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GRAPH VARIETIES CONTAINING MURSKII'S GROUPOID

REINHARD POSCHEL

In this paper varieties are investigated which are generated by graph algebras of undirected
graphs and—in most cases—contain Murskii's groupoid (that is the graph algebra of the
graph with two adjacent vertices and one loop). Though these varieties are inherently
nonfinitely based, they can be finitely based as graph varieties (finitely graph based) like,
for example, the varitey generated by Murskii's groupoid. Many examples of nonfinitely
based graph varities containing Murskii's groupoid are given, too. Moreover, the coatoms
in the subvariety lattice of the graph variety of all undirected graphs are described. There
are two coatoms and they are finitely graph based.

1. INTRODUCTION

Graph algebras were invented by C. Shallon [15] to provide examples of non-finitely
based finite algebras (see [5] for an account of these results, and [1] for the newer
developments); further reference and other graph theoretic and algebraic applications
can be found in [2-4] and [7-13].

DEFINITION 1.1: To recall this concept, let G = (V,E) be a (directed) graph
with vertex set V and edges E QV Y.V (in general we shall use the notation V(G)
and E(G)). Define the graph algebra G* corresponding to G to have underlying set
Vu{oo} where oo is a symbol outside V , and two basic operations, a nullary operation
pointing to oo and a binary operation denoted by juxtaposition, given by

{ u if {u,v) (

oo otherwi

eE
otherwise

u, v E Fu{oo} .

One of the first examples of a non-finitely based finite algebra was the three-element
algebra called Murskii's groupoid (after its discoverer, see [6]). This algebra is the graph
algebra Po* of the undirected graph Poi (denoted by Go in [2—4]) with two adjacent
vertices and one loop. Figure 1 presents this graph and the multiplication table for the
corresponding graph algebra.

It has been observed by S. Oates-Macdonald and M. Vaughan-Lee [7] that the
lattice of subvarieties of the variety Var{i^} generated by Murskii's groupoid is also
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Figure 1.

very interesting. According to the main result of S. Oates-Williams[10], this lattice is
uncountable and satisfies neither the minimum nor the maximum condition.

In this paper we go in another direction and shall investigate varieties containing
Murskii's groupoid.

In [3] it is shown that the investigation of subvarieties of varities generated by
graph algebras can be reduced to the investigation of so-called graph varieties.

DEFINITION 1.2: For a class K of graphs, let the graph variety Varff K generated
by K be the class of all graphs G for which G# <= Var/C# = HSP{>1# \ A £ K}. We
call K a graph variety if Var9 K. = K.

By Birkhoff 's Theorem, K is a graph variety if and only if there is some set £ of
identities such that

K. = {G | G is a graph &G# |= E}.

We have:

THEOREM 1.3. ([3, Theorem 1.5, 1.6]) Every subvariety of a variety generated by
graph algebras is also generated by its graph algebras. Thus the lattice of subvarities
of Var/C* (for some class K of graphs) is isomorphic to the lattice of graph subvarities
of Var9 K* .

Graph varities can be described by some closure properties. We mention here only
the result for undirected graphs (for the directed case, see [11]).

THEOREM 1.4. ([2]) A class of undirected graphs is a graph variety if and only if
it is closed under isomorphic copies, direct products, induced subgraphs disjoint, and
directed unions.

Though most of the varieties generated by graph algebras are inherently non-finitely
based (see [15, 5, 1]) they can be finitely based as graph varieties. Therefore we
introduce the following notion.

DEFINITION 1.5: A graph variety K is called finitely graph based if there is a finite
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set E of identities, such that

K = Modg E := {G | G is a graph & G # |= E} .

A corresponding equational logic for graph algebras was developed in [12].

Example 1.6. Trivial examples of non-finitely based graph varieties which are finitely
graph based are the class Qu of all undirected graphs and the class <7° of all loopless
undirected graphs:

QU = {G\G graph & G # |= xox! as x o (x ix o )} ,

Gu = {G | G graph &G# |= {xox0 as oo,x0xi as xo(x!XO)}}.

Further examples can found also in [13, Remark 3.4]. This paper is motivated by
the question as to whether the variety generated by Murskii's groupoid is finitely graph
based. We have:

THEOREM 1.7. The graph variety Vol = Vars{POi} is finitely graph based.

