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Abstract. Gravitational lensing and stellar dynamics provide two complementary methods to
probe the smooth and clumpy stellar and dark-matter mass distribution in early-type galaxies,
currently already over a range of two orders of magnitude in virial mass, more than ten orders of
magnidude in dynamic mass range in each galaxy (i.e. from stars, CDM substructure to massive
dark-matter halos), over 0–1 in redshift, and a range of 0–100 effective radii. This makes their
unification a powerful new tool in the study of the formation, structure and evolution of these
massive systems. I review recent results that we obtained, based on gravitational lens systems
from the Sloan Lens ACS Survey (SLACS), and outline some ongoing and future work.
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1. Introduction
Understanding the formation, evolution and structure of massive early-type (E/S0) galax-
ies is a critical test of the hierarchical galaxy formation scenario and how dark and
baryonic matter interact in a process that leads to a relatively stable and uniform “end-
product”, that exhibits strong scaling relations (e.g. FP). Despite tremendous progress,
details about these formation processes are still poorly understood. This is largely due to
a total lack of information about their structural redshift evolution and our inability to
separate the contribution of stellar and dark matter, or even to assess whether the sys-
tems contain dark matter at all. Gravitational lensing and stellar dynamics provide two
complementary methods (e.g. Koopmans & Treu 2003; Treu & Koopmans 2004), based
solely on gravity, to probe these inner regions to redshifts of z ≈ 1 (look-back times of
8 Gyrs) with present-day ground and space-based instruments. Their combination breaks
some of the most formidable degeneracies in both methods (i.e. the mass-sheet and mass-
anisotropy degeneracies) that have prohibited their mass structure to be studied beyond
the local Universe (e.g. Barnabè & Koopmans 2007; Vegetti & Koopmans 2007, in prep.)

2. The Basics
In this section, I will introduce the basic idea how the combination of gravitational
lensing and stellar dynamics allows one to assess the effective density slope inside the
Einstein radius of lens galaxies and how grid-based techniques can be used to determine
two-dimensional mass maps of lens galaxies.

2.1. Gravitational Lensing & Stellar Dynamics
Assuming that the lens-galaxy under consideration is fully spherical and lenses a source
in to a perfect Einstein ring, one can derive the mass enclosed by the Einstein ring ME
to a few percent accuracy from the Einstein radius RE and the lens and source redshifts

ME = πΣcritR
2
E , (2.1)
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Figure 1. Left: Shown is a mock lens system with known mass ME , inside RE , and effective
radius. The stellar velocity dispersion profiles are shown for a constant M/L model (top curve
in red) and an isothermal density profile (lower curve in blue). The widths of the curves indicate
a range in orbital anisotropies. Note that a single measurement of a stellar velocity dispersions
of such a system would enable us to distinguish between these models (or intermediate cases), if
the lens mass is know. Contrary, if the lens mass is not know, the top curve can be overlaid on
the lower curve by decreasing the mass of the galaxy by some 40% and modifying the anisotropy
slightly: the mass-anisotropy degeneracy. Hence the addition of lensing information breaks this
degeneracy to a large extend. Right: Idem for the observed system MG2016+112, where the
grey box indicates the observed luminosity weighted stellar velocity dispersions and the dashed
lines indicate the two inferred dispersion for the constant M/L and isothermal mass models (see
Koopmans & Treu 2002; Treu & Koopmans 2002).

where Σcrit is the critical surface density for lensing to occur (e.g. Schneider, Ehlers &
Falco 1992). Under these assumptions of symmetry, this projected mass is independent
from the density profile of the galaxy, although this even holds to good precision for
non-spherical asymmetric systems (see e.g. Kochanek 1991). Assuming that the total
and stellar density profiles can be approximated by power-law profiles, ρ∗ ∝ r−δ and
ρt ∝ r−γ , respectively, solving the spherical Jeans equations yields

〈σ2
||〉(� RA) =

1
π

[
GME

RE

]
f(γ, δ, β) ×

(
RA

RE

)2−γ

(2.2)

for the luminosity weighted stellar velocity dispersion inside an aperture with radius RA,
with

f(γ, δ, β) = 2
√

π

(
δ − 3

(ξ − 3)(ξ − 2β)

