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THE NATURAL OSCILLATIONS OF AN ICE-COVERED CHANNEL

By TueoDORE GREEN

(Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 1415 Johnson Drive, Madison,
Wisconsin 53706, U.S.A.)

AssTrACT. The natural modes of oscillation of an infinitely long, ice-
covered channel are considered, using the hydrostatic approximation, and
assuming the ice 1o behave elastically. The dispersion relation, mode shape,
and associated force on the channel wall are found for the lowest three
modes. Special attention is paid to the limitations associated with the
hydrostatic and elastic approximations.

REsuME. Les oscillations naturelles d’un chenal couvert de glace. Les modes
d’oscillations naturelles d’un chenal infiniment long recouvert de glace sont
envisagés en utilisant I'approximation hydrostatique et en supposant que la
glace ait un comportement élastique. La relation de dispersion, le mode de
forme et les forces associées sur les bords du chenal sont obtenus pour les trois

INTRODUCTION

The vertical motion of ice which covers a body of
water can be very important to structures adhering to

this ice. An example is the phenomenon of "ice jacking",

where continued small vertical oscillations of the ice
can pull up a pile several meters high over the course
of a winter (see, e.g. Wortley, [1978]). Such oscilla-
tions are particularly troublesome in harbors, where
there are usually many structures, and are often
associated with a natural resonance of the water in
the harbor. Thus, it is both interesting and important
to consider the properties of such seiching when the
harbor is covered with ice.

A simple model related to this behavior is con-
sidered below: the transverse oscillations in an in-
finitely long channel of uniform depth and with vert-
ical walls. The ice is assumed to be elastic, and the
water pressure hydrostatic, that is, the long-wave
approximation is used. There have been relatively few
studies of waves under ice in situations where lateral
boundaries are important (see, e.g., Stoker, 1957).
Thus, the work below should probably be considered a
base-line study, on which improvements can and should
be made. However, the algebra involved is rather
tedious, and these results are reported now, in an
attempt to set the stage ‘for further work. Special
attention is devoted below to the conditions under
which the natural approximations of water hydrostatics
and ice elasticity both hold. Finally, it does seem
that this rather idealized model, which incorporates
the dynamics of the motion of the underlying water,
is an improvement over the commonly used model of an
elastic plate on an elastic foundation.

THE MODEL

The situation considered is shown in Figure 1.
Ice of uniform thickness 2h covers an infinitely long
channel of uniform depth H and width W. The x coord-
inate has its origin at the channel center, and is
directed across the channel. The z coordinate is
positive upward. The effects of the Earth's rotation
are neglected, the pressure is assumed hydrostatic,
and the ice elastic., The oscillations are taken to
be small in amplitude. Then the linearized equations
of motion are, when variations along the channel are
assumed to vanish (Stoker, 1957),
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modes inférieurs. Une attention particuliére est portée aux limitations dues
aux approximations hydrostatiques et élastiques,

ZUSAMMENFASSUNG. Die natiirlichen Oszillationen eines evsbedeckten Kanals. Die
natiirlichen Oszillationszustiinde eines unbegrenzt langen, eisbedeckten
Kanals werden betrachtet, wobei die hydrostatische Naherung benutzt und
elastisches Verhalten des Eises angenommen wird. Die Dispersions-
beziehung, die Zustandsform und die auf die Kanalwand ausgeiibte Kraft
werden fur die drei untersten Zustinde festgestelll. Besondere Auf-
merksamkeit galt den Einschrankungen infolge der hydrostatischen und
elastischen Naherungen.

Zhl

w

Fig. 1. The coordinate system and basic notation for
the model. Note that the ice is assumed to be rigidly
clamped to (i.e. frozen to) the channel walls.
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Here, ¢ is the displacement of the ice from its equi-
Ijbrium position, u is water velocity in the x direc-
tion, p is water pressure, po 1s water pressure at

the ice-water interface, p is water density, pj is ice
density, D = 2n3E/3(1-v2) is the flexural rigidity of
the ice, E is Young's modulus, and v is the Poisson
coefficient.

