POWERS OF *p***-VALENT FUNCTIONS**

J. W. NOONAN (Received 18 June 1976; revised 18 January 1977) Communicated by E. Strzelecki

Abstract

If f is areally mean p-valent in the unit disc, if $\lambda > 0$, and if f^{λ} is defined as a single-valued analytic function on the unit disc with finitely many arcs removed, several results in the recent literature suggest that f^{λ} might be areally mean $p\lambda$ -valent. The purpose of this note is to determine the valence of f^{λ} when f is areally mean p-valent, and also to characterize those functions for which f^{λ} is $p\lambda$ -valent for all $\lambda > 0$. Analogous results are obtained for functions which are either s-dimensionally mean p-valent or logarithmically mean p-valent.

Subject classification (Amer. Math. Soc. (MOS) 1970): 30A36, 30A32.

1. Introduction and statement of results

If f is regular in $\gamma = \{z : |z| < 1\}$, set n(r, w, f) equal to the number of roots in $\gamma_r = \{z : |z| < r\}$ of f(z) = w, and put $p(r, R, f) = (1/2\pi) \int_0^{2\pi} n(r, Re^{i\theta}, f) d\theta$. If $p(1, R, f) \le p$ for all R > 0, f is called *circumferentially mean p-valent*, and we write $f \in C(p)$.

Denote the area, according to multiplicity, of $f(\gamma_r) \cap \{w : |w| < R\}$ by $A^*(r, R, f)$. It is easily verified that $A^*(r, R, f) = \int_0^{2\pi} \int_0^R n(r, te^{i\theta}, f) t dt d\theta$. If $A^*(1, R, f) \le p\pi R^2$ for all R > 0, f is called areally mean p-valent, and we write $f \in S(p)$.

Two additional classes of *p*-valent functions appearing in the literature are the class of *s*-dimensionally mean *p*-valent functions (Spencer, 1940) and the class of logarithmically mean *p*-valent functions (Jenkins and Oikawa, 1971). We denote these classes by $S_s(p)$ and L(p), respectively. We say that $f \in S_s(p)$ if

$$\int_{0}^{R} p(1, R, f) d(R^{s}) \leq pR^{s} \quad (R > 0),$$

while $f \in L(p)$ if

$$\int_{R_1}^{R_2} \frac{p(1, R, f)}{R} dR \leq p\left(\log \frac{R_2}{R_1} + \frac{1}{2}\right) \quad (0 < R_1 < R_2).$$

Many results in the recent literature have been concerned with the determination of growth rates of various quantities associated with *p*-valent functions. For

Research supported by NSF-GP-43774.

example, if $f \in S(p)$ and if $f(z)^{\lambda} = z^{\mu} \sum_{-\infty}^{+\infty} a_n(\lambda) z^n$ in an annulus $\{z: 0 \le r_1 < |z| < 1\}$, then $a_n(1) = O(1) n^{2p-1}$ if $p > \frac{1}{4}$, and more generally $a_n(\lambda) = O(1) n^{2p\lambda-1}$ if $p\lambda > \frac{1}{4}$ (Hayman, 1967, p. 104).

Results of this nature suggest that if f is p-valent and $\lambda > 0$, then f^{λ} is $p\lambda$ -valent. Some positive results are known. If $f \in C(p)$ and $\lambda > 0$, then $f^{\lambda} \in C(p\lambda)$ (Hayman, 1967, p. 95). Also, if $f \in S(p)$ and $0 < \lambda \le 1$, then $f^{\lambda} \in S(p\lambda)$ (Eke, 1967, p. 189). The purpose of this note is to determine the valence of f^{λ} when f is p-valent, and also to characterize those functions for which f^{λ} is $p\lambda$ -valent for all $\lambda > 0$.

Before proceeding further, we must specify the meaning of expressions such as f^{λ} . In general, if f has zeros in γ , f^{λ} will not be single-valued. However, we shall be dealing exclusively with functions f which are p-valent in one of the above senses, and so, as is well known (Hayman, 1967, p. 103), f can vanish at most finitely many times in γ . If we now connect the zeros of f by a simple smooth arc α , one of whose end points lies on the circumference |z| = 1, a single-valued analytic branch of f^{λ} can be defined on the simply connected domain $\gamma_1 = \gamma \setminus \alpha$. With this understanding, expressions such as $f^{\lambda} \in S(p\lambda)$ shall mean that this analytic branch of f^{λ} is areally mean $p\lambda$ -valent on the domain γ_1 . Alternatively, we could have defined an analytic branch of f^{λ} in a suitable annulus $\{z: 1 - \varepsilon < |z| < 1\}$, cut if necessary by a radius. All results in this paper are valid with either understanding of f^{λ} .

