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POWERS OF p-VALENT FUNCTIONS
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Abstract
I f / is areally meanp-valent in the unit disc, if A>0, and if/A is defined as a
single-valued analytic function on the unit disc with finitely many arcs
removed, several results in the recent literature suggest that / A might be
areally mean />A-valent. The purpose of this note is to determine the valence
of/A when/is areally mean/7-valent, and also to characterize those functions
for which / A is />A-valent for all A > 0. Analogous results are obtained for
functions which are either .s-dimensionally mean ^-valent or logarithmically
mean />-valent.

Subject classification (Amer. Math. Soc. (MOS) 1970): 30A36, 30A32.

1. Introduction and statement of results

If / i s regular in y = {z: |z |<l}, set n(r,w,f) equal to the number of roots in
yr = {z: |z\<r} of /(z) = w, and put p(r,R,f) = (1/2*) fcn(r,R*»,f)dO. If
p(l,2?,/)<p for all R>0, f is called circumferentially mean p-valent, and we
write feC(p).

Denote the area, according to multiplicity, off(yr)n{w: \w\<R} by A*(r,R,f).
It is easily verified that A*(r,R,f) = /§" ̂ fn{r,teie,f)tdtd6. If A*(l,R,f)<pTrR2

for all R>0,fis called areally mean p-valent, and we write feS(p).
Two additional classes of/>-valent functions appearing in the literature are the

class of j-dimensionally mean p-valent functions (Spencer, 1940) and the class of
logarithmically mean p-valent functions (Jenkins and Oikawa, 1971). We denote
these classes by Ss(p) and L(p), respectively. We say that /eS/p) if

while feL(p) if

Many results in the recent literature have been concerned with the determination
of growth rates of various quantities associated with p-valent functions. For
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example, if fe S(p) and if/(z)A = z^ £±£ an(A) z" in an annulus {z: 0^r1<\z\<l},
then an(l) = 0(1) w2"-1 if p>\, and more generally an(\) = 0(1) n2^-1 if/>A>£
(Hayman, 1967, p. 104).

Results of this nature suggest that if/is/?-valent and A>0, then/A is/?A-valent.
Some positive results are known. JffeC(p) and A>0, then/AeC(^A) (Hayman,
1967, p. 95). Also, \ffeS(j>) and 0<A<l, then/A e S(/>A) (Eke, 1967, p. 189).
The purpose of this note is to determine the valence of/A when/is p-valent, and
also to characterize those functions for which/A is />A-valent for all A>0.

Before proceeding further, we must specify the meaning of expressions such as
/A. In general, if/has zeros in y, /A will not be single-valued. However, we shall
be dealing exclusively with functions / which are />-valent in one of the above
senses, and so, as is well known (Hayman, 1967, p. 103),/can vanish at most
finitely many times in y. If we now connect the zeros o f /by a simple smooth
arc a, one of whose end points lies on the circumference \z\ = 1, a single-valued
analytic branch of/A can be defined on the simply connected domain y1 = y \ a.
With this understanding, expressions such as / A 6 S(pX) shall mean that this
analytic branch of/A is areally mean pA-valent on the domain yv Alternatively,
we could have defined an analytic branch of / A in a suitable annulus
{z: 1 —e<|z|<l}, cut if necessary by a radius. All results in this paper are valid
with either understanding of/A.

We first determine the valence of/A when feS(p).

THEOREM 1. Let feS(p), and let A>0 be given. Set A = max (A, A2). Then
fxeS(j>A), and the valence pA is best possible.

Note that for A> 1,/A need not belong to S(j>\). We now characterize those
functions for which f*eS(pX) for all A>0. The characterization seems somewhat
interesting, since the areal behavior of/ is characterized in terms of the circum-
ferential behavior.

THEOREM 2. Let p>0. Then fxeS(p\) for all A>0 if and only iffeC(p).
Both Theorem 1 and Theorem 2 continue to hold for the classes Ss(p) and L{p).