ANALYSIS
Eliminating u, p, and pg, and writing

¢ =n(x) cos wt

gives
dén dn
== g == = iy, = [ (2
d dx2 :
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where

P P
« == (g-2h — w?)
D p

(which =pg/D, for thin ice) and

Assuming neer X, and working through the necessary
algebra eventually gives the six independent solutions

cosh Ax cos Bx
sinh Ax sin Bx
cos Cx

cosh Ax sin Bx
sinh Ax cos Bx (3)
sin Cx

[-(A+B) /2,

where A = P cos ©/2, B= P sine/2, C =
A)/(B+A), and

and P = [A2 - AB + B2Ji/4 , tan o /3(
R=[-8/2 +/p2/8 +o3/2TTH/3,
B=[-8/2 -/B2/4 +ad /27173, R
It should _be noted that A and B are real, A> 0, B< 0,
and IBl> IRl . Also, P and C are real and positive, and
m/3 < 0 <n/2. The cases where a < 0 occur at periods
less than a few seconds, and fall outside both our
range of interest and the hydrostatic approximation.

First consider the modes of oscillation which are
asymmetric about x = 0. Here,

C
8-

n = Ap sin Cx + Ap cosh Ax sin Bx + A3 sinh Ax cos Bx

where the A; are constants to be determined by the
boundary conditions. These conditions are

n =dn/dx = u =0, at x = *W/2, When u is written in
terms of n using Equations (1), these become

at x = xW/2. (4)

The assumed conditions at the walls deserve com-
ment. We have taken the ice to be rigidly attached to
the (vertical) walls. This can be inappropriate: in
Nature, an ice crack induced by changing water levels
is often seen very near the wall. This crack would
suggest that some type of "free" conditions, such as
no vertical shear and no bending moment in the ice at
the wall, would be more realistic. The conditions we
have chosen in this paper will only apply when such
a crack is not present. Somewhat paradoxically, this
is likely to be so when water-level changes are rather
uncommon (e.g. on small, inland water bodies not
strongly affected by tides). Here, the ice has a much
better chance to adhere strongly to the wall.

The best boundary conditions with which to model
seiching when the ice is separated from the wall are
not obvious. It is very likely that some water would
seep upward through any crack, thus relieving the
water pressure, and changing the water dynamics. How-
ever, the no-shear, no-moment conditions could give
another bound on the resonant frequencies in an act-
ual situation. We would expect these frequencies to
be somewhat lower, as the system is then less con-
strained.

For a nontrivial solution (i.e. A; # 0), the
coefficient determinant of Equations ]4) must vanish.
Introducing the non-dimensional variables

y = CH/2,
w = BW/2, (5)
z = AW/2,

then gives, after some algebra, the condition

z(y* -F)sin 2w + w(G-y* )sinh 2z +

+ SE(\J‘-Z")(cosh? z-sirtw)tan y = 0 (6)
¥
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where

- 10w 2 + 5w,
wt - 10w 2 + 524,

non

F
G
A similar treatment for the modes which are symmetric
about x = 0 gives
w(G-y*)sinh 2z + z(F-y*)sin 2w +
8wz
+ ——(z%-wt) (sint? z + sirfw)cot y = 0. (7)
Yy
THE SOLUTION

To solve Equations (6) and (7), it is convenient
to introduce the new variables

1/3 1/3
BWe x02
S
128 128
a3 ;2.2 4 pgrgHy2 2hoj 3
FOIORERC R
3 B8 27 D \w? pg
X
== = (1-A92)3
27 o
where
wh
¢ =— (a non-dimensional frequency),
v gH
p gWt
x =—— (the principal independent variable in
D what follows),
2hei f H\2
A = m—— (-— (a measure of ice thickness, and
B VW usually very small).

Note that Equations (5) give

y = ¢M2([1 + /TR + 1 - /T3yt /2,
w=ol2{[1 +/TryR/3 + [1 - /TP +
+¢1f3}1“'s1‘n~§, (8)

z = ¢l/2([1 +/1IPB/3 + [1 - VIR P/3 +

+q,1/3}1“*605_9,
2
where — -
[1 +vV1n /3 - [1 -/1y /3
tane =v3 — — .
[1 4143 + 1 —Jl+¢]1f3}

THE DISPERSION RELATION

It is numerically convenient to specify y and then
solve Equations (6), (7), and (8) for ¢. However, we
really want ¢ in terms of x and A , which is a non-
dimensional dispersion relation. For fairly thin ice,
we do not expect ice thickness to affect the seiche
period greatly. Thus, ¢ should vary mainly with x.

The relations between (x,%) and (¢,y) fora =0 are
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vo = /BT ¢1/2 N6,
Xo = 48 ¢Z‘pl/3.
The equivalent relations for a # 0 are

2

¢ g

QR s
1 +a04?