)
×

{
Γ[(ξ − 1)/2]

Γ[ξ/2]
− β

Γ[(ξ + 1)/2]
Γ[(ξ + 2)/2]

}

×
{

Γ[δ/2]Γ[γ/2]
Γ[(δ − 1)/2]Γ[(γ − 1)/2)]

}
, (2.3)

where ξ = γ + δ − 2 and β is the (constant) orbital anisotropy parameter (Binney
& Tremaine 1987). Note that under the assumption of γ = ξ = δ = 2 and β = 0
the simple SIS result is recovered (i.e. f = 1). Given this result, one can calculate
(assuming uncorrelated errors and negligible errors on δ and β) the fractional error on
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the logarithmic density slope of the lens galaxy
〈
δ2
γ

〉
= α−2

g

{〈
δ2
ME

〉
+ 4

〈
δ2
σ||

〉}
, (2.4)

with

αg ≡ 1
2

(
∂ log f

∂ log γ
− γ log

[
RA

RE

])
∼ few,

where δ... indicate the fractional errors on each respective quantity. Given that the mass
of the galaxy in general can be determined much more accurately than the stellar velocity
dispersion, a good rule of thumbs is

δγ ∼ δσ|| . (2.5)

Typicially errors on measured stellar velocity dispersions of > L∗ galaxies out to z ≈ 1
are ∼5−10% in one night of observing time with present-day 8–10 m class telescopes.
One might therefore expect comparable errors on their inferred density slopes. This has
indeed been confirmed by observations of the lens system MG2016+112 at z = 1.004 (e.g.
Koopmans & Treu 2002; Treu & Koopmans 2002). The above rule-of-thumb also holds in
more complex situations and should be considered conservative, because the constraints
set on the density slope by the differentially magnified structure of the lensed images
has not been accounted for in this estimate. To do this, a more sophisticated analysis is
asked for, which will be discussed below.

2.2. Non-parametric Lensing
The simplest way to constrain the mass distribution of a lens galaxy is to model only
the centroids of the lensed images, assuming they are associated with the centroid of the
unlensed source. This leads to a set of coupled non-linear parametric equations, which
can be solved using standard techniques (e.g. Keeton 2001). The situation becomes more
difficult if the lensed images have complex structure that can not on-to-one be associated
in each of the lensed images (see Figure4). To approach this, Warren & Dye (2003)
developed a semi-linear inversion technique that allows one to determine the structure of
the unlensed source that minimizes a likelihood penalty function. This function is further
minimized with respect to the parameters that determine the properties of a parametric
lens potential. This way all information is used to constrain the mass distribution of
the lens galaxy. Koopmans (2005) and Suyu et al. (2006) further enhanced this idea by
incorporating a linearized correction of the lens potential (Blandford et al. 2001), making
the method fully non-parametric both for the source and the lens potential. The idea is
the following:

(1) Suppose we have a guess of the source model si(
y) and potential model ψi(
x) then

si(
x − 
∇ψi(
x)) = d(
x) + δd(
x)

with δd(
x) the mismatch between data and model.

(2) The potential can then be corrected such that

si(
x − 
∇[ψi(
x) + δψ(
x)]) = d(
x)

Assuming the source model is correct.

(3) Linearising this equation yields

δd(
x) = −
∇y si(
y) · 
∇xδψ(
x)

https://doi.org/10.1017/S1743921307013993 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921307013993


Strong Gravitational Lensing 199

Figure 2. Top row: From left to right are show the (rescale) phase space distribution function,
galaxy surface brightness, l.o.s. velocity and velocity dispersions, respectively, for a mock lens
system (the lensing constraints are omitted, but see BK07). The middle row show the best
reconstruction, and the bottom row shows the residuals. Note the excellent reconstruction.

.

(4) The above equation is linear and can easily be solved (Koopmans 2005). We then set

ψi+1(
x) = ψi(
x) + δψ(
x)

providing an updated potential model.

