclusions 

This approach provides a new way of analyzing signals based on state space 
representation. The dynamics can be characterized by local or global mod
ellings of the attractor (Casdagli et al., 1991). These modellings have a 
great potential for a deeper understanding of chaotic hydrodynamical mod
els. Presently, the noise is the main limitation to the full efficiency of this 
method. Stochastic perturbations due to instrumental uncertainties and at
mospheric noise must be reduced to low level by data processing methods 
preserving the dynamics information. A method, based on prediction, de
veloped by Kostelich and Yorke (1988) is an interesting approach on noise 
reduction problems. 
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