X X5 + 128 13113.

We expect A to be small, and x to be rather large.
For example, consider the following typical case,

which will also be used later:
2h=1m E = 1010N/m?
H =10m pifo = 0.9 (9)
W=200m v =1/3

Here, & = 2.25 x 10™, and x = 1.7 x 10*. We also ex-

pect ¢ not to be extremely sensitive to changes in a,
so that the relation between ¢4 and x o should give a
good estimate of the dispersion relation for most
physically reasonable situations.

The dispersion relations for the first three modes
(i.e. having 1, 2, and 3 nodes), and for A = 0 and
10-3, are shown in Figure 2. The calculated values of
¢(p) are given in Table I. The dispersion relation
for other values of A can be easily calculated from
the (x,8; ¢,0) relations given above. As expected, the
natural frequency increases with increasing D, and
with decreasing W (i.e. decreasing y). The frequencies
increase with increasing A, although this effect is
very small for the fundamental mode. The fundamental

10

od 1 1

2 6

oG X, X,

Fig. 2. The dispersion relation for seiching in a two-
dimensional, ice-covered channel, showing the natural
nondimensional frequencies ¢ for the lowest three
modes of oseillation. The numbers by the curves are
mode numbers. The solid curves show the ®,x relation
for A = 1073, The dot-dash curves show the
asymptotic estimates given by Equations (10) and (11).
All logarithms here and elsewhere are to the base ten.

Green: Natural oseillations of an ice-covered channel

TABLE I. SOLUTIONS TO EQUATIONS (6) (FOR MODES 1 AND
3) AND (7) (FOR MODE 2). VALUES NOT GIVEN WERE EITHER
INACCESSIBLE, DUE TO CALCULATOR OVERFLOW, OR DEEMED
UNNECESSARY.

Mode 1 Mode 2 Mode 3
v ¢ ] [
102 8.28336 19.272729 34,741435
107} 8.86137 21.50632 39.55414
1 10,32819 27.55552 53105499
10 14.30948 43,91247 89.69401
102 23,9659 81.78149 174.00582
108 44,7911 163.2449 355,73181
10t 88.91650 337.06112 744.68374
1k 182.75944 708,92949 1578.67989
5x10P - 1199,8461 -
1k 383.30306 - =
107 813.29889 - -

period for the typical case (9) is T = 29.7 s. The
corresponding period for an ice-free channel is cal-
culated from Merian's formula T = 2WGH to be 40.4 s.

It is helpful to have more explicit forms of the
dispersion relations, for large, but reasonable X
In many physically realistic situations, y is quite
large, suggesting that the sinusoidal terms in
Equations (6) and (7) are relatively small. Then
large-value expansions of the y portions of y, w, and
z given in Equation (8) lead to the asymmetric-mode
relation

¢1/29"1/62 /372 tan<l (apl /%), ye>1

where a = 3/% /2, Rewriting this in terms of y and

& gives
tan( )

(x>>1; asymmetric modes).

-Y2 e

(1{@2 )3/!+

¢

¥ T-r02

1/,

X (10)

The corresponding symmetric-mode relation is

V7 o )

®
e (
)3/'-!
(x>>1; symmetric modes).

1/

X

(11)

(1-092 o/ T-1re2

The dispersion curves defined by Equation (10) and
(11) are also shown in Figure 2, They are quite
accurate for x greater than about 10°, although the
discrepancy at a fixed x increases with increasing
mode number,

For extremely large y, Equations (10) and (11)
give

where n =1, 2, 3,
be rewritten as

«+. 18 the mode number. This can

nm
B-= -

Y TwnZn2

The corresponding result for no ice, obtained by
simply rewriting the general Merian formula
T=2W/n/H in terms of ¢, is

x>> L. (12)

.

Thus, the vibration frequency in the limit as the
ice thickness approaches zero is less than that for
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the no-ice case. This is perhaps unsett]ing, as water
with ice would seem to represent a "harder" spring-
mass system than that without. The explanation seems
to 1ie in the boundary conditions, and the singular
nature of the problem in the thin-ice limit. For the
fundamental mode (for example), and for the same
slopes an/a x at the channel center, the boundary con-
ditions at the walls ensure that there is more poten-
tial energy in the no-ice case than in the case where
ice is present, but where h approaches zero (since
the strain energy of ice can then be neglected). Thus,
the no-ice case is harder, and the natural frequency
higher. This only happens at very high x: for the
fundamental mode, we find® =7 aty =% = 1.1 x 100!,
and ¢ < foryx > %. In fact, we will show below that
the hydrostatic approximation is often not valid near
the wall for such large values of x. (In the case of
(9) above, x =% when the ice thickness is decreased
to 0.25 mm.)