(5) We then have

si+1(
x − 
∇ψi+1(
x)) = d(
x) + δd̃(
x)

which can be solved exactly.

(6) We then return to –2– and iterate until

δd(
x) ≈ 0

i.e. convergence in a χ2 sense. In the next section, I will outline how this general scheme
can be implemented using a grid to describe the source and lens potential.

3. Grid-based Gravitational Lensing & Stellar Dynamics
To objectively model the extended imaging and 2D stellar kinematic data from galaxy-
scale lens systems, and extract from it the maximum amount information about the mass
distribution of the lens galaxies, traditional modeling techniques based on point or line
descriptions of the source, as discussed in the previous section, are therefore no longer
sufficient. The number of lens systems with extended complex sources has increased
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Figure 3. Outline of the adaptive grid method developed in Vegetti & Koopmans, 2007, in
prep. A set of vertices in the source plane (yellow points) is defined by a set of grid-points in
the image (data) plane, through the lens equation. The surface brightness at the other (red)
points are determined through a predefined interpolation scheme using the yellow points. The
lens operator is build from the the weights of the interpolation scheme (or are set to unicty at
the vertices). This adaptive scheme ensures that (i) the source is never under-sampled, (ii) the
grid adapts itself to the differential magnification caused by the lens potential and (iii) a proper
accounting of the number of degrees of freedom is done in the lensing model (see Vegetti &
Koopmans, 2007, in prep).

so dramatically in the last several years, that new techniques had to be developed. Re-
cently, Barnabè & Koopmans (2007) further enhanced these lensing techniques, described
above, by the inclusion of kinematic data, solving for the two-integral phase-space den-
sity models f(E,Lz ) in axisymmetric galaxy potentials. Even though the assumptions
of axisymmetry and restriction to two-integral phase-space models still limit the models
in some sense, these models capture the most relevant aspects of galactic mass model
with only minor biases (e.g. see comparisons in Cappellari et al. 2006). To improve
the dynamic range in the (regulated) solutions, more recently adaptive grid techniques
have between developped (Dye & Warren 2005; Koopmans & Vegetti 2007, in prep.;
Figure 3). Below I will give a brief outline of the methodology.

3.1. Grid-based Gravitational Lensing & Stellar Dynamics
To implement the ideas set out above in a practical manner, the easiest way to do
this is to describe both the source brightness distribution and the stellar phase-space
distribution function f(E,Lz ) on a regular grid. It turns out (Barnabè & Koopmans
2007) that this can be formally written as a coupled set of linear equation (for fixed
non-linear parameters of the lens potential):


d = L(
η)
s + 
nd (3.1)

and

p = Q(
η)
γ + 
np , (3.2)

for the lensing and dynamical data-sets respectively. These equations can be regular-
ized and solved using standard techniques, resulting in the “best-fit” solutions for the
source surface brightness distribution and the stellar phase-space density, given a set of
non-linear parameters 
η that describe the lens potential. Using non-linear optimization
techniques this resulting penalty as function of 
η can be solved to find the maximum like-
lihood solution of the lens-potential parameters. Figure 2 shows an example where this
techniques has been applied to a simulated lens system (see BK07). Note the excellent re-
construction under realistic circumstances. In BK07 it is also shown that the combination

https://doi.org/10.1017/S1743921307013993 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921307013993


Strong Gravitational Lensing 201

Figure 4. Gallery of a subsample of SLACS lens systems (from Gavazzi et al. 2007).

of these two techniques, lensing and dynamics, not only can break the mass-anisotropy
degeneracy, but also break the oblateness-inclination degeneracy, which inhibits analyzes
of early-type galaxies (e.g. Capellari et al. 2006, 2007). This new technique is currently
being applied to lens systems with available HST and 2D kinematic data (from VLT-IFU
observations).