We first determine the valence of f^{λ} when $f \in S(p)$.

THEOREM 1. Let $f \in S(p)$, and let $\lambda > 0$ be given. Set $\Lambda = \max(\lambda, \lambda^2)$. Then $f^{\lambda} \in S(p\Lambda)$, and the valence $p\Lambda$ is best possible.

Note that for $\lambda > 1$, f^{λ} need not belong to $S(p\lambda)$. We now characterize those functions for which $f^{\lambda} \in S(p\lambda)$ for all $\lambda > 0$. The characterization seems somewhat interesting, since the areal behavior of f is characterized in terms of the circumferential behavior.

THEOREM 2. Let p > 0. Then $f^{\lambda} \in S(p\lambda)$ for all $\lambda > 0$ if and only if $f \in C(p)$.

Both Theorem 1 and Theorem 2 continue to hold for the classes $S_s(p)$ and L(p). We have

THEOREM 3. Let $\lambda > 0$, $\Lambda = \max(\lambda, \lambda^2)$. If $f \in S_s(p)(L(p))$, then $f^{\lambda} \in S_s(p\Lambda)(L(p\Lambda))$, and in each case the valence is best possible. Also, $f \in C(p)$ if and only if $f^{\lambda} \in S_s(p\lambda)(L(p\lambda))$ for all $\lambda > 0$.

2. Proofs of positive results

We begin by noting that if f is regular in γ and if $\lambda > 0$, then

$$A^*(r, R, f^{\lambda}) = 2\pi\lambda_t^2 \int_0^{R^{1/\lambda}} t^{2\lambda - 1} p(r, t, f) dt.$$
⁽¹⁾

J. W. Noonan

In order to prove this, we recall (Hayman, 1967, p. 96) that

$$p(r, t^{\lambda}, f^{\lambda}) = \lambda p(r, t, f).$$
⁽²⁾

After using (2) and changing variables in the formula defining $A^*(r, R, f^{\lambda})$, we arrive at (1).

If $0 < \lambda \le 1$, then $\Lambda = \lambda$, and the fact that $f^{\lambda} \in S(p\lambda)$ when $f \in S(p)$ is known (see Eke, 1967, p. 189 or Hayman, 1967, p. 45). We also note that this fact follows easily from (1) upon integrating by parts.

We now assume $\lambda > 1$, so that $\Lambda = \lambda^2$. If $f \in S(p)$, it follows from (1) that

$$A^*(1, R, f^{\lambda}) = 2\pi\lambda^2 \int_0^{R^{1/\lambda}} t^{2\lambda-2} tp(1, t, f) dt$$
$$\leq \lambda^2 R^{2-2/\lambda} A^*(1, R^{1/\lambda}, f)$$
$$\leq \pi p \lambda^2 R^2.$$

Hence $f^{\lambda} \in S(p\Lambda)$. An example showing that the valence $p\Lambda$ is best possible will be presented in Section 3.

We now prove Theorem 2. If $f \in C(p)$, it is well known (Hayman, 1967, p. 95) that $f^{\lambda} \in C(p\lambda)$, and hence $f^{\lambda} \in S(p\lambda)$ for all $\lambda > 0$.

If $f^{\lambda} \in S(p\lambda)$ for all $\lambda > 0$, then $A^*(1, R, f^{\lambda}) \leq \lambda p \pi R^2$ for all $\lambda > 0$, R > 0. Upon changing variables, we see that this is equivalent to

$$\int_0^T p(1,t,f) \, d(t^{2\lambda}) \leqslant p T^{2\lambda}$$

for all $\lambda > 0$, T > 0. It now follows from a theorem of Spencer (Spencer, 1940, p. 421) that $p(1, R, f) \leq p$ for all R > 0, and hence $f \in C(p)$.

The proof of Theorem 3 in the case of $S_s(p)$ is essentially the same as the proof in the case of $S(p) = S_2(p)$, and hence it will be omitted.

If $f \in L(p)$, then

$$\int_{R^1}^{R_2} \frac{p(1, R, f^{\lambda})}{R} dR = \lambda^2 \int_{R_1^{1/\lambda}}^{R_2^{1/\lambda}} \frac{p(1, s, f)}{s} ds$$
$$\leq p \Lambda \left(\log \frac{R_2}{R_1} + \frac{1}{2} \right),$$

and so $f^{\lambda} \in L(p\Lambda)$. A simple modification of an example due to Jenkins and Oikawa (Jenkins and Oikawa, 1971, pp. 402-403) shows that the valence $p\Lambda$ is best possible.