Representative shapes of the first three modes
for various x are shown in Figure 3, The maximum
value of n (npax) approaches the wall with increasing
x. Near the wall, the n derivatives are large, in ac-
cord with the wall boundary conditions and the singu-
lar nature of the problem. Enlargements of the funda-
mental mode shapes in this region are shown in Figure
4, and the positions of nyax as a function of x in
Figure 5. Note that the positions of the maxima near-
est the wall become the same for all three modes, as
x becomes large. Of course, the locations of such
maxima should be avoided when placing structures such
as piles,

THE RANGE OF VALIDITY

Over what ranges of parameters are the above re-
sults valid? The results are limited mainly by two
assumptions. First, the hydrostatic approximation was
used, This is valid only for rather long-period oscil-
lations. Second, the ice was assumed to behave elastic-
ally, and creep was neglected. This is valid only for
fairly short-period oscillations. Thus, we expect
there to be a range of the oscillation period T over
which the above results are reasonably accurate. The
criteria will be couched in terms of ¢ and, via the
dispersion relation, x.

0.I95 1
2%/

Fig. 4. The shape of the fundamental mode near the
channel wall, for various ¢ or x o The near-wall
shapes of the second and third modes are very similar
to this.

First consider the hydrostatic approximation. The
elementary criterion for this to hold is that the
water be shallow: W/H>>1, (To obtain numbers below,
this statement and others similar to it will be in-
terpreted, rather conservatively, as W/H > 10). How-
ever, Lamb (1932) and Proudman (1952) have shown it
also necessary that

T2 >> n2H/g

for vertical accelerations to be neglected. This can
be written

02 << W2 /HZ | (13)
Using the lower bound on W/H given just above
yields & < 5. Thus, most of each of the dispersion
curves shown in Figure 2 is valid for any W/H>> 1,
and slightly larger W/H render the entire figure
valid, at least with respect to condition (13).

Fig. 3. Ezamples of the shapes of the lowest three modes together with the corresponding

values of xyand x, for & = 1073

316

https://doi.org/10.3189/50022143000006158 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000006158

0.2

i 1

2 6

og X, x, 0

Fig. 5. Positions of the maxima of the three lowest
modes, as a function of y o The number by each
curve is the mode number. The second maximum for mode
2 is always at x= Q.

However, this is not the end of the matter. There
is also an upper bound on x (and a corresponding low-
er bound on ¢ ) associated with the hydrostatic
approximation. Peregrine (1972) has shown in a rigor-
ous fashion that the hydrostatic relation is valid to
an error on the order of (H/L)Z, where L is an appro-
priate horizontal length scale for the situation. This
scale is normally taken to be W, but in our case the
distance d from the wall to the nearest n maximum
seems much more reasonable (see Fig. 5). Again, this
is especially true because of the singular nature of
the problem, and the consequent great importance of
the boundary conditions at the wall., Define £ as the
fractional distance from the wall to the nearest n
maximum: d = gW/2. Then the resulting criterion for
the hydrostatic approximation to hold near the wall
becomes

4H /(EW)2 < 0.1,
or (14)
W/H > 6/t.

Thus, there is a minimum £ associated with each W/H.
Since £ decreases with increasing x (Fig. 5), there
is a maximum x associated with each W/H. The result-
ing range of validity is shown in Figure 6. This
criterion must be kept in mind, when proceeding to
the thin-ice limit.