4. The Sloan Lens ACS Survey
The Sloan Lens ACS Survey (SLACS; Bolton et al. 2006; Treu et al. 2006; Koopmans
et al. 2006; Gavazzi et al. 2007; papers I-IV hereafter) has spectroscopically selected lens
candidates from the SDSS (see paper I) – based on the detection of emission-lines inside
a 3 arcsec diameter optical fibre – at a redshift large than that of foreground early-
type galaxies. The alignment of a background source and massive foreground galaxy
(the stellar velocity dispersion is know from the SDSS spectra), within a radius of 1.5
arcsec, make such systems excellent gravitational lens candidates. Follow-up with HST
(V, I and H-band) has resulted in the discovery of nearly one hundred new lens systems
(some shown in Figure 4), which are further being follow-up with the VLT/Keck to
obtain improved spectra for kinematic analyzes (Czoske et al. 2007, in prep). This makes
SLACS the most successful galaxy-scale lens survey to date. More details can be found
in papers I-IV. The deep ACS/WFPC2 multi-color observation, combined with extended
stellar kinematic data from VLT IFU and Keck long-slit observations allow a large range
of studies of these massive galaxies out to a redshift range of ∼0.4. In combination
with previous studies at higher redshifts (the LSD Survey; Koopmans & Treu 2003;
Treu & Koopmans 2004) allows this redshift range to be extended to z ∼ 1, although
the sample becomes less homogeneous in that case. Below I will outline some selected
ongoing projects.
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Figure 5. The logarithmic density slope of SLACS+LSD lens systems as function of redshift.
Note the absence of evolution (from Koopmans et al. 2006).

4.1. Inner Stellar and Dark-Matter Density Profiles
One of the main goals of the SLACS survey is to quantify the average and intrinsic spread
of the radial density profiles of massive galaxies, as function of redshift and galaxy mass.
The approach is two-fold: on the one hand, we can use only gravitational lensing to
assess the effective density slope near the Einstein radius (e.g. Dye & Warren 2005),
whereas on the other hand, we can combine this with the kinematic data to assess the
effective density slope inside the Einstein radius. Comparison of both indicate how much
the logarithmic density slope varies as function of radius within the galaxy. Initial results
were presented in Koopmans et al. (2006) and improved analyzes are currently ongoing
on a much larger sample. In particular, combined lensing and dynamical analyzes are
currently underway to quantify the 3D structure of these galaxies (e.g. Czoske et al.
2007, in prep; BK07). One prominent result found thus far is the homogeneity of density
profiles for the most massive (> L∗) lens galaxies, exhibiting a log. density slope of

〈γ′〉 = 2.01 ± 0.03 (68% CL)

with less than 6% intrinsic spread (Koopmans et al. 2006). As function of redshift, includ-
ing half a dozen LSD systems, no significant redshift evolution can be seen (Figure 5),
suggesting that these systems are already dynamically in place at half the age of the
Universe (see Koopmans et al. 2006 for more discussion on this point).

4.2. Scaling Relations: the Fundamental Plane
One of the major open issues in the study of early-type galaxies is why these galaxies
populate the so called Fundamental Plane. In particular, this plane is tilted with respect
to what naively is expected from the virial theorem. SLACS lens system occupy the same
FP as their parent population (Treu et al. 2006) and show no bias other than being a
more massive subsample (Bolton et al. 2006). Taking the latter bias into account, SLACS
lenses are equivalent in their properties to a randomly drawn sample of galaxies from
the LRG+MAIN samples from the SDSS. SLACS lens galaxies can thus been used to
study the FP with an absolute minimal bias. This is purely the result of the very uniform
way in which these systems were selected (based on the galaxy and not the source!). In
Figure 6, the FP of SLACS galaxies is shown (middle panel). Since the mass-to-light ratio
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Figure 6. Left: relationship between lensing mass and dimensional mass within Re/2. Dashed
line is best fitting linear relation between these logarithmic quantities, with slope of 0.986±0.034.
Center: effective radius Re as observed and as predicted from the best-fitting FP relationship
between Re , Ie , and σe2 . Right: mass-to-light ratio Υe2 in the V -band versus residuals about
the FP relationship. (from Bolton et al. 2007)