We have

THEOREM 3. Let A > 0, A = max (A, A2). Iffe Ss(p) (L(p)), thenfx e Ss(pA)(L(pA)),
and in each case the valence is best possible. Also, fe C{p) if and only if
/AeS8(pA)(L(pA)) for allX>0.

2. Proofs of positive results

We begin by noting that if/is regular in y and if A>0, then

A*{r,R,ft) = 2nX\ {t^pir, t,f)dt. (1)
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In order to prove this, we recall (Hayman, 1967, p. 96) that
p(r,t\fx)=\p(r,t,f). (2)

After using (2) and changing variables in the formula denning A*{r,R,fx), we
arrive at (1).

If 0<AsSl, then A = A, and the fact that /AeS(pX) when/e ,S(/>) is known
(see Eke, 1967, p. 189 or Hayman, 1967, p. 45). We also note that this fact follows
easily from (1) upon integrating by parts.

We now assume A> 1, so that A = A2. If feS(p), it follows from (1) that

Jo

Hence fx e S(pA). An example showing that the valence pA is best possible will
be presented in Section 3.

We now prove Theorem 2. IffeC(p), it is well known (Hayman, 1967, p. 95)
that/AeC(/>A), and hence fxeS(p\) for all A>0.

If fxeS(pX) for all A>0, then A*(l,R,fx)^XpnR2 for all A>0, R>0. Upon
changing variables, we see that this is equivalent to

for all A>0, T>0. It now follows from a theorem of Spencer (Spencer, 1940,
p. 421) that p{\,R,f)*kp for all R>0, and hence feC(p).

The proof of Theorem 3 in the case of Ss(p) is essentially the same as the proof
in the case of S(p) = S2(p), and hence it will be omitted.

If/eZ,(/>), then

ds
R1

and so fx eL(pA). A simple modification of an example due to Jenkins and
Oikawa (Jenkins and Oikawa, 1971, pp. 402-403) shows that the valence pA is
best possible.

In order to complete the proof of Theorem 3, we note that if fe C(p), then
fxeC(pX)cS{pX)cL(pX). Conversely, if/AeL(/>A) for all A>0, then

-ds
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for all 0<R1<R2. Thus, for any interval /<=(0,oo), we have

p(\,s,f)-if
Ji

-ds^Xp/2. (3)

If there exists s0 with p(l,so,f)>p, then the fact that p(l,s,f) is a lower semi-
continuous function implies the existence of an interval / on which p(l,s,f)>p.
This in turn contradicts the fact that (3) holds for all intervals / and for all A > 0.
Therefore, p(l,s,f)^p for all s, and so feC(p).

3. Example

We now present an example to complete the proof of Theorem 1. Given p>0,
A>1 and 0<e<pX2, we construct feS(p) such that fx$S(pA—e). We begin
by choosing xe(0,l) and setting y = (\-x*)-\ Put A(x) = {teie:x1'vP<t<l,
de(0,2ir)}. Let h map y conformally onto the simply connected domain A(x),
and se t /= hvp. Elementary geometric arguments now show that with m = [yp],
we have

' m+1, 0e[O,2n(yp-m)), Re(x,l),

n{\,Reie,f) =

0

This in turn implies that

yp, Re(x,l),

m, ee[27T{yp-m),2ii), Re(x,l),

p(l,R,f)= ,
1 0, R$(.x,l).

We now claim that feS(p). If 0<R^x, it is trivially true that

lfx<R<l, then

yptdt

Straightforward computations now show that A*(l,R,f)^pirR!i. If R^l, then
A *(1, J?,/) = /)7r </»TJ-JR2. Hence fe S(p).

We now complete the construction by choosing x (and hence / ) so that
f*$S(pA-e). lfxx<R<l,it follows from (1) that
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Therefore

As x->l , ( 1 - X 2 A ) / A ( 1 - J C 2 ) = X2<A-1> + O(1). Hence, given e>0, we choose

such that

S U P — ' . : xx<R<l\>pA-e.
[ TTR* )

With such an x, we ha.\efeS(j>), yetfx$S(pA—e).
To construct a corresponding example for 5s0>), we merely define y to be

y = (1 — .X?)"1, and proceed as above.
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