In order to complete the proof of Theorem 3, we note that if $f \in C(p)$, then $f^{\lambda} \in C(p\lambda) \subset S(p\lambda) \subset L(p\lambda)$. Conversely, if $f^{\lambda} \in L(p\lambda)$ for all $\lambda > 0$, then

$$\int_{R_1}^{R_2} \frac{p(1, t, f^{\lambda})}{t} dt = \lambda^2 \int_{R_1^{1/\lambda}}^{R_2^{1/\lambda}} \frac{p(1, s, f)}{s} ds$$
$$\leq \lambda p \left(\log \frac{R_2}{R_1} + \frac{1}{2} \right)$$

68

for all $0 < R_1 < R_2$. Thus, for any interval $I \subset (0, \infty)$, we have

$$\lambda^2 \int_I \frac{p(1,s,f) - p}{s} ds \leq \lambda p/2.$$
(3)

If there exists s_0 with $p(1, s_0, f) > p$, then the fact that p(1, s, f) is a lower semicontinuous function implies the existence of an interval I on which p(1, s, f) > p. This in turn contradicts the fact that (3) holds for all intervals I and for all $\lambda > 0$. Therefore, $p(1, s, f) \leq p$ for all s, and so $f \in C(p)$.

3. Example

We now present an example to complete the proof of Theorem 1. Given p>0, $\lambda>1$ and $0<\varepsilon<p\lambda^2$, we construct $f\in S(p)$ such that $f^{\lambda}\notin S(p\Lambda-\varepsilon)$. We begin by choosing $x\in(0,1)$ and setting $y=(1-x^2)^{-1}$. Put $A(x)=\{te^{i\theta}:x^{1/yp}<t<1, \theta\in(0,2\pi)\}$. Let h map γ conformally onto the simply connected domain A(x), and set $f=h^{yp}$. Elementary geometric arguments now show that with m=[yp], we have

$$n(1, Re^{i\theta}, f) = \begin{cases} m+1, & \theta \in [0, 2\pi(yp-m)), & R \in (x, 1), \\ m, & \theta \in [2\pi(yp-m), 2\pi), & R \in (x, 1), \\ 0 & R \notin (x, 1). \end{cases}$$

This in turn implies that

$$p(1, R, f) = \begin{cases} yp, & R \in (x, 1), \\ 0, & R \notin (x, 1). \end{cases}$$

We now claim that $f \in S(p)$. If $0 < R \leq x$, it is trivially true that

 $A^*(1,R,f) \leq p\pi R^2.$

If x < R < 1, then

$$A^*(1, R, f) = 2\pi \int_0^R tp(1, t, f) dt$$

= $2\pi \int_x^R ypt dt$
= $\pi p(1 - x^2)^{-1} (R^2 - x^2).$

Straightforward computations now show that $A^*(1, R, f) \leq p\pi R^2$. If $R \geq 1$, then $A^*(1, R, f) = p\pi \leq p\pi R^2$. Hence $f \in S(p)$.

We now complete the construction by choosing x (and hence f) so that $f^{\lambda} \notin S(p\Lambda - \varepsilon)$. If $x^{\lambda} < R < 1$, it follows from (1) that

$$A^*(1, R, f^{\lambda}) = p \Lambda \pi (R^2 - x^{2\lambda}) y / \lambda.$$

Therefore

$$\sup\left\{\frac{A^*(1,R,f^{\lambda})}{\pi R^2}:x^{\lambda}< R<1\right\}=p\Lambda\frac{1-x^{2\lambda}}{\lambda(1-x^2)}.$$

As $x \to 1$, $(1-x^{2\lambda})/\lambda(1-x^2) = x^{2(\lambda-1)} + o(1)$. Hence, given $\varepsilon > 0$, we choose x < 1 such that

$$\sup\left\{\frac{A^*(1,R,f^{\lambda})}{\pi R^2}:x^{\lambda}< R<1\right\}>p\Lambda-\varepsilon.$$

With such an x, we have $f \in S(p)$, yet $f^{\lambda} \notin S(p\Lambda - \varepsilon)$.

To construct a corresponding example for $S_s(p)$, we merely define y to be $y = (1-x^s)^{-1}$, and proceed as above.

References

- B. G. Eke (1967), "The asymptotic behavior of areally mean valent functions", J. Anal. Math. 20, 147-212.
- W. K. Hayman (1967), Multivalent Functions (Cambridge University Press).
- J. A. Jenkins and K. Oikawa (1971), "A remark on *p*-valent functions", J. Austral. Math. Soc. 12, 397–404.
- D. C. Spencer (1940), "On finitely mean valent functions, II", Trans. Amer. Math. Soc. 48, 418-435.

College of the Holy Cross Worcester MA 01610, USA [5]