This result follows from the fact (Corollary 3.4) that the interval [Varg{P01},Qu]

in subvariety lattice of Qu is atomic with two atoms. In Section 4 several parts of
this interval are described in more detail; moreover it contains exactly one coatom Mi

(which is finitely graph based (Theorem 5.2)). All coatoms of the subvariety lattice of
Qu are described in Section 5.

Because there is a great difference between graph varieties and varieties with respect
to equational bases, there arises the question as to what is the connection between
equational bases for graph varieties and for the (usual) varieties generated by them.
The answer was given in [12].

THEOREM 1.8. ([12, Proposition 1.9b]j Let Var9 K = K = Mod9 £ be a graph
variety determined by a set E of identities. Then the variety VarJC# = HSP /C*
generated by K* = {G* | G e K} is determined by S U S o ; that is

Var K* = {A \ A algebra of type (0,2), A \= E U E o } ,

where So is the set of identities which hold in all graph algebras.

Remark. The set Eo was explicitly described in [11, Proposition 2.2], [3, Lemma 2.2];

see also [12, Proposition 1.4].
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2. NOTIONS, NOTATION AND PRELIMINARY RESULTS

We shall not go into details here concerning terms and identities in the language
of graph algebras; we refer to [3] and [12] (see also [5, 1]). Our most important tool
for dealing with graph varieties is a criterion to decide whether or not a given graph
belongs to a graph variety generated by a given set of graphs. In view of Theorem 1.4
the following Lemma provides such a criterion, at least for finite connected undirected
graphs. In fact, a finite connected undirected graph G belongs to a graph variety
generated by a set K of undirected graphs if and only if G is isomorphic to an induced
subgraph of a direct product of members of K (see Theorem 1.4, [12, 11]).

LEMMA 2.1. (See [3, Lemma 4.6], [14],). I) Let G be a graph and K a family of
graphs. Then the following are equivalent:

(1) G is (isomorphic to) an induced subgraph of a direct product of members
of K.

(2) There exists a nonempty set <f> of graph homomorphisms from G to mem-
bers of K satisfying the following two conditons:

(a) for every two different vertices u and v of G there is an f £ $
such that f(u) and f(v) are different;

(b) for every non-edge (u,v) of G there is an / G $ such that
(f(u),f(v)) is also a non-edge.

II) In particular, if G G Qu is connected and finite, and if K Q Qu , then G G Varff K if
and only if condition (2) is satisfied.

We recall, a mapping / : V(G) —* V(H) from a graph G into a graph H is a
(graph) homomorphism if for all edges (u,v) G E(G) (loops (u,u) G E(G) included) we
have (/(•"), f(v)) G E(H). A non-edge is a pair (u,v) of vertices with (u,v) £ E(G).

The proof of 2.1 is elementary and is left to the reader (see [14] for the general
case of arbitary relational systems).

Let us consider now finitely graph based graph varieties.

PROPOSITION 2.2. (i) A graph variety W is finitely graph based if and only if
there is no infinite descending chain

Wo D Wt D • • • D Wn D • • • D W
oo

of graph varieties Wi with p| W< = W.
t=0

(ii) If Q is a finitely graph based graph variety containing the graph variety W, then
(i) remains true by adding the assumption Wo = Q •

PROOF: The proof is totally analogous to the corresponding fact for ordinary va-
rieties. In fact, let Wi = Mod9 £<, W = Mod,, S and let (Si), (E) denote the set of
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all identities which hold in Wi, W , respectively. Then we have E< Q (Si) g (S ) , and

(f\ Wi = W is equivalent to (S) = (j (S«) o r S S U (si> • Thus> f o r ft™te S t h e r e

i=0 i=0 «=0

is an n G N = {0,1,...} with I! Q (J (Si); consequently f| Wi = W and Wi = W
i=0 t=0

for i ^ n. Conversely, for a non-finitely graph based graph variety W = Modff S let
S = {ffcffi,^,---} and Si = {gj,...,9i}. Then Wi = Modg Si gives an infinite

oo

descending chain with |~| Wi = W. Thus (i) if proved.
>=o

To see (ii), let Wi i W as above, Q = Mod,, S' , S' finite. Since W g Q and
therefore S' £ (S) = |J (Si), there is some n G N with S' C Q (£<) = (Sn); that is

t=0 t=0

^ 2 Wi for i > n . Consequently, if (Wi) i e N is an infinite chain, then (Q D W i ) i e N is

infinite, too. This implies (ii). |

In the next sections we are concerned with special graphs and graph varieties for
which we introduce the following notation:

DEFINITIONS 2.3: Let Paoai...an_i{ao,---,<Xn-i G {0, l } , n ^ 1) denote the graph
which is the undirected path of n consecutive vertices «o, «i, • . . ,vn_i with a loop at
vertex Vi if and only if Oj = 1:

v° v l v i

Let Vaoai...<*„_! = Var9{Pa o a i . . . a n_j} be the corresponding graph variety. For
j P 10 . . .01 we write P1Qkl (analogously V l o t l ) .

k

The join of two graph varieties is denoted by V V W (it is the least graph variety
containing both V and W ).

For example we have: Poi is the graph given in Figure 1, Pou is the graph

. 0 0
V 0 V l V 2

and Voi V Vn = Var9{POi,-Pn}- We note that many of the varieties Vaoai...anl

coincide, for example Vooi = Voooi (proof by 2.1).

LEMMA 2.4. A connected graph G belongs to Voi if and only ifit is either loopless
or contains exactly one loop at a vertex adjacent to every other vertex.

https://doi.org/10.1017/S0004972700002756 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002756


270 R. Poschel [6]

PROOF: 5° C Voi (see 1.6) has been mentioned or proved in many papers; we
refer to [15, Theorem 7.4], [8, Theorem 1], [5, p.211], [13, 4.5] and [4, Proposition 1.1].
The remaining parts of the proof easily follow from 1.4. |

Remark 2.5. In the next sections we shall consider undirected graphs only. Because of
2.2(ii) this does not affect the property of being finitely graph based. Moreover, without
loss of generality we assume that all graphs under consideration are finite, undirected
and connected (since, by 1.4, a graph G belongs to a subvariety V of Qu if and only
if it is undirected and every finite connected induced subgraph of G belongs to V).

3. MURSKII'S GROUPOID IS FINITELY GRAPH BASED

LEMMA 3.1. P001 e V1Oi •

PROOF: The proof follows easily from criterion 2.1(11) since all the required ho-

momorphisms Pooi —• Pioi exist. The Lemma will follow also from 4.1. |

LEMMA 3.2. Let W be a graph variety such that VOi § V\> g Qu • Then POOi G

or

PROOF: Let G £ W\Voi be a finite connected graph. By 2.4, G has at least two
vertices and one loop. If G has two loops, consider a shortest path connecting these
loops. Obviously, G must have an induced subgraph isomorphic to P\\, Pooi or PJOI •
If G has exactly one loop at some vertex, say v, then v cannot be adjacant to every
other vertex (otherwise g £ Voi by 2.4). Consequently, G has the subgraph POoi •
Thus Pooi S Var9{G} or Pn 6 Vars{G} (since POOi 6 Var{PiOi} by 3.1). |

LEMMA 3.3. The graph varieties Vooi and Vn V Voi are different and properly

contain Voi •

PROOF: The proof is a typical application of 2.1. We have POoi ^ Vn V Voi
since there is no homomorphism from Pooi into Pn or Poi which maps the non-
edge (fo,V2) ^ .E(Pooi) to a non-edge. Moreover, Pn ^ Vooi since there is no
homomorphism from Pn into Pooi which maps the different looped vertices of Pn
into different vertices. Finally, Pn ^ Voi and POoi ^ Voi f°r the same reasons (or by
2.4). I

COROLLARY 3.4. The interval [Voi,£u] of graph varieties containing PQI is an
atomic subvariety lattice of Gu with the two atoms Vooi a n ^ Vn V Voi • (3.2, 3.2). |

By 2.2, this Corollary implies Theorem 1.7: VOi is finitely graph based.

A direct proof of Theorem 1.7 may be given by presenting a concrete finite equa-

tional basis, as follows:
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THEOREM 3.5. Let E be the set consisting of the following three identities:

(i) xoxj w K0(x!X0);

(ii) (x0x0){x1x2) & (xoxo){x2x1);
(iii)

Then Voi = Mod9 2 .