Now consider the limitations imposed by the
elasticity assumption. Ice does not behave elastic-
ally when the time scale of loading is large. The
precise criterion for the case of oscillatory motion
is still unclear, and may well be amplitude depend-
ent (Michel, 1978). However, a reasonable value for
the largest "elastic" period seems to be T = 5 min.
The condition T < T, gives

2n W W Wyl/2
o> _=a(—~.—) (15)
To/ gH gl H

Green:

Natural oscillations of an ice-covered channel

1 Il L

4 ] 10

8
LOG X, X,

Fig. 6. The range of validity of the results, according
to the hydrostatic approximation. The numbers by the
curves are mode numbers. The regions above each curve
are those for which the hydrostatiec approximation is

valid. The difference betucen the curves for x (& = 1073)

and Xq is at most about 2% of X g, and cannot be shown
at the scale of the figure,

This Tower bound on &, in conjunction with the dis-
persion relation, gives an upper bound on x. Thus,
there are two criteria for the maximum value of x
for which the model is probably accurate: that shown
in Figure 6, and that given by Equation (15). These
vary with the non-dimensional parameters W/H and
W/gT 2 ; the lower of the two y values, xpn, controls
the situation. Contours of x;, for the fundamental
mode are shown in Figure 7. For small W/gTe, the
hydrostatic approximation is most limiting, and is
independent of W/gT 2. For large W/ gTe?, £ is de-
termined by the elasticity approximation. The divid-
ing value of w/gTe2 decreases with increasing W/H.
Similar figures could be drawn for the higher modes.

Now consider example (9) once more. Here,

x = 1.7 x 10*, If we choose Te = 300 s, WqT2 =

2 x 10™., Since W/H = 20, this is well within the
region where the hydrostatic approximation is most
Timiting. Here, x;, = 4.5 x 10P, which is much
greater than y.

In what physical situation is the elasticity cri-
terion most limiting? For variety, consider the case
of W/H = 100. The value w/gTe2 = 2 % 1070 33 Jjust
within the region where xm 1s given by Equation (15).
At this point W = 2400 m and H = 24 m, Also Xm =
5.6 x 107. From the definition of y, the model assump-
tions hold if

12(1-v2 )p gt
(2n)3 >

XmE

which here requires an ice thickness 2h > 1.9 m. This
is rather thick ice. It seems that the hydrostatic
assumption is usually more important.

The results shown in Figure 7 are quite insensi-
tive to physically reasonable values of A. This is so
because the fundamental-mode results shown in both
Figure 2 and Figure 6 are also insensitive to A. Of
course, the small o dependence for any of the first
three modes could be calculated if desired, using the
theory above and the numerical results in Table Iji%
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= aD

M = ==, (16)
W2

Here, f] is a normalized, non-dimensional curvature
(expressed in terms of w, y, and z). Similarly, the
maximum vertical shear force also occurs at the wall,
and is given by

I-:D aD
§ == faly (17)
W3

where fp is a normalized, non-dimensional third deriv-
ative. The quantities f} and fp are shown in Figure 8.
Both f} and f; increase with increasing mode number,
and become independent of mode number for very large
x (in accord with the mode-shape results shown in
Figures 4 and 5). Both exhibit an approximately ex-
ponential increase with increasing, large x. That is,
the force and moment increase markedly (for fixed a
and D) with increasing channel width. It should also
be recalled that the position where n = a varies slowly
with large changes iny (Fig.3).

106 Wg

ICE FAILURE

Although the case of ice failure may well lie out-
side the range in which ice can be considered elastic
(Michel, 1978), there is some merit in following the
elastic model through to this point. This has also
been done by others (e.g. Billfalk, [1981], 1982;
Carter and others, [1981]), and gives if nothing else
a starting point against which progress towards real-
ism can be measured. Accordingly, we will assume that
the ice remains elastic up to the point where it

breaks, or at least cracks. This point is, of course,
L LoG W -

yet another bound on the model used above - this time
on the amplitude of the seiche.

Fig. 7. Maximun values of x, xp. for which both Since ice can fail in either shear or tension,
the hydrostatic and elasticity approximations are both cases will be considered. The maximum tensile
probably valid, for the fundamental mode. Below the
dashed line, the hydrostatic approximation is most
limiting. Above the line, the elasticity approxima-
tion is most limiting. Numbers on the curves give the
appropriate power of ten. /

The maximum usefulness of criterion (15) and Fig-
ure 7 await a reliable determination of Te. Also, the
accuracy of all these numerical results suffers from
the arbitrariness of the above interpretation of
"<<" (which can be improved upon, if one has certain
limits of accuracy to maintain). The best way to deal -
with the limitations imposed by the hydrostatic assump- e
tion would be to do without it, This seems possible, (4]
by following analyses of the reflection of capillary- (=]
gravity waves from a wall (e.g. Packham, 1968). =

