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NONLINEAR DIFFUSION IN A FINITE LAYER*

J.-Y. PARLANGE, D.A. LOCKINGTON AND R.D. BRADDOCK

Communicated by James M. Hill

As a liquid enters a porous medium the transition from dry to wet

occurs in a narrow, unsaturated region at the wetting front,

where the liquid content increases very rapidly. When this

unsaturated zone approaches an impermeable wall, further rapid

changes of the water content take place and liquid intake ceases

quickly. We are interested in finding the liquid intake as a

function of time when liquid movement obeys a diffusion equation.

The rapid changes occurring in the phenomenom make the problem

strongly nonlinear and for realistic diffusivities numerical

solutions can be expensive. However, we present here an

optimization principle which yields an analytical approximation

of the liquid intake. The result is more accurate when nonlinear

effects are more pronounced. Comparison with numerical results

shows that optimization is remarkably accurate.

1. Introduction

Problems of liquid movement in porous media have been studied "in

several separate fields of natural science and in a large number of

branches of technology" [/S]. A porous medium is formed by interconnected

pore spaces forming channels available for liquid and, more generally, any
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* This paper is based on an invited lecture given at the Australian
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Volumes 25 and 26".
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fluid movement. A typical and most important porous medium is a soil and

the movement of water and oil in a soil has obvious practical applications.

Under the simplest circumstances, neglecting possible swelling of the

medium, assuming no effect due to temperature and solute gradients,

neglecting gravity and the resistance of the displaced fluid (usually air)

as well as other secondary effects, the movement of the liquid can be

described by the diffusion equation expressing mass conservation, [78],

[70],

(1)

Here 0 is the liquid content which we shall express on a scale of 0 ,

dry, to 1 , saturated; x is the distance from the surface where the

liquid enters the medium and, t is the time. The diffusivity, D ,

entering (l) has a strong dependence on 0 . For instance, [79], D can

often be described by an exponential,

(2) D = DQ exp M0 ,

where n is the order 8 , [79]. To solve the problem initial and

boundary conditions are needed, for instance,

(3) t < 0 , 0 = 0 ,

(U) x = O , t > O , 0 = l .

I f the medium extends t o x •* °° , then

(5) x •* » , 0 = 0 .

When (3), CO and (5) hold, no length scale enters the problem and a

similarity variable, <J> , exists with

(6) <j> = xt~h ,

with (l) reducing to

(T) •--2

This equation has been used in the past to measure D , [5], [7]. Although

we limit ourselves to one spatial dimension, x , there is no difficulty in

finding similarity solution in cylindrical and spherical problems, [77],

[15], [76], [72]. When D has the exponential form (2) or obeys a power
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law, then (7) has a first integral which simplifies greatly the numerical

integration of (7), [73], [75], [76], [4]. In general, when D is

arbitrary, an optimization principle exists which yields the flux at

x = 0 , LSI, [7]. This principle has also been found quite useful to solve

(7) numerically [2] or to obtain analytical approximations to the solution,

[17].

Condition (5) is at best an approximation since porous media are often

far from infinite, for example, a soil usually has a layered structure. If

we call L the thickness of the layer or slab of porous material, then

condition (5) must be replaced by a condition at x = L . For an

impermeable surface at x = L , (5) is replaced by

(8) | | = 0 at x = L .

Introduction of a length scale, L , means that the similarity solution

does not hold any more. More specifically during the initial stages liquid

intake (5) will hold approximately, but as soon as the wetting front

interacts with the impermeable surface, the liquid intake will be less than

would be predicted using (5).

2. Optimization

Let us call t™ the transition time during which the wetting front

has yet to interact significantly with the impermeable wall. Hence (5) and

(7) hold for t < t and previous optimization results can be used, LSI,

[70]. These are now summarized.

As long as D increases rapidly we define a small parameter, e , by

f1 f 1

= (l-Q)DdQ I \
J0 Jo

f f
(9) £ = (l-Q)DdQ I \ DdQ .

For instance, if (2) holds, e = o(n~ ) ; as £ •+ 0 , the behaviour of D

is that of a delta-function and terms of order e represent the deviation

from a delta-function. In the limit of £ -*• 0 the lefthand sides of (l)

and (7) become negligible, or, for t < t , we can write

(10) <)> = A fDde
J 0i:
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where X is some unknown constant and f is a function of 0 , with

/(I) = 1 . If the left hand side of (T) was truly negligible, we would

have / = 1 for all 0's . In general f is a mildly varying function of

6 , as compared with the variation of D . For an arbitrary choice of / ,

for example, 1, 0, 9 , [8], [6], <)> in (10) has in general an error of

order e . The purpose of optimization is to determine the liquid intake,

represented by the sorptivity S , with

(11) = 4>dQ ,

2
which has only an error of order e even though <}> has an error 0(e) .