PROOF: Let VV = M o d 9 S . It is straightforward to check that Pol satisfies (i)-

(iii); that is Voi Q W . To see the converse, note that (i) expresses the property of

being undirected (see 1.6), (ii) forces every looped vertex Xo to be adjacent to every

other vertex which is connected (by a path) with Xo and (iii) expresses the property

that adjacent looped vertices must coincide. Thus, by 2.4, every G £ W belongs to

Voi- I

4. G R A P H VARIETIES CONTAINING POi

We start with a characterisation by closure properties of graph varieties containing

Poi-

THEOREM 4 .1 . Let W £ Qu be a graph variety contianing POi • Then W is closed

with respect to deleting loops and edges between non-looped vertices. Conversely, if

graph variety W Q Qu is closed with respect to these operations and if W contains a

connected graph with at least one loop and two vertices then Poi G VV.

PROOF: Let (u1,u2) € E(G) and G G VV, where ui, u2 € V(G) are non-looped
when Ui ̂  u2 • Let G' be the graph obtained from G by deleting the edge (or loop
if it] =1*2) (ui>tt2). We have to show G' € VV. Obviously, the identity mapping
L: V(G') - V(G) and the mapping / : V(G') -> V(P01) = {vo,Vi} with / ( « , ) =
/(w2) = vo and / ( x ) = vj otherwise, are homomorphisms from G' into G and Poi,
respectively. These two homomorphisms fulfil conditions 2.1(a) and (b); thus G' €

The second part of 4.1 is trivial. |

There is no full description of the undirected graph varieties containing Poi . Figure
2 describes a part of the interval [Voi,<7u] together with the varieties £7°, Vi , Vn
andVm • The coatoms A^i , M.2 will be described in Section 5. One can prove that:

The lattice given in Figure 2 is a sublattice of the subvariety lattice of Qu.

We shall not give the proof of this fact (the proof is more or less straightforward via
Lemma 2.1; see for example the proof of 3.3). As an example we prove the following:

PROPOSITION 4.2. Qu = VOi W m , in particuiar <7U = VOm .

PROOF: Let G = (V,E) £ Qu. We show the existence of graph homomorphisms

satisfying 2.1(a) and (b) for K = { P o i , P i n } (then 2.1 applies). In fact, for vertices

https://doi.org/10.1017/S0004972700002756 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002756


272 R. Poschel [8]

0111

M.

101

I l l

Figure 2

u 7̂  v we choose the mapping / : V —• F ( P m ) , /(•") = vo and / (x ) = V] for x ^v.
Given a non-edge (M,U) ^ £ with u € V, we choose the mapping g: V —* V(P01)
with g(u) = v0 and g(x) = Vi for a ^ u . Given a non-edge (u,v) £ £ with tt ^ v
we take the mapping h: V —• V'(-Piii) with fe(u) = vo, /i(v) = v2 and /i(x) = tij for
a; ^ {u ,v} . All these mappings are graph homoinorpliisms. R

However there are many more graph varieties between VQ1 and Gu • We mention,

in particular, that almost all graph varieties in Figure 2 are non-finitely graph based

(thus there exist infinite descending chains; see 4.4).

The exceptions, that is the finitely graph based graph varieties among the varieties

in Figure 2 are

M
2, V

m , "01 j
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their intersections

Graph varieties 273

and the empty graph variety 0 = {G 6 Qn | <?* \= x = y}.
Finite bases for the identities of these exceptional cases are given in 1.6, 3.5, 5.1

and in the next Proposition. Of course, the intersection (like Vi, Vn ) of graph varieties
is characterised by the union of the corresponding identities. Nevertheless we mention
here a simpler characterisation for Vi and Vn •

PROPOSITION 4.3.

PROOF: This follows from the definitions without difficulties; see also [1]. {

Note that the indicated identities imply undirectedness, for instance in the case of
Vn , the second identity implies xo(xiXf)) ~ (ajo^i^o which, together with XQXQ ~ XQ

and the always valid identity (a:oXi)a:o ~ (^o^o)*1] (6 So; see for example [12, 1.4])
gives (XQXI)XO ~ XQXJ , and this characterises undirectedness (see 1.6).