of the galaxy can be determined accurately from the observed HST data and lens model,
lenses provide a unique way of checking whether residuals from the FP correlate with
total M/L. Figure 6 shows that this is indeed the case (right panel) and that the total
M/L variations is one of the major causes of scatter in the FP. Furthermore, the galaxies
closely follow the virial plane (left panel Figure 6), which is expected if these galaxies are
all close to isothermal (as shown in the previous section). Hence the conclusion is that
the tilt in the FP results from replacing surface density with surface brightness, under
the assumption that M/L does not vary. Inverting this argument,we conclude that the
FP tilt is probably caused by a varying dark-matter fraction inside the effective radius
(increasing with more massive galaxies). Stellar M/L variations are unlikely since no
correlation with color or 4000Å break is found. This conclusion agrees well with that
drawn from the SAURON sample (see Capelarri et al. 2006 for an excellent discussion)
of somewhat less massive early-type galaxies. This work is further persuit in our ongoing
analyzes of extended kinematic data of these systems.

4.3. (CDM) Mass Substructure
The abundant presence of CDM substructure around massive galaxies is a strong pre-
diction of the CDM cosmological model (Moore et al. 1998). As such, its detection and
quantification would be a great triumph of this model. In reality, however, it has been
difficult to detect these structures, logically, because they are mostly dark (although they
might have traces of gas or stars in them). Gravitational lensing provides several ways of
detecting substructures. One is though so called flux-ratio anomalies (Dalal & Kochanek
2002), although degeneracies in the models and issues with the data make interpreta-
tion of some of the results difficult. A second, similar approach is to compare whether
the full surface brightness distribution of highly-magnified arc and Einstein rings show
evidence for substructure (Koopmans 2005). Einstein rings are particularly sensitive to
small potential perturbations, because of their near-degenerate Fermat potential. Any
perturbation will lead to a complete re-mapping of the source on to the image plane. Us-
ing grid-based modeling techniques the effect of substructure can be extracted from the
lensed images and separated from the structure of the source, leading to a 2D mass map
inside the annulus around the lensed images. If present, substructure with Mvir > 107

solar mass can be detected this way (Vegetti & Koopmans 2007, in prep). Using the
SLACS lens systems and the fully-adaptive grid-based technique discussed above, limits
on the presence (or absence) of CDM can soon be set.
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Figure 7. Shear profile of SLACS early-type galaxies for the best DM + de Vaucouleurs model.
The contribution of each mass component is detailed (green and blue for stars and DM re-
spectively). The thickness of the red curve codes for the 1σ uncertainty around the total shear
profile. Uncertainties are very small below 10 kpc because of strong lensing data that cannot be
shown here. (from Gavazzi et al. 2007)

4.4. Extended Dark Halos & Galaxy Environment
Going from the smallest (substructure) scales to the largest scales, the SLACS sample
also allows us to study the extended DM halo around these massive galaxies. The deep
HST ACS observations provide a sufficient density of background sources, such that
with two dozen lens systems a weak-lensing density profile can be derived to a radius of
nearly 100 effective radii (Gavazzi et al. 2007). Results of such an analysis are shown in
Figure 7. We note here that each system is not only constraint by weak-lensing in its
outer region but also by strong lensing in its inner region. Hence, the freedom of fitting
density profiles, which often limits the ability to distinguish between different models, is
greatly reduced. Figure 7 shows that a standard NFW DM density profile plus a stellar
component (constraints by strong lensing as well!) can fit the data very well. However,
simple a SIS density profile can not yet be excluded. Ongoing analysis with more data,
however, should be able to settle this question soon.

5. Conclusions
Gravitational lensing – strong and weak – combined with stellar dynamics and the best
space (HST) and ground-based (VLT/Keck) data, is for the first time allowing us to
address some of the open questions regarding the structure, formation and evolution of
massive early-type galaxies as function of redshift and mass. In this review I have outlined
some of the basic techniques that we have developed or refined over the last several years
and illustrated this when applied to lens systems discovered in the Sloan Lens ACS
Survey (SLACS). With new facilities coming online in the next decades (LSST, SKA,
etc.) to disover more lens systems, this techniques is expected to have a major impact
on the detailed study of early-type galaxies beyond the local Universe.
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