This is insured by choosing X for any f such that

f1 2 f1

(12) <\> dQ = 2 DdQ .
J0 J0

Note t h a t (12) r e s u l t s from in tegra t ing (7) twice. Up to er ror of order

2
e , S can be given by, [ 8 ] , [6 ] ,

(13) S = (l+Q)DdQ , o r 2 Q^DdQ .
J0 J0

Both results are extremely accurate, [6]. Further iterations can improve

S and reduce the error to 0[c ) , [14]. In practice such refinement will

rarely be necessary. To extend the previous result for t > t , the value

of t_ must first be estimated as the time when the wetting front

init ial ly comes into contact with the impermeable wall. The position of

the wetting front, like S , is determined with an error 0[e ) , whatever

/ is in (10) as long as (12) or (13) holds, [9]. Or, writing that x = L

at t = t , (10) and (13) yield at once

(lit) tT/L2 = fr1 2 / n > i2 r1

QDdQ / \ DdQ\ D(l+0)de
>0 I | i J 0 . j J0

We may note that as 0 ->• 0 , usually D # 0 , as shown by (2) for instance.

Then some diffusion takes place ahead of the wetting front, [2]. Although
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the amount of material involved is exponentially small it implies that some

interaction with the impermeable wall takes place before £ = £_ .

For £ > £„, , we now write, following the same reasoning leading to

(10),

x = h [(15) x = h \ fDdQ ,

with f(l) = 1 , but now h is a function of t , since the similarity

solution does not exist; that is, h is not proportional to £ . We

define 0 , the value of 0 at x = L , by
L

(16) L = h \ fDdQ ,

and the amount of material within the layer, which is equal to St for

£ 5 £_, is now defined by

1-1
(17) M = 0,L + h \ QfddQ ,

or integrating by parts,

(18) M = L - h f (1-0)/W0 .

The presence of (1-0) means that the last term in (18) is of order

0[eL] . Changes in the definition of / introduces relative errors

0(c) . Hence any choice of / will affect A? by a term of order 0[e L\ ,

which means that the relative error 0(e ) remains of the order of the

error for t < t . By comparison 0, , defined by [76], is not optimal

and has an error 0(e) .

The value of h must be chosen so that M = Stl at £ = £_ . This

is easily obtained remembering that (12), which yields S , results from

integrating (7) twice. Then, integrating (1) twice, we obtain,
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f1 [h fL

(19) DdQ = \ dx \ (30/3t)dS ,
>QT

 J0 >x>9T
 J0 Jx

Lt

or, from (15),

fl , fl ffl J2

(20) DdQ = hh dQ\\ fDdQ

This equation gives h{t) for any convenient choice of / to obtain M

with an error O( E ) .

3. Application

To apply the foregoing results some explicit D(Q) relation must be

chosen. Because of its importance in practice we shall use as an example

the relation given in (2). Then (lU) and (13) yield

(21) DQtT/L
2 = ̂ -\{x-n1){l-e-n)+e-

n}2/{{x-e-n)\{x-e-n){2-n1),e-n-]} ,

with

(22) M= {t/tT)hi{l-e-
n)-X-n-X-] ,

for t 5 L . Note that as soon as n is sufficiently larger than one,

which is necessary for e to be small, then e is negligible compared

to one in (21) and (22). For t > t , (20) is easily integrated taking

/ = 1 , for instance, to yield

(23) MIL = 1 + ̂ [ l n u - (l-u)'1 In u - l] ,

where u stands for

(2U) u = exp[n(eL-l)] ,

and is related to time by

(25) 3DQL~2[t-tT)en = -(l-w)~3 In u - n[l-e~n)~3 + In u

*n- m[(l
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To apply (23) and (25) a value of u is chosen between e and .1 ;

then t > t~ is obtained from (25) and the corresponding value of M is

given by (23).

In order to estimate the accuracy of (23) and (25) it is necessary to

obtain a numerical solution of (l), the details of which have been

presented elsewhere, [3], It is only necessary to point out here that the

numerical scheme is more useful when n is small, as increasing n's

require rapidly inordinate amounts of computer time and are too expensive.

In practice we could not apply the numerical scheme for n > k . However,

the case n = k is specially interesting as it should provide a lower

limit for the application of the optimal results. That is, since errors on

M are of order o(e ) or 0{n~ ) , (23) and (25) should have at most a

few per cent error for n = h ; the error becoming smaller for increasing

n's .

Figure 1 gives M/L as a function of \tD^/L with

2
tJDQ/L ~ 0.025 for n = k given here in (23) and (25). The maximum

2 —2
error is about 3% for tD /L ^ 0.0** which is of the order of n ~ 6%

f 2]
as expected. By comparison QT\D t/L or Q(x/L) for a given time and

L\ 0 J

calculated with f = 1 are given in Figures 2 and 3 and show a much larger

error, specially for t ~ tm . QT is obtained from (2U) and (25) and
1 L

Q(x/L) is given by, from (15) and (16),

(26) x/L= [en-

As expected the error for 0 shown in Figures 2 and 3 is large. However

Figure 3 shows that on the average, M = I Qdx , is obviously accurate as

already observed in Figure 1. This, of course, results from the fact that

M is optimal even though 0 is not.

It is interesting that the optimal result for M/L remains accurate

even for n = 1 as shown in Figure k. The maximum error is only of the

order of 5% • This is surprising since the method was developed on the
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basis of n large. Such agreement was observed earlier for sorptivity as

well, [4], [13]. It is not clear why the prediction should be so good for

n small.

In conclusion, the excellent agreement for n = k points out that for

n > h , for example n = 8 for a soil, [19], the optimal formulation can

be used with confidence, while no practical numerical procedure is

presently available. Finally if a better profile 0(a:, t) was desired, an

iterative procedure is available, [17], where 30/9* in (l) is estimated

from (15) and a new 0 is calculated.
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