The following Theorem will serve as an example that the other varieties in Figure 2
are not only non-finitely based (as shown in [5, Theorem 6]) but also non-finitely graph
based.

THEOREM 4.4. V101 is non-finitely graph based.

PROOF: Let Dn be the graph given in Figure 3.

V 1

n

Figure 3

Via Lemma 2.1 one shows that Dn+1 G Var9{Z>n} but Dn £ Varg{Dn+i,P1Oi}
(since there is no homomorphisin from Dn into Z?n+i or PJOI for which u and tt'
have different images). Consequently we get an infinite descending chain Wj D W2 D

https://doi.org/10.1017/S0004972700002756 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002756


274 R. Poschel [10]

. . . D Wn D . . . D Vioi where Wn = Vaig{Dn,P1()i}. By 2.2 it suffices to prove

H Wn = Vioi. Let W = H Wn and let G G W be finite and connected. Let m
n=l n=l

be the diameter of G, that is the greatest distance of vertices of G, and let n > TO .
Since the vertices u, u' have distance n + 1 in the graph Dn, the images of the
homomorpliisms which have to exist by 2.1 for G G Wn = Var9{£>n, Pioi} do not
contain both it and u'. Thus, again by 2.1, G G Var{i}n>Pioi} where Dn is the graph
arising form Dn by deleting the vertex u'. Now we are going to show Dn G V m ,
which implies G G Vioi and therefore W = Vioi •

In fact, the following mappings are graph homomorphisms and show (via 2.1) that

Dn G Var5{Pioi}- For different vertices W\, w2 G VID n \ at least one, say u>j, has

no loop (since Dn has only one loop); we choose the mapping / : V(.DnJ —> V(PiOi)

with /(u>i) = vi, f(x) = vo for x ^ wj (notation see 2.3). The same mapping serves

for the non-loops (wi,wi) £ E(Dn). For the non-edges (101,102) ^ E(Dn) , take

the mapping g: V lDn\ —+ V(Pioi) with </(«))) = VQ , ff(i«2) = V2 and </(x) = fi for

Remark. Similar proofs exist for the other varieties in Figure 2, other than those

already shown to be finitely graph based. Moreover, one can show that:

every connected graph G which contains exactly one loop and P001 as induced sub-

graph, generates a non-finitely graph bated graph variety W( Wn = Var9{G,Pio»i}, n =

1,2,... give an infinite descending chain with p| Wn = W).

5. MAXIMAL GRAPH VARIETIES IN QU

Since the graph variety Qu is finitely generated, Qu — Vars{Poi,Fin} (see 4.2),
the subvariety lattice of Qu is dually atomic. Therefore there arises the question of
describing the maximal subvarieties, that is the dual atoms in this lattice. By 2.2 every
such maximal graph variety is finitely graph based.

DEFINITION 5.1: Let

M2 = Modg{x0x1

THEOREM 5.2. (i) M.\ consists of all undirected graphs which do not contain P m

as induced subgraph.

(ii) M.2 consists of all undirected graphs which do not contain P01 as induced subgraph

(that is, every connected G G M-2 is totally looped or totally non-looped).
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(Hi) Both M.\ and M2 are maximal subvarieties (coatoms) of Qu .

(iv) There are no maximal subvarieties other than M} and M2 •

PROOF: The second identity defining M-y (see 5.1) expresses precisely the prop-

erty that if a looped vertex has two looped neighbours then these neighbours must be

adjacent, too. This is equivalent to (i). Analogously, the second identity defining M-i

expresses the property (which is equivalent to (ii)), that every neighbour of a looped

vertex must be looped, too. (iii) immediately follows from (i), (ii) and 4.2. To see

(iv), let M be a subvariety of </„. If ? n l £ M then M C Mi, if POi £ M then

M Q M2 (we always use the fact that graph varieties are closed with respect to induced

subgraphs; see 1.4). Otherwise {Pm>Poi} = M-, thus M — Gu by 4.2. |

There are several open problems for further research, for instance: describe and

classify all graph varieties in the interval [Voi,£7u], find full sublattices of this interval,

describe all finitely graph based graph varieties of undirected graphs. The results of

this paper are a contribution to these problems. Many more results can be obtained by

using Lemma 2.1.
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