Finally, consider the remarks in the dispersion-
relation section above pertaining to the value of x
above which the natural frequency is less than that
in the no-ice case. For the fundamental mode, x =
1.1 x 101, Then Figure 6 gives (W/H)pin = 320. Thus,
for example, the case (9), with ice thickness reduced
to give x, is far outside the range in which the
hydrostatic approximation is valid. I

LOG f,

ICE FORCES AT THE WALL 1

Now consider the relation between seiche ampli- 2 b 10
tude and the force and moment exerted on the channel LOG X’X,
wall. If we neglect the minor dependence on 4, the i
mode shape depends only on x (Fig. 3). Then the maxi- Fig. 8. Nondimensional, normalized moments f; and shear
mum ice curvature also varies only with x, and with forces fy on the channel wall. Mode numbers are given
the maximum value of n over the entire ice sheet, a. on the curves. The curves for x (& = 1073)
The maximum moment is found to always occur at the and y, are indistinguishable at the scale of the
wall, and can be written figure. See the text for the definitions of f; and fj.

318

https://doi.org/10.3189/50022143000006158 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000006158

stress ¢ occurs at z = th, and is given by

o = 3M/2h? (see, e.g., Timoshenko and Woinowsky-
Krieger, 1959). The maximum shear stress is at z = 0,
and is v = 35/4h. Denote the ultimate values by g4
and 1, and assume that when one of these is exceeded,
the ice breaks or cracks (or, at least, that the elas-
tic model no longer applies). Divide Equations (16)
and (17) to get

g = Rt (18)

20 .
where R = h— q(x) and q = fy/fp. The function q(x)

is important to what follows, and is shown in Figure 9.

Note that Equation (18) is independent of a: for
a given situation, the ratio of o to T is constant as
the seiche becomes more energetic. Then, if oy < Rrg,
og 15 encountered first as a increases, and the ice
fails at the wall in tension. In this case the maxi-
mum vertical force on the wall is associated with the
shear stresst = o,4/R, and is Spay = 4ho 4/3R. The
maximum amplitude is

2 W e

%o

3 Dfy

Anax ag< Rrge. (19)

On the other hand, ifogy? Rry, the ice either fails
in shear at the wall, or the ice-wall bond fails.
(The criteria for these two occurrences are quite
close, see Michel 1978.) The maximum vertical force
is now Spay = 4ht o/3; the maximum seiche amplitude

is
4h|ﬁlaT 0
Apax = og> Rrg (20)
3Df,
-~
=]
o
= 1 1 1
2 6 10

LOG XX,

whieh is related to
when the ice is
up to this point.

Fig. 9. The function q = fi/fa,
the character of ice failure,
assumed to behave elastically
Mode numbers are given on the
are for A = 0 (i.e. X =X,). The dashed curves are
for & = 1073, They are in istinguishable
at the scale of the figure, except for small x.

Green: Natural oscillations of an ice-covered channel

According to Michel (1978), 4= 14 (to a factor of
2, which accuracy is in accord with the spirit of the
entire argument), so that R = 1 separates the two
cases, or q(x) = h/2W, That is, for h/2W < q, we ex-
pect the ice to fail in tension, Spax = hog, and
amax = o oW/ (Ehfy). )
Mow consider case (9) discussed above. Here, Fig-
ure 9 gives q = 0.06. Since h/2W = 1073, we expect the
ice to fail in tension. Then, using g = 2 x 106 N/m?,
Equation (19) suggests apax = 8 cm. The maximum ver-
tical force on the wall is about 3 x 10*N/m.

SUMMARY

A first step towards describing seiching in an
ice-covered channel has been taken, using the assump-
tions of ice elasticity and hydrostatic pressure in
the water column, and assuming the ice to be rigidly
attached to the channel walls. The domain over which
the elasticity and hydrostatic-pressure assumptions
should be valid has been delineated, and maximum
forces and moments on the channel walls calculated.
These results, together with ‘the dispersion relation,
are the principal products of this paper. The next
step should be to do away with the elasticity and
hydrostatic assumptions, and to investigate other
boundary conditions which may be more applicable
when the ice is cracked near the walls. Also, more
reliable failure criteria should be incorporated,
so that maximum seiche amplitudes, forces, and moments
for a given ice thickness, channel width, etc., can
be estimated better. These steps will necessitate
incorporating phenomena such as delayed elastic
strain and creep in the ice constituitive equation
(e.g. Sinha, 1982; Nevel, 1968).
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